首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Abstract: The amphibian fungal pathogen Batrachochytrium dendrobatidis (Bd) has received considerable attention due to its role in amphibian population declines worldwide. Although many amphibian species appear to be affected by Bd, there is little information on species‐specific differences in susceptibility to this pathogen. We used a comparative experimental approach to examine Bd susceptibility in 6 amphibian species from the United States. We exposed postmetamorphic animals to Bd for 30 days and monitored mortality, feeding rates, and infection levels. In all species tested, Bd‐exposed animals had higher rates of mortality than unexposed (control) animals. However, we found differences in mortality rates among species even though the amount of Bd detected on the different species’ bodies did not differ. Of the species tested, southern toads (Anaxyrus terrestris) and wood frogs (Lithobates sylvaticus) had the highest rates of Bd‐related mortality. Within species, we detected lower levels of Bd on individuals that survived longer and found that the relationship between body size and infection levels differed among species. Our results indicate that, even under identical conditions, amphibian species differ in susceptibility to Bd. This study represents a step toward identifying and understanding species variation in disease susceptibility, which can be used to optimize conservation strategies.  相似文献   

2.
Anthropogenic-derived stressors in the environment, such as contaminants, are increasingly considered important cofactors that may decrease the immune response of amphibians to pathogens. Few studies, however, have integrated amphibian disease and contaminants to test this multiple-stressor hypothesis for amphibian declines. We examined whether exposure to sublethal concentrations of a glyphosate-based herbicide and two strains of the pathogenic chytrid fungus, Batrachochrytrium dendrobatidis (Bd) could: (1) sublethally affect wood frogs (Lithobates sylvaticus) by altering the time to and size at metamorphosis, and (2) directly affect survivability of wood frogs after metamorphosis. Neither Bd strain nor herbicide exposure alone significantly altered growth or time to metamorphosis. The two Bd strains did not differ in their pathogenicity, and both caused mortality in post-metamorphic wood frogs. There was no evidence of an interaction between treatments, indicating a lack of herbicide-induced susceptibility to Bd. However, the trends in our data suggest that exposure of wood frogs to a high concentration of glyphosate-based herbicide may reduce Bd-caused mortality compared to animals exposed to Bd alone. These results exemplify the complexities inherent when populations are coping with multiple stressors. In this case, the perceived stressor, glyphosate-based herbicide, appeared to affect the pathogen more than the host's immune system, relieving the host from disease-caused effects. This suggests caution when invoking multiple stressors as a cause for increased disease susceptibility and indicates that the effects of multiple stressors on disease outcome depend on the interrelationships of stressors to both the pathogen and the host.  相似文献   

3.
Contributing to the worldwide biodiversity crisis are emerging infectious diseases, which can lead to extirpations and extinctions of hosts. For example, the infectious fungal pathogen Batrachochytrium dendrobatidis (Bd) is associated with worldwide amphibian population declines and extinctions. Sensitivity to Bd varies with species, season, and life stage. However, there is little information on whether sensitivity to Bd differs among populations, which is essential for understanding Bd‐infection dynamics and for formulating conservation strategies. We experimentally investigated intraspecific differences in host sensitivity to Bd across 10 populations of wood frogs (Lithobates sylvaticus) raised from eggs to metamorphosis. We exposed the post‐metamorphic wood frogs to Bd and monitored survival for 30 days under controlled laboratory conditions. Populations differed in overall survival and mortality rate. Infection load also differed among populations but was not correlated with population differences in risk of mortality. Such population‐level variation in sensitivity to Bd may result in reservoir populations that may be a source for the transmission of Bd to other sensitive populations or species. Alternatively, remnant populations that are less sensitive to Bd could serve as sources for recolonization after epidemic events.  相似文献   

4.
Rising temperatures, a widespread consequence of climate change, have been implicated in enigmatic amphibian declines from habitats with little apparent human impact. The pathogenic fungus Batrachochytrium dendrobatidis (Bd), now widespread in Neotropical mountains, may act in synergy with climate change causing collapse in thermally stressed hosts. We measured the thermal tolerance of frogs along a wide elevational gradient in the Tropical Andes, where frog populations have collapsed. We used the difference between critical thermal maximum and the temperature a frog experiences in nature as a measure of tolerance to high temperatures. Temperature tolerance increased as elevation increased, suggesting that frogs at higher elevations may be less sensitive to rising temperatures. We tested the alternative pathogen optimal growth hypothesis that prevalence of the pathogen should decrease as temperatures fall outside the optimal range of pathogen growth. Our infection‐prevalence data supported the pathogen optimal growth hypothesis because we found that prevalence of Bd increased when host temperatures matched its optimal growth range. These findings suggest that rising temperatures may not be the driver of amphibian declines in the eastern slopes of the Andes. Zoonotic outbreaks of Bd are the most parsimonious hypothesis to explain the collapse of montane amphibian faunas; but our results also reveal that lowland tropical amphibians, despite being shielded from Bd by higher temperatures, are vulnerable to climate‐warming stress. Fisiología Termal, Enfermedades y Disminuciones de Anfibios en las Laderas Orientales de los Andes  相似文献   

5.
Abstract:  Genetic diversity may buffer amphibian populations against environmental vicissitudes. We hypothesized that wood frogs (  Rana sylvatica ) from populations with lower genetic diversity are more susceptible to ultraviolet-B (UV-B) radiation than those from populations with higher diversity. We used RAPD markers to obtain genetic diversity estimates for 12 wood frog populations. We reared larval wood frogs from these populations and exposed experimental groups of eggs and larvae to one of three treatments: unfiltered sunlight, sunlight filtered through a UV-B-blocking filter (Mylar), and sunlight filtered through a UV-B-transmitting filter (acetate). In groups exposed to UV-B, larval mortality and deformity rates increased significantly, but egg mortality did not. We found a significant negative relationship between genetic diversity and egg mortality, larval mortality, and deformity rates. Furthermore, the interaction between UV-B treatment and genetic diversity significantly affected larval mortality. Populations with low genetic diversity experienced higher larval mortality rates when exposed to UV-B than did populations with high genetic diversity. This is the first time an interaction between genetic diversity and an environmental stressor has been documented in amphibians. Differences in genetic diversity among populations, coupled with environmental stressors, may help explain patterns of amphibian decline.  相似文献   

6.
Abstract: Ecological theory predicts that species with restricted geographic ranges will have the highest probability of extinction, but species with extensive distributions and high population densities can also exhibit widespread population losses. In the western United States populations of northern leopard frogs (Lithobates pipiens)—historically one of the most widespread frogs in North America—have declined dramatically in abundance and geographic distribution. To assess the status of leopard frogs in Colorado and evaluate causes of decline, we coupled statewide surveys of 196 historically occupied sites with intensive sampling of 274 wetlands stratified by land use. We used an information‐theoretic approach to evaluate the contributions of factors at multiple spatial extents in explaining the contemporary distribution of leopard frogs. Our results indicate leopard frogs have declined in Colorado, but this decline was regionally variable. The lowest proportion of occupied wetlands occurred in eastern Colorado (2–28%), coincident with urban development and colonization by non‐native bullfrogs (Lithobates catesbeianus). Variables at several spatial extents explained observed leopard frog distributional patterns. In low‐elevation wetlands introduced fishes, bullfrogs, and urbanization or suburbanization associated negatively with leopard frog occurrence, whereas wetland area was positively associated with occurrence. Leopard frogs were more abundant and widespread west of the Continental Divide, where urban development and bullfrog abundance were low. Although the pathogenic chytrid Batrachochytrium dendrobatidis (Bd) was not selected in our best‐supported models, the nearly complete extirpation of leopard frogs from montane wetlands could reflect the individual or interactive effects of Bd and climate patterns. Our results highlight the importance of considering multiple, competing hypotheses to explain species declines, particularly when implicated factors operate at different spatial extents.  相似文献   

7.
Abstract:  Emerging infectious diseases may be contributing to the global decline of amphibian populations. In particular, chytridiomycosis, a cutaneous fungal infection of amphibians caused by the chytrid Batrachochytrium dendrobatidis , gained attention in the 1990s as an apparently new pathogen. This fungus has been implicated as the causative agent of widespread mortalities among wild amphibians in geographically disparate parts of the world. To investigate the global distribution, historical occurrence, and infectiousness of this pathogen, we examined 3371 postmetamorphic and adult amphibians collected between 1895 and 2001 from 25 countries for the presence of chytrid fungi in the epidermis. Cutaneous chytrid infection was diagnosed in 383 of 2931 (13.1%) specimens of 12 common amphibian species from five Canadian provinces and seven American states, including 30 of 69 locations examined in the St. Lawrence River Valley of Québec. Chytrids were observed in 7.0% (46/655) of the adults collected in the 1960s, the earliest cases being two green frogs (  Rana clamitans ) collected in 1961 from Saint-Pierre-de-Wakefield, Québec. In recent studies, morbidity and mortality attributable to chytridiomycosis were not observed in infected amphibians from Québec despite a 17.8% (302/1698) prevalence of chytrid infection during the period 1990–2001. The prevalence of infection during this latter period was not statistically different when compared with the period 1960–1969. Epidermal chytrid infections were not observed in 440 amphibians examined from 23 other countries. In light of the fact that infection by B. dendrobatidis is widely distributed and apparently enzootic in seemingly healthy amphibians from eastern North America, lethal outbreaks of chytridiomycosis among amphibian populations appear to have complex causes and may be the result of underlying predisposing factors.  相似文献   

8.
Emerging wildlife pathogens are an increasing threat to biodiversity. One of the most serious wildlife diseases is chytridiomycosis, caused by the fungal pathogen, Batrachochytrium dendrobatidis (Bd), which has been documented in over 500 amphibian species. Amphibians vary greatly in their susceptibility to Bd; some species tolerate infection, whereas others experience rapid mortality. Reservoir hosts—species that carry infection while maintaining high abundance but are rarely killed by disease—can increase extinction risk in highly susceptible, sympatric species. However, whether reservoir hosts amplify Bd in declining amphibian species has not been examined. We investigated the role of reservoir hosts in the decline of the threatened northern corroboree frog (Pseudophryne pengilleyi) in an amphibian community in southeastern Australia. In the laboratory, we characterized the response of a potential reservoir host, the (nondeclining) common eastern froglet (Crinia signifera), to Bd infection. In the field, we conducted frog abundance surveys and Bd sampling for both P. pengilleyi and C. signifera. We built multinomial logistic regression models to test whether Crinia signifera and environmental factors were associated with P. pengilleyi decline. C. signifera was a reservoir host for Bd. In the laboratory, many individuals maintained intense infections (>1000 zoospore equivalents) over 12 weeks without mortality, and 79% of individuals sampled in the wild also carried infections. The presence of C. signifera at a site was strongly associated with increased Bd prevalence in sympatric P. pengilleyi. Consistent with disease amplification by a reservoir host, P. pengilleyi declined at sites with high C. signifera abundance. Our results suggest that when reservoir hosts are present, population declines of susceptible species may continue long after the initial emergence of Bd, highlighting an urgent need to assess extinction risk in remnant populations of other declined amphibian species.  相似文献   

9.
Abstract: Amphibians are declining worldwide, but these declines have been particularly dramatic in tropical mountains, where high endemism and vulnerability to an introduced fungal pathogen, Batrachochytrium dendrobatidis (Bd), is associated with amphibian extinctions. We surveyed frogs in the Peruvian Andes in montane forests along a steep elevational gradient (1200–3700 m). We used visual encounter surveys to sample stream‐dwelling and arboreal species and leaf‐litter plots to sample terrestrial‐breeding species. We compared species richness and abundance among the wet seasons of 1999, 2008, and 2009. Despite similar sampling effort among years, the number of species (46 in 1999) declined by 47% between 1999 and 2008 and by 38% between 1999 and 2009. When we combined the number of species we found in 2008 and 2009, the decline from 1999 was 36%. Declines of stream‐dwelling and arboreal species (a reduction in species richness of 55%) were much greater than declines of terrestrial‐breeding species (reduction of 20% in 2008 and 24% in 2009). Similarly, abundances of stream‐dwelling and arboreal frogs were lower in the combined 2008–2009 period than in 1999, whereas densities of frogs in leaf‐litter plots did not differ among survey years. These declines may be associated with the infection of frogs with Bd. B. dendrobatidis prevalence correlated significantly with the proportion of species that were absent from the 2008 and 2009 surveys along the elevational gradient. Our results suggest Bd may have arrived at the site between 1999 and 2007, which is consistent with the hypothesis that this pathogen is spreading in epidemic waves along the Andean cordilleras. Our results also indicate a rapid decline of frog species richness and abundance in our study area, a national park that contains many endemic amphibian species and is high in amphibian species richness.  相似文献   

10.
11.
Patrick DA  Harper EB  Hunter ML  Calhoun AJ 《Ecology》2008,89(9):2563-2574
To predict the effects of terrestrial habitat change on amphibian populations, we need to know how amphibians respond to habitat heterogeneity, and whether habitat choice remains consistent throughout the life-history cycle. We conducted four experiments to evaluate how the spatial distribution of juvenile wood frogs, Rana sylvatica (including both overall abundance and localized density), was influenced by habitat choice and habitat structure, and how this relationship changed with spatial scale and behavioral phase. The four experiments included (1) habitat manipulation on replicated 10-ha landscapes surrounding breeding pools; (2) short-term experiments with individual frogs emigrating through a manipulated landscape of 1 m wide hexagonal patches; and habitat manipulations in (3) small (4-m2); and (4) large (100-m2) enclosures with multiple individuals to compare behavior both during and following emigration. The spatial distribution of juvenile wood frogs following emigration resulted from differences in the scale at which juvenile amphibians responded to habitat heterogeneity during active vs. settled behavioral phases. During emigration, juvenile wood frogs responded to coarse-scale variation in habitat (selection between 2.2-ha forest treatments) but not to fine-scale variation. After settling, however, animals showed habitat selection at much smaller scales (2-4 m2). This resulted in high densities of animals in small patches of suitable habitat where they experienced rapid mortality. No evidence of density-dependent habitat selection was seen, with juveniles typically choosing to remain at extremely high densities in high-quality habitat, rather than occupying low-quality habitat. These experiments demonstrate how prediction of the terrestrial distribution of juvenile amphibians requires understanding of the complex behavioral responses to habitat heterogeneity. Understanding these patterns is important, given that human alterations to amphibian habitats may generate extremely high densities of animals, resulting in high density-dependent mortality.  相似文献   

12.
ABSTRACT

Human activity has led to widespread chemical alteration of natural environments. Aquatic ecosystems are especially susceptible to chemical changes, including those caused by runoff and invasive species. Here, we examined the effects of water chemistry, specifically sodium chloride as well as three metals (Ca, K, and Mn) known to differ between native and invasive wetland plant species’ leaf tissues, on the development of two model amphibians: the native Northern leopard frog, Lithobates pipiens, and the non-native African clawed frog, Xenopus laevis. We exposed frog eggs to metal treatment solutions and measured time to hatching (TTH), and following hatching, we exposed tadpoles to a lethal concentration of sodium chloride and recorded time to death (TTD). We found that increasing metal concentrations generally resulted in acceleration of TTH for Xenopus tadpoles, but had no effect on leopard frogs. However, increasing metal concentrations (Ca, Mn) increased leopard frog tadpole susceptibility to NaCl (decreased TTD), while increasing metal concentrations (Ca, K) generally resulted in decreased Xenopus tadpole susceptibility to NaCl. Overall, our data suggest that invasive amphibians may be more tolerant to chemical changes than native amphibians, including those driven by the introduction of invasive plant species.  相似文献   

13.
Amphibian Breeding Distribution in an Urbanized Landscape   总被引:5,自引:0,他引:5  
Abstract:  Amphibians commonly use wetlands for breeding habitat, and given the concern about their ongoing global declines, the effects of urbanization on the breeding distribution of amphibians need to be quantified. Thus, we conducted a survey of the larval amphibian community in central Pennsylvania (U.S.A.) wetlands along an urbanization gradient. Wetlands in urban areas had less surrounding forest and wetlands and greater road density than rural wetlands. Urbanization was also associated with increases in hydroperiod (i.e., wetland permanency) and the presence of fish predators. Moreover, urban wetlands had lower larval amphibian species richness than rural wetlands. This decrease in richness was attributable to a decrease in occurrence of wood frogs ( Rana sylvatica ) and ambystomatid salamanders ( Ambystoma maculatum and A. jeffersonianum ) in urban sites. Wood frogs and ambystomatid salamanders were positively associated with the amount of forest surrounding sites and negatively associated with hydroperiod. As a result, we hypothesize that these species are sensitive to the effects of urban development. The remaining species in this study appear fairly resilient to the effects of urbanization. These data demonstrate the importance of quantifying both local and landscape attributes when describing the factors that limit the breeding distribution of amphibians. We recommend that to preserve amphibian biodiversity in urbanized landscapes, it is best to focus on regional diversity, which protects a variety of sites that encompass various hydroperiods, have adequate buffer habitat, and are connected by dispersal routes.  相似文献   

14.
Abstract:  As part of an overall biodiversity crisis many amphibian populations are in decline throughout the world. Numerous causes have been invoked to explain these declines. These include habitat destruction, climate change, increasing levels of ultraviolet radiation, environmental contamination, and the introduction of non-native species and diseases. Several types of pathogens have been implicated in contributing to amphibian population declines: viruses, bacteria, oomycetes, and fungi. One particular fungus, the chytridiomycete Batrachochytrium dendrobatidis may have caused amphibian population declines in several regions. This pathogen causes chytridiomycosis, which is fatal to newly metamorphic and adult amphibians of certain species. We present experimental evidence that larval stages may also be susceptible to exposure to Batrachochytrium . There was, however, differential sensitivity to B. dendrobatidis in larvae we examined. In laboratory experiments, larval western toads (  Bufo boreas ) exposed to B. dendrobatidis experienced increased mortality and behaviors that suggested they were affected by exposure compared with unexposed control tadpoles. Larvae of Cascades frogs (  Rana cascadae ), bullfrogs ( R. catesbeiana ), and Pacific treefrogs ( Hyla regilla ) did not die after exposure to Batrachochytrium and appeared to behave normally. R. cascadae larvae exposed to B. dendrobatidis , however, showed an increase incidence in mouthpart abnormalities, a characteristic effect of chytridiomycosis, compared with unexposed controls. These results show that Batrachochytrium can negatively affect some species of amphibians at the larval stage and not others. The implications of interspecific variation in susceptibility to fungal infection are broad.  相似文献   

15.
Abstract: Chytridiomycosis, the emerging disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd) is responsible for declines and extirpations of amphibian populations worldwide. Environmental covariates modify the host‐Bd interaction and thus affect the ongoing spread of the pathogen. One such covariate may be the intensity of ultraviolet B (UV‐B) radiation. In a field experiment conducted in Laguna Grande de Peñalara (central Spain), a mountainous region where the presence of Bd has been documented since 1997, we analyzed the potential effect of environmental UV‐B (daily maximum 2.5–3.9 W/m2) on the susceptibility of larvae of the common toad (Bufo bufo) to Bd. The proportion of infected individuals increased as tadpoles developed. The prevalence of Bd was significantly lower in tadpoles exposed to environmental UV‐B intensities (2.94%) than in tadpoles not exposed to the radiation (9.72%). This finding mirrors that seen for a second amphibian species, the European midwife toad (Alytes obstetricans), for which conditional prevalence (i.e., prevalence of infection conditioned on the probability of a site being infected) across the Iberian Peninsula was inversely correlated with the intensity of UV‐B.  相似文献   

16.
Abstract: The commercial trade of wildlife occurs on a global scale. In addition to removing animals from their native populations, this trade may lead to the release and subsequent introduction of nonindigenous species and the pathogens they carry. Emerging infectious diseases, such as chytridiomycosis caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), and ranaviral disease have spread with global trade in amphibians and are linked to amphibian declines and die‐offs worldwide, which suggests that the commercial trade in amphibians may be a source of pathogen pollution. We screened tiger salamanders involved in the bait trade in the western United States for both ranaviruses and Bd with polymerase chain reaction and used oral reports from bait shops and ranavirus DNA sequences from infected bait salamanders to determine how these animals and their pathogens are moved geographically by commerce. In addition, we conducted 2 surveys of anglers to determine how often tiger salamanders are used as bait and how often they are released into fishing waters by anglers, and organized bait‐shop surveys to determine whether tiger salamanders are released back into the wild after being housed in bait shops. Ranaviruses were detected in the tiger salamander bait trade in Arizona, Colorado, and New Mexico, and Bd was detected in Arizona bait shops. Ranaviruses were spread geographically through the bait trade. All tiger salamanders in the bait trade were collected from the wild, and in general they moved east to west and north to south, bringing with them their multiple ranavirus strains. Finally, 26–73% of anglers used tiger salamanders as fishing bait, 26–67% of anglers released tiger salamanders bought as bait into fishing waters, and 4% of bait shops released tiger salamanders back into the wild after they were housed in shops with infected animals. The tiger salamander bait trade in the western United States is a useful model for understanding the consequences of the unregulated anthropogenic movement of amphibians and their pathogens through trade.  相似文献   

17.
Abstract:  Estimating disease-associated mortality and transmission processes is difficult in free-ranging wildlife but important for understanding disease impacts and dynamics and for informing management decisions. In a capture–mark–recapture study, we used a PCR-based diagnostic test in combination with multistate models to provide the first estimates of disease-associated mortality and detection, infection, and recovery rates for frogs endemically infected with the chytrid fungus Batrachochytrium dendrobatidis (Bd), which causes the pandemic amphibian disease chytridiomycosis. We found that endemic chytridiomycosis was associated with a substantial reduction (approximately 38%) in apparent monthly survival of the threatened rainforest treefrog Litoria pearsoniana despite a long period of coexistence (approximately 30 years); detection rate was not influenced by disease status; improved recovery and reduced infection rates correlated with decreased prevalence, which occurred when temperatures increased; and incorporating changes in individuals' infection status through time with multistate models increased effect size and support (98.6% vs. 71% of total support) for the presence of disease-associated mortality when compared with a Cormack–Jolly–Seber model in which infection status was restricted to the time of first capture. Our results indicate that amphibian populations can face significant ongoing pressure from chytridiomycosis long after epidemics associated with initial Bd invasions subside, an important consideration for the long-term conservation of many amphibian species worldwide. Our findings also improve confidence in estimates of disease prevalence in wild amphibians and provide a general framework for estimating parameters in epidemiological models for chytridiomycosis, an important step toward better understanding and management of this disease.  相似文献   

18.
Abstract: Sport‐fish introductions are now recognized as an important cause of amphibian decline, but few researchers have quantified the demographic responses of amphibians to current options in fisheries management designed to minimize effects on sensitive amphibians. Demographic analyses with mark–recapture data allow researchers to assess the relative importance of survival, local recruitment, and migration to changes in population densities. I conducted a 4‐year, replicated whole‐lake experiment in the Klamath Mountains of northern California (U.S.A.) to quantify changes in population density, survival, population growth rate, and recruitment of the Cascades frog (Rana cascadae) in response to manipulations of non‐native fish populations. I compared responses of the frogs in lakes where fish were removed, in lakes in their naturally fish‐free state, and in lakes where fish remained that were either stocked annually or no longer being stocked. Within 3 years of fish removals from 3 lakes, frog densities increased by a factor of 13.6. The survival of young adult frogs increased from 59% to 94%, and realized population growth and recruitment rates at the fish‐removal lakes were more than twice as high as the rates for fish‐free reference lakes and lakes that contained fish. Population growth in the fish‐removal lakes was likely due to better on‐site recruitment of frogs to later life stages rather than increased immigration. The effects on R. cascadae of suspending stocking were ambiguous and suggested no direct benefit to amphibians. With amphibians declining worldwide, these results show that active restoration can slow or reverse the decline of species affected by fish stocking within a short time frame.  相似文献   

19.
Abstract: Chytridiomycosis is linked to the worldwide decline of amphibians, yet little is known about the demographic effects of the disease. We collected capture–recapture data on three populations of boreal toads (Bufo boreas [Bufo = Anaxyrus]) in the Rocky Mountains (U.S.A.). Two of the populations were infected with chytridiomycosis and one was not. We examined the effect of the presence of amphibian chytrid fungus (Batrachochytrium dendrobatidis [Bd]; the agent of chytridiomycosis) on survival probability and population growth rate. Toads that were infected with Bd had lower average annual survival probability than uninfected individuals at sites where Bd was detected, which suggests chytridiomycosis may reduce survival by 31–42% in wild boreal toads. Toads that were negative for Bd at infected sites had survival probabilities comparable to toads at the uninfected site. Evidence that environmental covariates (particularly cold temperatures during the breeding season) influenced toad survival was weak. The number of individuals in diseased populations declined by 5–7%/year over the 6 years of the study, whereas the uninfected population had comparatively stable population growth. Our data suggest that the presence of Bd in these toad populations is not causing rapid population declines. Rather, chytridiomycosis appears to be functioning as a low‐level, chronic disease whereby some infected individuals survive but the overall population effects are still negative. Our results show that some amphibian populations may be coexisting with Bd and highlight the importance of quantitative assessments of survival in diseased animal populations.  相似文献   

20.
The inconsistent distribution of large‐scale infection mediated die‐offs and the subsequent population declines of several animal species, urges us to understand how, when, and why species are affected by disease. It is often unclear when or under what conditions a pathogen constitutes a threat to a host. Often, variation of environmental conditions plays a role. Globally Batrachochytrium dendrobatidis (Bd) causes amphibian declines; however, host responses are inconsistent and this fungus appears equally capable of reaching a state of endemism and subsequent co‐existence with native amphibian assemblages. We sought to identify environmental and temporal factors that facilitate host–pathogen coexistence in northern Europe. To do this, we used molecular diagnostics to examine archived and wild amphibians for infection and general linear mixed models to explore relationships between environmental variables and prevalence of infection in 5 well‐sampled amphibian species. We first detected infection in archived animals collected in 1999, and infection was ubiquitous, but rare, throughout the study period (2008–2010). Prevalence of infection exhibited significant annual fluctuations. Despite extremely rare cases of lethal chytridiomycosis in A. obstetricans, Bd prevalence was uncorrelated with this species’ population growth. Our results suggest context dependent and species‐specific host susceptibility. Thus, we believe recent endemism of Bd coincides with environmentally driven Bd prevalence fluctuations that preclude the build‐up of Bd infection beyond the critical threshold for large‐scale mortality and host population crashes. Determinantes Ambientales del Endemismo Reciente de Infecciones de Batrachochytrium dendrobatidis en Conjuntos de Anfibios en Ausencia de Brotes de Enfermedades Spitzen et al.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号