首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The allelopathic potential of oat (Avena sativa L., var. Argentina, Poaceae, Cyperales) was investigated under field and laboratory conditions. In field trials, oat plants provided an effective control of weeds, showing a species-specific impact: the most abundant weed species, Picris echioides was reduced by 94% in number of individuals. Aerial parts of oat plants, harvested immediately before soil incorporation, were utilized in a bioassay-guided isolation, which was aimed at identifying the phytotoxic compounds in a methanol/water extract of the aerial parts of the plants. Further partitions of extract gave an active n-butanol portion composed of flavonoids and saponins. Phytotoxic activity was detected for the flavonoid fraction, whereas no activity was found for the saponin mixture. Germination of an indicator species, lettuce (Lactuca sativa L.), was completely inhibited at flavonoid concentrations of 6.7, 10.0, and 20.0 mg/mL, and conversely the number of abnormal seedlings was greatly increased from 2% of control to over 96% at concentrations equal to 6.7 and 10.0 mg/mL. Analysis of the flavonoid fraction by ESI-MS techniques identified two components of the mixture as isoorientin 2-O-glucoside and isovitexin 2″-O-arabinoside. Saponins were characterized as avenacoside A, avenacoside B, 26-desglucoavenacoside A, and 26-desglucoavenacoside B. Both flavone C-glycosides and saponins were isolated previously from oat.  相似文献   

2.
Uranium Accumulation of Crop Plants Enhanced by Citric Acid   总被引:6,自引:0,他引:6  
Citric acid was applied to soil to enhance U accumulation in four crop plants. While the highest enhanced U accumulation of aboveground tissues (a.c. 2000 mg kg−1 dry weight) occurred in the leaves of Indian mustard (Brassica juncea), the highest enhanced U accumulation of roots (a.c. 3500 mg kg−1 dry weight) occurred in canola (Brassica napus var. napus). Uranium translocation among tissues of test plants is in the relation of roots>shoots ≅ leaves. The flowers of sunflower (Helianthus annuus) contained similar or higher U concentrations than those found in shoots, but concentrations in seeds are close to zero. In conclusion, Indian mustard is recommended as a potential species for phytoextraction for U-contaminated soil due to its high U accumulation of aboveground biomass (a.c. 2200 μg per plant). There is no evidence that two types of soils cause a significant difference of the enhanced U accumulation (p<0.05). Results, however, indicate that additional citric acid may result in downward U migration that may contaminate groundwater. Speciation of U that is taken up by plants is also discussed in the end.  相似文献   

3.

In recent decades, the problem of the constantly increasin level of anthropogenic load on the environment is becoming more and more acute. Some of the most dangerous pollutants entering the environment from industrial emissions are heavy metals. These pollutants are not susceptible to biodegradation over time, which leads to their accumulation in the environment in dangerous concentrations. The purpose of this work is to study the sustainability of cultivated and wild plants of the Poaceae family to aerotechnogenic pollution in the soil. The content of heavy metals in couch grass (Elytrigia repens (L.) Nevski), meadow bluegrass (Poa pratensis L.) and soft wheat (Triticum aestivum) plants grown in the impact zone of Novocherkassk Power Station has been analyzed. Contamination of cultivated and wild cereals with Pb, Zn, Ni and Cd has been established. It has been shown that the accumulation of heavy metals is individual for each plant species. An average and close correlation have been established between the total HM content and the content of their mobile forms in the soil and their content in plants. For the plants studied, the translocation factor (TF) and the distribution coefficient (DC) of HM have been calculated. The TF is formed by the ratio of the concentration of an element in the root plant dry weight to the content of its mobile compounds in the soil. The DC value makes it possible to estimate the capacity of the aboveground parts of plants to absorb and accumulate elements under soil pollution conditions and is determined as the ratio of the metal content in the aboveground biomass to its concentration in the roots. TF and DC values have shown a significant accumulation of elements by plants from the soil, as well as their translocation from the root system to the aboveground part. It has been revealed that even within the same Poaceae family, cultural species are more sensitive to man-made pollution than wild-growing ones.

  相似文献   

4.
加拿大一枝黄花(Solidago canadensis)和小飞蓬(Conyza canadensis)常共同入侵至同一农田生态系统。探究了两者对大豆幼苗生长的复合化感作用。加拿大一枝黄花叶浸提液显著抑制大豆幼苗地上生物量。而小飞蓬叶浸提液也明显抑制大豆幼苗地上生物量(未达到显著水平)。与对照处理相比,两者复合叶浸提液处理未显著影响大豆幼苗地上生物量。两者复合叶浸提液处理下大豆幼苗地上生物量显著大于加拿大一枝黄花叶浸提液单一处理,同时也大于小飞蓬叶浸提液单一处理(未达到显著水平)。两者叶浸提液单一处理均明显降低大豆幼苗株高(未达到显著水平)。与对照处理相比,两者复合叶浸提液处理未显著影响大豆幼苗株高。两者复合叶浸提液处理下大豆幼苗株高明显大于两者叶浸提液单一处理(未达到显著水平)。因此,两者叶浸提液对大豆幼苗的生长均具有一定程度的抑制效应,且加拿大一枝黄花叶浸提液对大豆幼苗产生的化感作用(尤其是地上生物量)明显大于小飞蓬。两者复合化感作用明显低于两者单一化感作用,尤其是两者对大豆幼苗地上生物量的复合化感作用显著低于加拿大一枝黄花的单一化感作用。所以,化感效应可能在两者共同入侵(即两者复合作用)进程中所起的贡献低于在两者单一入侵进程中所起的作用。  相似文献   

5.
T. Ikeda 《Marine Biology》1990,107(3):453-461
The abundance and vertical distribution pattern of a halocyprid ostracod,Conchoecia pseudodiscophora, were investigated in the Japan Sea in 1985, 1987 and 1989. Vertical sampling from 500 m depth to the surface in the water around Yamato Rise revealed that this ostracod was second in dominance by number and third to fourth by biomass of the total zooplankton collected with a 0.35 mm mesh Norpac net. Horizontal net tows in Toyama Bay indicated that the major population ofC. pseudodiscophora was distributed below 250 to 300 m depth. No diel migration pattern was evident. Its contribution to total zooplankton there was 5 to 10% or more in terms of biomass. A total of five subadult instars (II to VI) and adult males and females were identified from instar analysis based on sizes and morphological characteristics of specimens collected with 0.10 mm mesh Norpac nets. Data on body length, wet weight and dry weight of each instar are presented. Carbon content of 35 to 48% of dry weight, and nitrogen content of 5.3 to 7.3% of dry weight, were recorded on fresh, freeze-dried specimens of selected instars (subadult Instars IV to VI, adult females). Water and ash contents of mixed specimens of these four instars were 76% of wet weight and 25% of dry weight, respectively. Feasibility of laboratory maintenance ofC. pseudodiscophora was tested, and it produced characteristic J shaped faecal pellets. Oxygen consumption rates of subadult instars V and VI, and adult female ranged 0.011 to 0.021µl O2 ind.–1 h–1 at 1 °C, or 2.9 to 6.1µl O2 (mg body N)–0.85 h–1 in terms of Adjusted Metabolic Rate (AMRo 2). There was no appreciable metabolic reduction inC. pseudodiscophora compared to other ostracods, despite their mesopelagic life mode. Subdominance in total zooplankton and nonreduced metabolic activity ofC. pseudodiscophora suggest that this species may be an important link in mesopelagic energy-flow and matter cycling in the Japan Sea.  相似文献   

6.
The weed inhibition of allelopathic rice PI312777 and nonallelopathic rice Lemont, allelopathic potential of rice rhizospheric soils, as well as the microbial physiological traits of rice rhizospheric soils, were studied by field tests after weedremoving and weed treatments. The results showed that the inhibitory rate of PI312777 at the 7-leaf stage on paddy weeds was 85.82%. Results of the Soil-Agar Sandwich method revealed that the allelopathic potential of PI312777 rhizospheric soils on the inhibitory rate of plant dry weight of barnyard grass was significantly higher at the 5-leaf stage than that at the 3-leaf stage, and increased by 20.16% from the 3-leaf stage to the 5-leaf stage after weed treatment. When at the same leaf stage, the soil microbe biomass carbon and soil respiration, the number of soil bacteria, and activity of soil enzymes (urease, protease, and sucrase) were significantly higher in PI312777 rhizospheric soils than in Lemont rhizospheric soils; they were also higher after the weed-removing treatment than after weed treatment. The largest increase of soil allelopathic potentials and soil microbial physiological indexes in PI312777 rhizospheric soils appeared from the 3-leaf stage to the 5-leaf stage. In case of weed treatment, the allelopathic potential of PI312777 rhizospheric soils on the soil microbe biomass carbon, soil respiration, the number of soil bacteria, activity of urease, activity of protease, and activity of sucrase increased by 53.11%, 51.56%, 38.97%, 44.83%, 60.00%, and 41.92%, respectively, from the 3-leaf stage to the 5-leaf stage. These results indicated that rice allelopathy had a close relationship with the activity of rhizospheric soils. Rice allelochemicals lead to the change of soil microbes; rice allelopathy is a process based on plant-soil interaction. © 2018 Science Press. All rights reserved.  相似文献   

7.
The response of green roselle (Hibiscus sabdariffa) to Cu/Pb contamination and manure application in soil was investigated using pot experiments. Subsamples of a mineral soil were treated with increasing doses (0–500 mg kg?1) of Cu/Pb only and/or amended (at 10% w/w) with poultry or swine manure. Roselle plants were grown, monitored for changes in growth rate and post-harvest aboveground dry biomass and tissue Cu/Pb concentrations were determined. The plants were typically greenish with linear growth profiles at all metal doses, indicating some level of tolerance. Dry biomass yields decreased as metal dose increased. Poultry manure enhanced roselle biomass yields better than swine manure. Tissue Cu/Pb concentrations increased linearly as metal doses increased in unamended soils; whereas nonlinear responses were observed in manure-amended soils. Soil-to-plant transfer factors, T f (%) indicated that Cu (13≤T f (% )≤60) was more phytoavailable to roselle than Pb (11≤T f (% )≤20). Tissue metal concentrations were modelled from soil pH, organic matter, plant available and pseudototal metal; but the models appeared more reliable with plant available metal as a covariate than with pseudototal metal content. These observations may become useful whenever phytoextraction is the remedial option for soils moderately contaminated by toxic metals.  相似文献   

8.
Frank DA  Pontes AW  Maine EM  Caruana J  Raina R  Raina S  Fridley JD 《Ecology》2010,91(11):3201-3209
There is little comprehensive information on the distribution of root systems among coexisting species, despite the expected importance of those distributions in determining the composition and diversity of plant communities. This gap in knowledge is particularly acute for grasslands, which possess large numbers of species with morphologically indistinguishable roots. In this study we adapted a molecular method, fluorescent fragment length polymorphism, to identify root fragments and determine species root distributions in two grasslands in Yellowstone National Park (YNP). Aboveground biomass was measured, and soil cores (2 cm in diameter) were collected to depths of 40 cm and 90 cm in an upland, dry grassland and a mesic, slope-bottom grassland, respectively, at peak foliar expansion. Cores were subdivided, and species that occurred in each 10-cm interval were identified. The results indicated that the average number of species in 10-cm intervals (31 cm3) throughout the sampled soil profile was 3.9 and 2.8 species at a dry grassland and a mesic grassland, respectively. By contrast, there was an average of 6.7 and 14.1 species per 0.5 m2, determined by the presence of shoot material, at dry and mesic sites, respectively. There was no relationship between soil depth and number of species per 10-cm interval in either grassland, despite the exponential decline of root biomass with soil depth at both sites. There also was no relationship between root frequency (i.e., the percentage of samples in which a species occurred) and soil depth for the vast majority of species at both sites. The preponderance of species were distributed throughout the soil profile at both sites. Assembly analyses indicated that species root occurrences were randomly assorted in all soil intervals at both sites, with the exception that Festuca idahoensis segregated from Artemisia tridentata and Pseudoroegnaria spicata in 10-20 cm soil at the dry grassland. Root frequency throughout the entire sampled soil profile was positively associated with shoot biomass among species. Together these results indicated the importance of large, well-proliferated root systems in establishing aboveground dominance. The findings suggest that spatial belowground segregation of species probably plays a minor role in fostering resource partitioning and species coexistence in these YNP grasslands.  相似文献   

9.
Abstract:  Biological control with specialist, nonindigenous, herbivorous insects is an important option for controlling invasive exotic plants in wildlands and nature reserves. It is assumed that biological control agents will reduce the dominance of the target weed, thereby increasing the native diversity of the associated plant community. However, this hypothesis has rarely been tested. We introduced Aphthona nigriscutis into grassland sites infested with the invasive exotic species Euphorbia esula L. on a nature reserve in Montana (U.S.A.). Two sites with better soil had been treated previously with herbicide, whereas two other sites had not. We measured the density and biomass of Euphorbia vegetative and flowering stems and number of native and exotic shrubs, grass-like plants, and forbs in 48 microplots in Aphthona release and control macroplots at each site. After 5 years, Aphthona release was associated with a 33–39% decline in Euphorbia aboveground biomass compared with controls at all sites. Other effects of the biocontrol depended on the site. Biocontrol slowed the recovery of species diversity at the sites previously treated with herbicide but slowed the loss of diversity at sites without a history of herbicide. Biocontrol introduction was not associated with a disproportionate increase in nontarget exotic species. Release of Aphthona caused a decline in the biomass of flowering stems relative to controls at good-soil, previous-herbicide sites but was associated with a relative increase in flower stem mass at poor-soil, no-herbicide sites. Our results suggest that biocontrol reductions in weed dominance will not always be associated with increased species diversity. More emphasis should be placed on conserving desirable communities and less on simple weed control. Monitoring of community-level effects should accompany biocontrol introductions on nature reserves.  相似文献   

10.
Allometry was used for monitoring aboveground growth of the marine angiosperm Zostera marina L. Dry weight was regressed with leaf length and width, allowing estimation of aboveground net productivity and biomass of individual plants. At the termination of the experiment, rhizome productivity of the same plants was determined by harvesting. Plants in shaded and unshaded seawater tanks were monitored from June until September, 1976; in situ plants were also monitored at Point Judith Pond, Rhode Island, USA. Unshaded plants had shorter leaves, a lower net productivity, lower biomass, and a lower aboveground-torhizome productivity ratio than shaded plants. Unshaded plants had a higher rate of rhizome branching and the resulting new shoot formation than in situ plants.  相似文献   

11.
Summary. Soil organisms in direct and indirect interaction with plant roots affect aboveground herbivores, likely by inducing different plant responses. We investigated the combined effects of the root-knot nematode Meloidogyne incognita (in direct interaction with roots) and the endogeic earthworm Octolasion tyrtaeum (in indirect interaction with roots) on the performance of Brassica oleracea. Both earthworms and nematodes increased N uptake and shoot biomass of B. oleracea. Earthworm activity mobilized more soil N than litter N, and herbivory by nematodes tended to increase the microbial biomass in soil. Only the structural class of sulphur containing glucosinolates was affected by the soil organisms. Earthworms decreased glucoiberin concentrations in B. oleracea shoots. Glucoraphanin was affected by an interaction between earthworms and nematodes.  相似文献   

12.
Plant biomass and plant abundance can be controlled by aboveground and belowground natural enemies. However, little is known about how the aboveground and belowground enemy effects may add up. We exposed 15 plant species to aboveground polyphagous insect herbivores and feedback effects from the soil community alone, as well as in combination. We envisaged three possibilities: additive, synergistic, or antagonistic effects of the aboveground and belowground enemies on plant biomass. In our analysis, we included native and phylogenetically related range-expanding exotic plant species, because exotic plants on average are less sensitive to aboveground herbivores and soil feedback than related natives. Thus, we examined if lower sensitivity of exotic plant species to enemies also alters aboveground-belowground interactions. In a greenhouse experiment, we exposed six exotic and nine native plant species to feedback from their own soil communities, aboveground herbivory by polyphagous insects, or a combination of soil feedback and aboveground insects and compared shoot and root biomass to control plants without aboveground and belowground enemies. We observed that for both native and range-expanding exotic plant species effects of insect herbivory aboveground and soil feedback added up linearly, instead of enforcing or counteracting each other. However, there was no correlation between the strength of aboveground herbivory and soil feedback. We conclude that effects of polyphagous aboveground herbivorous insects and soil feedback add up both in the case of native and related range-expanding exotic plant species, but that aboveground herbivory effects may not necessarily predict the strengths of soil feedback effects.  相似文献   

13.
Adoption of agroforestry is paramount as a climate change mitigation and adaptation strategy. The assessment of plant biomass is crucial for understanding the vulnerability of biological systems to climate change. In the present study, agroforestry systems viz., agrisilviculture (AS), agrihorticulture (AH), agrihortisilviculture (AHS) and agrisilvihorticulture (ASH) were investigated for biomass production and carbon stock in vegetation as well as in soil in the Indian central Himalaya along the elevation i.e. E1 (<1100 m), E2 (1100–1400 m), E3 (1400–1700 m), E4 (1700–2000 m) and E5 (>2000 m). Mean aboveground and belowground biomass were 73.9% and 26.1%, respectively, of total biomass (64.4 t ha?1) in agroforestry systems. Fodder and/or timber trees accounted for 31% (in AHS) to 74% (in AS) of total biomass, while fruit trees accounted for 18% (in ASH) to 73% (in AH) of total biomass. The contribution of agriculture crops to total biomass fluctuated between 19% (in ASH) and 26% (in AH). Total vegetation biomass, soil carbon and total carbon density in agroforestry systems increased significantly along the elevation, with maximum biomass at elevation E5 (32.0 t ha?1, 64.7 t C ha?1 and 96.7 t C ha?1). Total biomass of vegetation among agroforestry systems differed significantly. Soil carbon stock was highest in AHS (59.5 t C ha?1) and total carbon density (vegetation + soil) was highest in ASH (93.0 t C ha?1). Thus, in Indian Himalayas, vegetation biomass, carbon stock, soil and total carbon (vegetation + soil) stock increased along the elevation.

Abbrviations: AG: aboveground; BG: belowground; WD: wood density; VOB: volume over bark; BEF: biomass expansion factor; AS: agrisilviculture; AH: agrihorticulture; ASH: agrisilvihorticulture; AHS: agrihortisilviculture; E: elevation; C: carbon; CO2: carbon-di-oxide; IPCC: Intergovernmental Panel on Climate Change; DBH: diameter at breast height; AGBD: aboveground biomass density; BGBD: belowground biomass density; GSVD: growing stock volume density  相似文献   


14.
在田间条件下,研究添加硫代硫酸铵对黄平大黄油菜(Brassica juncea var.HPDH)富集土壤汞(总汞含量13.7mg·kg-1)及土壤汞形态转化影响。试验设置2个处理,对照小区(无硫代硫酸铵)和处理小区(每公斤土壤加入8 g硫代硫酸铵),硫代硫酸铵溶液在植物收获前7 d添加到土壤。试验结束后,分析植物生物量和组织内汞含量。结果表明,硫代硫酸铵处理小区植物生物量(干重)要略高于对照区。硫代硫酸铵处理小区植物根系和地上部分汞含量分别是对照区的600和250倍。利用连续化学浸提法分析了修复前后土壤汞形态变化特征,发现硫代硫酸铵辅助植物修复后能显著降低土壤有机结合态汞含量,大幅度提高残渣态汞含量,溶解态与可交换态汞含量略有增加,特殊吸附态和铁锰氧化态汞含量无显著变化。  相似文献   

15.
Abstract

Fusarubin analogues of Fusarium oxysporum f. sp. ciceris were investigated for antifungal activity in vitro against five soil borne phytopathogenic fungi. 3-O-Methyl-8-O-methyl-fusarubin was inhibitory towards S. sclerotiorum (EC50 0.33?mmol L?1) and Sclerotium rolfsii (EC50 0.38?mmol L?1). A structure–antifungal activity relationship of fusarubin analogues was established from their activity performance. Possible mechanism of action of these compounds was studied using molecular docking and simulations against three target enzymes which revealed receptor ligand binding affinity. Docking of 3-O-methyl-8-O-methyl-fusarubin into the succinate dehydrogenase site revealed formation of salt bridge, hydrogen bond, π–anion, π–alkyl, and Van der Waals interactions.  相似文献   

16.
贺兰山高山草甸生物多样性和地上生物量的关系   总被引:2,自引:0,他引:2  
在对贺兰山高山草甸进行群落调查的基础上,研究高山草甸生物多样性和地上生物量与环境因子之间的关系,进而分析生物多样性和地上生物量的关系.结果表明:(1)地上生物量主要与土层深度成正相关关系.(2)海拔高度与生物多样性成负相关关系,而其它影响物种丰富度或Shannon指数的环境因子仅在个别群落类型中起作用.(3)生物多样性与地上生物量主要呈单峰曲线关系.  相似文献   

17.
An intertidal and underwater survey of the zonation of seaweed in St. Margaret's Bay, NovaScotia, Canada showed 8 major zones as one proceeded away from shore: (1) Fucus and Ascophyllum; (2) Chorda with filamentous browns; (3) Chondrus crispus; (4) Zostera marina; (5) Laminaria digitata with L. longicrusis; (6) Laminaria longicruris; (7) L. longicruris with Agarum cribrosum; (8) Agarum cribrosum with Ptilota serrata. Zostera occurred at the same level as O. crispus but replaced it in sheltered water. Ascophyllum was more abundant in sheltered water. L. digitata was confined to the more exposed, steeper shore. The average horizontal extent of the seaweed zone was 369 m, and the greatest depth of significant amounts of seaweed 20 to 30 m. Laminaria longicruris contributed 36% of the total biomass, and Laminaria spp. and Agarum together constituted 83%, while intertidal seaweeds contributed less than 10% of the biomass. The estimated average total biomass per m of shore line was 1,481 kg fresh weight, 326 kg dry weight, 98 kg carbon, or 980x103 kcal. When averaged over the whole area of the bay, the corresponding figures were 1.38 kg/m2 fresh weight, 0.30 kg/m2 dry weight, 91 g/m2 carbon or 912 kcal/m2. Dry matter of Laminaria was 15 to 27% of fresh weight in blades, 10 to 12% in stipes. The dry matter content of blades was least in spring and highest in autumn, but carbon content and calorific value of dry matter showed little difference with species or season.Contribution to the International Biological Programme CCIBP 108.Bedford Institute Contribution BI 249.  相似文献   

18.
Summary The antifungal activity of kaempferol-3-(2,3-diacetoxy-4-p-coumaroyl)rhamnoside, a new flavonol glycoside isolated from the leaves ofMyrica gale, has been investigated. The flavonoid was found to have varying inhibitory activity against five species of fungi isolated from the leaves ofMyrica gale in the field.  相似文献   

19.
土壤微生物在陆地生物地球化学循环过程中起着非常重要的作用。为了探索青藏高原高寒草地类型地上植被特性和地下土壤环境与土壤微生物功能基因之间关系,以三江源国家公园高寒草原、高寒沼泽化草甸及高寒草甸3种典型草地类型为研究对象,利用基因芯片(GeoChip 5.0)技术测定其微生物功能基因丰度,并分析它们之间的差异及影响因素。结果表明:(1)3种草地类型地上群落结构和地下土壤环境存在差异性,其中高寒草原物种多样性指数、pH值较高,沼泽化草甸中土壤含水量、微生物量碳、地上生物量、土壤速效氮含量较高,高寒草甸中则是土壤微生物量氮含量较高;(2)3种高寒草地类型的碳循环、氮循环、磷循环、有机修复的土壤微生物功能基因丰度存在显著差异,其中这些功能基因的丰度在高寒沼泽化草甸最高,高寒草甸、高寒草原次之;(3)地上植物物种多样性虽对功能基因丰度变化的解释率(r2)在57.1%-61.2%之间,但统计学上不显著(P>0.05),而微生物基因丰度随地上生物量的增加而增加,且解释率(r2)为77.5%-80.0%(P<0.05)。在pH、土壤含水量、土壤微生物量等地下土壤环境因子中,pH对功能基因丰度存在显著影响(P<0.01)解释率在83.4%-87.5%间,且土壤微生物功能基因丰度随土壤pH的增加而降低;土壤含水量、土壤微生物量对土壤微生物功能基因丰度的解释率分别为81.9%-83.1%(P<0.05)和76.8%-86.2%(P<0.05),微生物功能基因丰度随这两者含量的增加呈上升趋势。进一步运用RDA分析发现,pH、土壤微生物量、地上生物量是影响微生物功能基因丰度的主要因子,其中土壤微生物量是土壤有机质的重要组成部分,土壤有机质又是通过地上植被凋落物沉积所得到的。因此,地上植被特性的自上而下控制因子影响了土壤环境中自下而上的控制因子,间接的影响了微生物功能基因丰度。由此得出,地上植被特性和地下土壤环境因子共同作用控制了微生物功能基因丰度使其出现差异性。  相似文献   

20.
To access the influence of a vegetation on soil microorganisms toward organic pollutant biogegration, this study examined the rhizospheric effects of four plant species (sudan grass, white clover, alfalfa, and fescue) on the soil microbial community and in-situ pyrene (PYR) biodegradation. The results indicated that the spiked PYR levels in soils decreased substantially compared to the control soil without planting. With equal planted densities, the efficiencies of PYR degradation in rhizosphere with sudan grass, white clover, alfalfa and fescue were 34.0%, 28.4%, 27.7%, and 9.9%, respectively. However, on the basis of equal root biomass the efficiencies were in order of white clover >> alfalfa > sudan > fescue. The increased PYR biodegradation was attributed to the enhanced bacterial population and activity induced by plant roots in the rhizosphere. Soil microbial species and biomasses were elucidated in terms of microbial phospholipid ester-linked fatty acid (PLFA) biomarkers. The principal component analysis (PCA) revealed significant changes in PLFA pattern in planted and non-planted soils spiked with PYR. Total PLFAs in planted soils were all higher than those in non-planted soils. PLFA assemblages indicated that bacteria were the primary PYR degrading microorganisms, and that Gram-positive bacteria exhibited higher tolerance to PYR than Gram-negative bacteria did.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号