首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The effect of cable oil concentration, nutrient amendment and bioaugmentation on cable oil component biodegradation in a pristine agricultural soil was investigated. Biodegradation potential was evaluated over 21 d by measuring cumulative CO2 respiration on a Micro-Oxymax respirometer and 14C-phenyldodecane mineralisation using a 14C-respirometric assay. Cable oil concentration had a significant effect upon oil biodegradation. Microbial respiratory activity increased with increasing cable oil concentration, whereas 14C-phenydodecane mineralisation decreased. Bioaugmentation achieved the best cable oil biodegradation performance, resulting in increases in cumulative CO2 respiration, and maximum rates and extents of 14C-phenyldodecane mineralisation. Generally, nutrient amendment also enhanced cable oil biodegradation, but not to the extent that degrader amendment did. Cable oil biodegradation was a function of (i) cable oil concentration and (ii) catabolic ability of microbial populations. Bioaugmentation may enhance cable oil biodegradation, and is dependent upon composition, cell number and application of catabolic inocula to soil.  相似文献   

2.
Four experiments were established (1992) in Scots pine stands at distances of 0.5, 2, 4 and 8 km along a line running to the SE of the Cu-Ni smelter at Harjavalta, SW Finland, in order to investigate the effects of Cu and Ni emissions on macronutrient availability and estimates of cation exchange capacity (CEC) and base saturation (BS). The accumulation of Cu and Ni (total, exchangeable) in forest soil close to the smelter has resulted in a deficit of base cations (exchangeable Ca, Mg, K and BS) in the organic layer caused by inhibition of mineralisation and the displacement of base cations from cation exchange sites by Cu and Ni cations. No signs of soil acidification were found in the topmost layers of the soil measured as a change in pH, exchangeable acidity and Al. The determination of CEC by the summation method in heavy-metal polluted forest soils is not recommended unless heavy metal cations are also included in the calculations.  相似文献   

3.
Vegetable production in China is associated with high inputs of nitrogen, posing a risk of losses to the environment. Organic matter mineralisation is a considerable source of nitrogen (N) which is hard to quantify. In a two-year greenhouse cucumber experiment with different N treatments in North China, non-observed pathways of the N cycle were estimated using the EU-Rotate_N simulation model. EU-Rotate_N was calibrated against crop dry matter and soil moisture data to predict crop N uptake, soil mineral N contents, N mineralisation and N loss. Crop N uptake (Modelling Efficiencies (ME) between 0.80 and 0.92) and soil mineral N contents in different soil layers (ME between 0.24 and 0.74) were satisfactorily simulated by the model for all N treatments except for the traditional N management. The model predicted high N mineralisation rates and N leaching losses, suggesting that previously published estimates of N leaching for these production systems strongly underestimated the mineralisation of N from organic matter.  相似文献   

4.
Although petroleum contamination has been identified at many Antarctic research stations, and is recognized as posing a significant threat to the Antarctic environment, full-scale in situ remediation has not yet been used in Antarctica. This is partly because it has been assumed that temperatures are too low for effective biodegradation. To test this, the effects of temperature on the hydrocarbon mineralisation rate in Antarctic terrestrial sediments were quantified. 14C-labelled octadecane was added to nutrient amended microcosms that were incubated over a range of temperatures between -2 and 42 degrees C. We found a positive correlation between temperature and mineralisation rate, with the fastest rates occurring in samples incubated at the highest temperatures. At temperatures below or near the freezing point of water there was a virtual absence of mineralisation. High temperatures (37 and 42 degrees C) and the temperatures just above the freezing point of water (4 degrees C) showed an initial mineralisation lag period, then a sharp increase in the mineralisation rate before a protracted plateau phase. Mineralisation at temperatures between 10 and 28 degrees C had no initial lag phase. The high rate of mineralisation at 37 and 42 degrees C was surprising, as most continental Antarctic microorganisms described thus far have an optimal temperature for growth of between 20 and 30 degrees C and a maximal growth temperature <37 degrees C. The main implications for bioremediation in Antarctica from this study are that a high-temperature treatment would yield the most rapid biodegradation of the contaminant. However, in situ biodegradation using nutrients and other amendments is still possible at soil temperatures that occur naturally in summer at the Antarctic site we studies (Casey Station 66 degrees 17(') S, 110 degrees 32(') E), although treatment times could be excessively long.  相似文献   

5.
6.
Gao B  Yang L  Wang X  Zhao J  Sheng G 《Chemosphere》2000,41(3):419-426
Three soils were modified with two kinds of cationic surfactants in order to increase their sorptive capabilities for organic contaminants. Sorption of diesel fuel oil in water by these modified soils had been investigated. Modified soils can effectively sorb diesel fuel oil from water. The sorption capability of modified soils is: HDTMA-black soil > HDTMA-yellow brown soil > HDTMA-red soil > TMA-black soil > TMA-yellow brown soil > TMA-red soil. Sorption of diesel fuel oil by natural soils and HDTMA modified soils is via partition, the sorption isotherms can be expressed by Henry equation, and logK(SOM) is 2.42-2.80, logK(HDTMA) is 3.37-3.60. Sorption isotherms of TMA modified soils can be expressed by Langmuir equation, the saturation sorption capacities are 1150 (TMA-black soil), 750 (TMA-yellow-brown soil), 171 mg/kg (TMA-red soil), respectively. A diesel fuel oil degradation micro-organism (Pseudomonas sp.) was isolated in the lab. To test the influence of the modified soils on the micro-organism, various growth curves of Pseudomonas in different conditions were drawn. Pseudomonas can grow very well with natural soils and TMA modified soils. The acclimation period of Pseudomonas is reduced. As to HDTMA modified soils, HDTMA loading amount is very important. When HDTMA loading amount is no higher than 0.5 CEC, the micro-organism can grow very well after a long acclimation period.  相似文献   

7.
In this study, aged aqueous suspensions of C(60) (nC(60)) were investigated in the respirometric OECD test for ready biodegradability. Two suspensions of nC(60) were prepared by stirring and aged under indirect exposure to sunlight for 36 months. ATR-FTIR analyses confirmed the presence of C(60)-structures in the suspensions. Samples of the nC(60) suspensions (20mg/l) were inoculated with activated sludge (30 mgTSS/L) and incubated in a mineral medium under aerobic conditions. Since no mineralisation of nC(60) was observed after 28 days of incubation, 5mg/l sodium acetate was added to the media. After additional 20 days, no mineralisation of nC(60) was observed. However, within a few days sodium acetate was completely mineralised, showing that the biomass was not inhibited by the presence of nC(60). Based on results from this simple approach, aged nC(60) can be classified as not ready biodegradable according to the standard OECD test procedure.  相似文献   

8.
This study correlated extractabilities of 37 d aged phenanthrene residues in four dissimilar soils with the fraction that was available for earthworm (Lumbricus rubellus) accumulation and microorganism (Pseudomonas sp.) mineralisation. Extractability was determined using two established techniques, namely, (1) a water based extraction using CO(2) equilibrated water and (2) an aqueous based hydroxypropyl-beta-cyclodextrin (HPCD) extraction. Results showed no relationship between earthworm accumulation and phenanthrene extractability using either HPCD (r(2)=0.07; slope=-4.76; n=5) or the water based extraction (r(2)=0.31; slope=-5.34; n=5). Earthworm accumulation was overestimated by both techniques. In contrast, the fraction of phenanthrene extractable using both the HPCD technique and the water based extraction correlated strongly with microbial mineralisation. However, the slopes of these linear relationships were 0.48 (r(2)=0.96; n=10), and 0.99 (r(2)=0.88; n=10) for the water based extraction and HPCD, respectively. Thus, the HPCD extraction provided values that were numerically close to the mineralisation values, whilst the water based extraction values were approximately half the mineralisation values. It is submitted that HPCD extraction provided an appropriate method of assessing the fraction of contaminant available for microbial mineralisation in these dissimilar soils.  相似文献   

9.
Treatment of the textile wastewater by combined electrocoagulation   总被引:9,自引:0,他引:9  
Electrocoagulation (EC) due to some advantages over chemical coagulation is becoming a popular process to be used for wastewater treatment. The aim of this paper is to investigate the effect of initial addition of a chemical coagulant such as polyaluminum chloride (PAC) or alum on the COD removal efficiency of EC treatment of textile wastewaters. The two salts exhibited the same performance in chemical coagulation, but in the combined electrocoagulation (CEC), PAC was found to significantly enhance the COD removal rate and efficiency, depending on the amount of the total aluminum supplied, by initial addition and electrochemical generation. A comparative operating cost analysis was also given and it was found that with the same operating cost per mass of COD removed, CEC performance was 80%, in contrast to 23% with EC, in 5 min of operation.  相似文献   

10.
In laboratory experiments the mineralisation of 14C-labelled 1,2,4-trichlorobenzene (1,2,4-TCB) in soils was studied by direct measurement of the evolved 14CO2. The degradation capacity of the indigenous microbial population was investigated in an agricultural soil and in a soil from a contaminated site. Very low mineralisation of 1% within 23 days was measured in the agricultural soil. Whereas in the soil from the contaminated site the mineralisation occurred very fast and in high rates; up to 62% of the initially applied amount of 1,2,4-TCB were mineralised within 23 days. The transfer of the adapted microbial population into the agricultural soil significantly enhanced the mineralisation of 1,2,4-TCB in this soil, reflecting, that the transferred microbial population survived and maintained its degradation ability in the new microbial ecosystem. Additional nutrition sources ((NH4)2HPO4) increased the mineralisation rates in the first days significantly in the contaminated soil. In the soil from the contaminated site high amounts of non extractable 14C-residues were formed.  相似文献   

11.
A numerical analysis using a regional chemical transport model (CTM) is presented in comparison with Global Ozone Monitoring Experiment (GOME) and SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) satellite NO2 measurements over East Asia from 1996 to 2005 from a climatological perspective. Modeling results agree well with satellite retrievals in geographical distribution patterns, with systematic underestimation of the absolute values. The sharp increase in NO2 vertical column densities (VCDs) over central east China (CEC) after the year 2000 (14.1–20.5% yr−1 for the satellite observations and 10.8% yr−1 for model simulations) is analyzed quantitatively over different megacity clusters. The distinct emission increase patterns are responsible for the different increase trends observed over the Beijing megacity cluster (BJ), the Yangtze Delta (YD) and other CEC regions. The growth rate of satellite measured and CMAQ-modeled NO2 VCDs for the YD is much higher than that in other regions, with no clear seasonal variation. Apart from BJ and YD, NO2 emissions from other regions in CEC also expand considerably.  相似文献   

12.
The biodegradation of nonextractable residues (NER) of pesticides in soil is still poorly understood. The aim of this study was to evaluate the influence of NER ageing and fresh soil addition on the microbial communities responsible for their mineralisation. Soil containing either 15 or 90-day-old NER of 13C-2,4-D (NER15 and NER90, respectively) was incubated for 90 days with or without fresh soil. The addition of fresh soil had no effect on the mineralisation of NER90 or of SOM, but increased the extent and rate of NER15 mineralisation. The analyses of 13C-enriched FAME (fatty acids methyl esters) profiles showed that the fresh soil amendment only influenced the amount and structure of microbial populations responsible for the biodegradation of NER15. By coupling biological and chemical analyses, we gained some insight into the nature and the biodegradability of pesticide NER.  相似文献   

13.
The vertical distribution of the sorption, desorption and mineralisation of glyphosate and MCPA was examined in samples from two contrasting soil and subsurface profiles, obtained from a sandy agricultural site and a non-agricultural clay rich site. The highest mineralisation of [14C-methylen]glyphosate, with 9.3-14.7% degraded to 14CO2 within 3 months was found in the deepest sample from the clay site. In the deeper parts of the sandy profile high sorption and low desorption of glyphosate coincided with no or minor mineralisation indicating a limited glyphosate bioavailability. MCPA was readily mineralised except in the deepest samples from both sites. The highest MCPA mineralisation was detected just below the surface layers with 72% or 44% degraded to 14CO2 at the sandy or the clay sites, respectively. MCPA sorped to a minor extent in all samples and no indications of sorption-controlled mineralisation was revealed. None of the herbicides were mineralised under anoxic conditions.  相似文献   

14.
The adaptation of two similar soils to pyrene catabolism   总被引:4,自引:0,他引:4  
The development of pyrene catabolic activity was assessed in two similar soils (pasture and woodland) amended with 100 mg pyrene kg(-1) In the pasture and woodland soils, significant mineralisation of 14C-pyrene was observed after 8 and 76 weeks soil-pyrene contact times, respectively. In both soils, there were significant decreases (P<0.05) in the lag times and significant increases (P <0.05) in the maximum rates and extents of 14C-pyrene mineralised with increasing soil-pyrene contact time. A microbial inoculum was added to the woodland soil to assess if the previously added, but undegraded 14C-pyrene was bioavailable at 16 and 24 weeks. This resulted in the immediate mineralisation of the previously added 14C-pyrene, indicating that it was bioavailable but that the microbial community in the woodland soil had not developed the ability to mineralise pyrene. The relative contributions of the indigenous microflora to 14C-pyrene mineralisation were assessed by the addition of celective inhibitors, with bacteria seeming to be responsible for the mineralisation of pyrene in both soils. It is suggested that the rate of pyrene-transfer from the soil to the microorganisms was lower in the woodland soil due to its higher organic matter content.  相似文献   

15.
This study was undertaken to determine the impact of the organic complex concentration on the adsorption of herbicide (acetochlor) at the surface of the organic modified montmorillonite. In this work, natural montmorillonite from Bogovina (Boljevac municipality, Serbia) was used for organic modification. Cation-exchange capacity of this montmorillonite was determined using a methylene blue method (86 mmol/100 g of clay). Montmorillonite has been modified first with NaCl and then with hexadecyltrimethylammonium bromide (HDTMA-bromide) organic complex. Saturation of cation exchange capacity (CEC) was 50%, 100%, and 150%. Changes in the properties of the inorganic and organic montmorillonite have been examined using the X-ray diffraction, Fourier transform infrared spectroscopy, and batch equilibrium method. Montmorillonite modified with HDTMA-bromide demonstrated higher uptake of the herbicide, compared to the inorganic montmorillonite. Comparing the values Freundlich coefficients in batch equilibrium method, it can be seen that the adsorption of acetochlor decreased in the series: 0.5 CEC HM > 1 CEC HM > 1.5 CEC HM > NaM.  相似文献   

16.
Kavitha V  Palanivelu K 《Chemosphere》2004,55(9):1235-1243
The efficiency of different Fenton-related oxidative processes such as Fenton, solar-Fenton and UV-Fenton were examined using phenol as a model compound in simulated and industrial wastewater. A batch study was conducted to optimize parameters like pH, hydrogen peroxide concentration and ferrous ion concentration governing the Fenton process. At optimum conditions, different Fenton-related processes were compared for the degradation of phenol. Increased degradation and mineralisation efficiency were observed in photo-Fenton processes as compared to conventional Fenton process. The maximum mineralising efficiency for phenol with Fenton, solar and UV-Fenton processes were 41%, 96% and 97% respectively. In Fenton process, carboxylic acids like acetic acid and oxalic acid were formed as end products during the degradation of phenol while in photo-Fenton processes, both these ions were identified during the early stages of phenol degradation and were oxidized almost completely at 120 min of the reaction time. In photo-Fenton processes (solar and UV light) complete degradation were observed with 0.4 mM of Fe2+ catalyst as compared to 0.8 mM of Fe2+ in conventional Fenton process. In Fenton and solar-Fenton processes, an iron reusability study was performed to minimize the amount of iron used in treatment process. The efficacy of Fenton and solar-Fenton processes was applied to effluent from phenol resin-manufacturing unit for the removal and mineralisation of phenol.  相似文献   

17.
Traditional single species toxicity tests and multiple component laboratory-scaled microcosm assays were combined to assess the toxicological hazard of diesel oil, a model complex mixture, to a model aquatic environment. The immediate impact of diesel oil dosed on a freshwater community was studied in a model pond microcosm over 14 days: a 7-day dosage and a 7-day recovery period. A multicomponent laboratory microcosm was designed to monitor the biological effects of diesel oil (1.0 mg litre(-1)) on four components: water, sediment (soil + microbiota), plants (aquatic macrophytes and algae), and animals (zooplanktonic and zoobenthic invertebrates). To determine the sensitivity of each part of the community to diesel oil contamination and how this model community recovered when the oil dissipated, limnological, toxicological, and microbiological variables were considered. Our model revealed these significant occurrences during the spill period: first, a community production and respiration perturbation, characterized in the water column by a decrease in dissolved oxygen and redox potential and a concomitant increase in alkalinity and conductivity; second, marked changes in microbiota of sediments that included bacterial heterotrophic dominance and a high heterotrophic index (0.6), increased bacterial productivity, and the marked increases in numbers of saprophytic bacteria (10 x) and bacterial oil degraders (1000 x); and third, column water acutely toxic (100% mortality) to two model taxa: Selenastrum capricornutum and Daphnia magna. Following the simulated clean-up procedure to remove the oil slick, the recovery period of this freshwater microcosm was characterized by a return to control values. This experimental design emphasized monitoring toxicological responses in aquatic microcosm; hence, we proposed the term 'toxicosm' to describe this approach to aquatic toxicological hazard evaluation. The toxicosm as a valuable toxicological tool for screening aquatic contaminants was demonstrated using diesel oil as a model complex mixture.  相似文献   

18.
This paper analyzes the characterization of energy consumption and contaminant emissions from a municipal solid waste (MSW) treatment system that comprises transfer station, landfill site, combustion plant, composting plant, dejecta treatment station, and an integrated MSW treatment plant. The consumed energy and energy medium materials were integrated under comprehensive energy consumption (CEC) for comparison. Among typical MSW disposal methods such as combustion, composting, and landfilling, landfilling has the minimum CEC value. Installing an integrated treatment plant is the recommended MSW management method because of its lower CEC. Furthermore, this method is used to ensure process centralization. In landfill sites, a positive linear correlation was observed between the CEC and contaminant removal ratios when emitted pollutants have a certain weight coefficient. The process should utilize the minimum CEC value of 5.3702 kgce/t MSW and consider energy consumption, energy recovery, MSW components, and the equivalent of carbon dioxide emissions.  相似文献   

19.
Mineralisation of atrazine in soil has been shown to depend on previous exposure of the herbicide. In this study, 24 Danish soils were collected and screened for potential to mineralise atrazine. Six soils were chosen, because they had never been exposed to atrazine, whereas 18 soils were chosen because of their history of application of atrazine or the related compound terbuthylazine. None of the 24 soils revealed a mineralisation potential of more than 4% of the added atrazine within a 60 day timeframe. In an atrazine adapted French soil, we found 60% mineralisation of atrazine in 30 days. Cattle manure was applied in order to boost the microbial activity, and a 2-3% increase in the atrazine mineralisation was found in some of the temperate soils, while in the highly adapted French soil it caused a 5% reduction.  相似文献   

20.
Fenlon KA  Jones KC  Semple KT 《Chemosphere》2011,82(2):163-168
The rate of pesticide biodegradation does not remain constant with time, and is dependent on the physico-chemical properties of the soil and of the pesticide as well as on the biology of the soil. Prolonged or repeated contact between soil microbes and pesticides has been shown to result in an increase in the rate and extent of biodegradation. This work assessed the impact of the soil:water ratio on measurement of catabolic induction for 14C-isoproturon, 14C-diazinon and 14C-cypermethrin. Slurrying (1:1 and 1:3 soil:water) with agitation resulted in significantly higher rates and extents of mineralisation than the non-slurried system (P ? 0.05; 1:0 soil:water), except for the mineralisation of 14C-diazinon where the greatest extent of mineralisation occurred in non-slurried soil. Slurrying without agitation resulted in the significant lower mineralisation in all cases (P ? 0.05). There was a significant interaction between the soil:water ratio and length of contact (P ? 0.05). Whilst the use of slurried systems can enhance the extent and rate of mineralisation, there is no improvement in reproducibility, and so for the measurement of catabolic induction, the use of field conditions will lead to a more environmentally relevant measurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号