首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Policies designed to reduce land-based carbon emissions require a good understanding of the complex connections between state-sanctioned concessions, forest conversion, informal land markets and migrants. Our case study in the peat forests of the Tanjung Jabung Barat (TanJaBar) regency of Jambi, Indonesia aimed to explore relations between four key stakeholder groups: the state, local communities, migrants, and state-sanctioned concessions. We hypothesized that current land use patterns are shaped by insecurity in formal forest tenure alongside informal land tenure arrangements with migrants. In analyzing the six two-way relationships between the four stakeholder groups, we found that interactions between the stakeholders have changed local norms and practice, causing land conflicts and contested claims that need to be explicitly addressed in efforts to reduce carbon emissions in TanJaBar. Relational concepts of land rights between migrants and local community leaders are informed by social identity, expectations of investment opportunities, insecure customary forest tenure and competing land use policies. Migrants act as intermediaries in shaping the land tenure system and shift the balance of power between local communities, the state, and business concessions. We conclude that effective and equitable implementation of national Reducing Emissions from Deforestation and Forest Degradation+ (REDD+) programs will need to recognize underlying land ownership dynamics, power struggles and strategic positioning among stakeholders across scales. Obtaining free and prior informed consent (FPIC) from all relevant stakeholders is a major challenge given this complexity. Low emission development strategies will require recognition of a reality beyond large-scale concessions and traditional local communities.  相似文献   

2.
3.
The Xishuangbanna Dai Autonomous Prefecture, located in southwestern China is an area of great biological and cultural diversity. While the region has long been a dynamic one, the past 50 years have witnessed changes in the state of the biodiversity of Xishuangbanna at an unprecedented pace and scale. Due to a number of trends including demographic growth, as well as abrupt shifts in land use and economic policies, agricultural patterns have changed substantially. These shifts have resulted not only in a decline and fragmentation of forest areas, but also in changes in the practice of swidden-fallow agriculture. This paper employs a variety of published data, combined with original information derived from field research in Xishuangbanna villages, to draw attention to these trends and discuss their implications for biodiversity, including agricultural biodiversity.  相似文献   

4.
Tropical forests in countries like thePhilippines are important sources and sinks of carbon(C). The paper analyzes the contribution of Philippineforests in climate change mitigation. Since the 1500s,deforestation of 20.9 M ha (106 ha) of Philippineforests contributed 3.7 Pg (1015 g) of C to theatmosphere of which 2.6 Pg were released this century. At present, forest land uses store 1091 Tg(1012 g) of C and sequester 30.5 Tg C/yr whilereleasing 11.4 Tg C/yr through deforestation andharvesting. In the year 2015, it is expected that thetotal C storage will decline by 8% (1005 Tg) andtotal rate of C sequestration will increase by 17%(35.5 Tg/yr). This trend is due to the decline innatural forest area accompanied by an increase intree plantation area. We have shown that uncertaintyin national C estimates still exists because they arereadily affected by the source of biomass and Cdensity data. Philippine forests can act as C sink by:conserving existing C sinks, expanding C stocks, andsubstituting wood products for fossil fuels. Here weanalyze the possible implications of the provisions ofthe Kyoto Protocol to Philippine forests. Finally, wepresent current research and development efforts ontropical forests and climate change in the Philippinesto improve assessments of their role in the nations Cbudgets.  相似文献   

5.
太湖流域土地利用变化及洪涝灾害响应   总被引:24,自引:3,他引:24  
根据1986年和1996年土地资源调查和土地详查资料,分析了太湖流域土地利用的数量变化和空间变化,揭示了该区土地利用变化的幅度、速度、区域差异,以及土地利用变化的驱动力。根据1991年汛期(5~9月)降雨,分别计算了1986、1996年下垫面状况下的产水量,比较了二期产水数量和空间分布的差异,分析了20世纪90年代以来流域水位连续偏高的原因,进而分析洪涝是如何对土地利用的变化作出响应的。太湖流域土地利用变化的特征是耕地面积快速减少和建设用地迅速增加,土地利用变化的驱动力是政策因素、经济发展和人口增长。太湖流域10年间土地利用变化使流域产水量增加,洪涝过程缩短,增加的产水分布在流域的上游,加重了流域的洪涝灾害。  相似文献   

6.
Rehabilitation of degraded forest land through implementation of carbon-sink projects can increase terrestrial carbon (C) stock. However, carbon emissions outside the project boundary, which is commonly referred to as leakage, may reduce or negate the sequestration benefits. This study assessed leakage from carbon-sink projects that could potentially be implemented in the study area comprised of 11 sub-districts in the Batanghari District, Jambi Province, Sumatra, Indonesia. The study estimates the probability of a given land use/cover being converted into other uses/cover, by applying a logit model. The predictor variables were: proximity to the center of the land use area, distance to transportation channel (road or river), area of agricultural land, unemployment (number of job seekers), job opportunities, population density and income. Leakage was estimated by analyzing with and without carbon-sink projects scenarios. Most of the predictors were estimated as being significant in their contribution to land use cover change. The results of the analysis show that leakage in the study area can be large enough to more than offset the project’s carbon sequestration benefits during the period 2002–2012. However, leakage results are very sensitive to changes of carbon density of the land uses in the study area. By reducing C-density of lowland and hill forest by about 10% for the baseline scenario, the leakage becomes positive. Further data collection and refinement is therefore required. Nevertheless, this study has demonstrated that regional analysis is a useful approach to assess leakage.  相似文献   

7.
The climate mitigation potential of tropical peatlands has gained increased attention as Southeast Asian peatlands are being deforested, drained and burned at very high rates, causing globally significant carbon dioxide (CO2) emissions to the atmosphere. We used a process-based dynamic tropical peatland model to explore peat carbon (C) dynamics of several management scenarios within the context of simulated twenty-first century climate change. Simulations of all scenarios with land use, including restoration, indicated net C losses over the twenty-first century ranging from 10 to 100 % of pre-disturbance values. Fire can be the dominant C-loss pathway, particularly in the drier climate scenario we tested. Simulated 100 years of oil palm (Elaeis guineensis) cultivation with an initial prescribed burn resulted in 2400–3000 Mg CO2?ha?1 total emissions. Simulated restoration following one 25-year oil palm rotation reduced total emissions to 440–1200 Mg CO2?ha?1, depending on climate. These results suggest that even under a very optimistic scenario of hydrological and forest restoration and the wettest climate regime, only about one third of the peat C lost to the atmosphere from 25 years of oil palm cultivation can be recovered in the following 75 years if the site is restored. Emissions from a simulated land degradation scenario were most sensitive to climate, with total emissions ranging from 230 to 10,600 Mg CO2?ha?1 over 100 years for the wettest and driest dry season scenarios, respectively. The large difference was driven by increased fire probability. Therefore, peat fire suppression is an effective management tool to maintain tropical peatland C stocks in the near term and should be a high priority for climate mitigation efforts. In total, we estimate emissions from current cleared peatlands and peatlands converted to oil palm in Southeast Asia to be 8.7 Gt CO2 over 100 years with a moderate twenty-first century climate. These emissions could be minimized by effective fire suppression and hydrological restoration.  相似文献   

8.
The incorporation of landscape ecological and fragmentation analyses within remote sensing science has expanded the inferential capabilities of such research. This issue presents a series of papers on the use of landscape ecological techniques to explore the relationship between land cover and land use spatial pattern and process in an international, comparative context. Methodologically, researchers seek to link spatial pattern to land use process by integrating geographic information systems (GIS), socio-economic, and remote sensing techniques with landscape ecological approaches. This issue brings together papers at the forefront of this research effort, and illustrates the diversity of methods necessary to evaluate the complex linkages between pattern and process in landscapes across the world. The analyses focus on major forces interacting at the earth’s surface, such as the interface of agricultural and urban land, agriculture and forestry, and other pertinent topics dealing with environmental policy and management. Empirical analyses stem from many different ecological, social and institutional contexts within the Americas, Africa, and Asia.  相似文献   

9.
This paper presents a framework that encompasses a full range of options for including land use, land-use change, and forestry (LULUCF) within future agreements under the United Nations Convention on Climate Change (UNFCCC). The intent is to provide options that can address the broad range of greenhouse gas (GHG) emissions and removals as well as to bring the broadest possible range of nations into undertaking mitigation efforts. We suggest that the approach taken for the Kyoto Protocol's first commitment period is only one within a much larger universe of possible approaches. This larger universe includes partially or completely “de-linking” LULUCF commitments from those in other sectors, and allowing commitments specified in terms other than tonnes of greenhouse gases. Such approaches may provide clarity and transparency concerning the role of the various sectors in the agreements and encourage participation in agreements by a more inclusive, diverse set of countries, resulting in a more effective use of LULUCF in addressing climate change.  相似文献   

10.
Land-based emissions of carbon dioxide derive from the interface of forest and agriculture. Emission estimates require harmonization across forest and non-forest data sources. Furthermore, emission reduction requires understanding of the linked causes and policy levers between agriculture and forestry. The institutional forestry traditions dominated the emergence of the discourse on Reducing Emissions from Deforestation and forest Degradation (REDD+) while more holistic perspectives on land-based emissions, including agriculture, found a home in international recognition for Nationally Appropriate Mitigation Actions (NAMAs). We tested the hypothesis that, at least for Indonesia, the NAMA framework provides opportunities to resolve issues that REDD+ alone cannot address. We reviewed progress on five major challenges identified in 2007 by the Indonesian Forest Climate Alliance: 1) scope and ‘forest’ definition; 2) ownership and tenurial rights; 3) multiplicity and interconnectedness of drivers; 4) peatland issues across forest and non-forest land categories; and 5) fairness and efficiency of benefit-distribution mechanisms across conservation, degradation and restoration phases of tree-cover transition. Results indicate that the two policy instruments developed in parallel with competition rather than synergy. Three of the REDD+ challenges can be resolved by treating REDD+ as a subset of the NAMA and national emission reduction plans for Indonesia. We conclude that two issues, rights and benefit distribution, remain a major challenge, and require progress on a motivational pyramid of policy and polycentric governance. National interest in retaining global palm oil exports gained priority over expectations of REDD forest rents. Genuine concerns over climate change motivate a small but influential part of the ongoing debate.  相似文献   

11.
环渤海地区耕地变化及动因分析   总被引:50,自引:5,他引:50  
环渤海地区改革开放20多年来得到了快速的发展,但也导致了城镇迅速扩张和耕地不断减少。根据环渤海地区20世纪80年代以来的农村社会经济统计资料、土地概查、土地详查分析和实地调查研究,对环渤海地区近20年的耕地变化态势及非农业人口增加、非农产业发展、农业结构调整、退耕与灾毁、土地整理开发复垦和土地管理政策等影响耕地减少的主要动因进行了探讨。  相似文献   

12.
This paper provides an overview of the rules for accounting emissions of land use, land use change and forestry (LULUCF) for the first commitment period of the Kyoto Protocol. It first describes the rules in detail, it then provides an overview of the history of negotiations that led to these rules and provides resulting conclusions for future international climate negotiations. We conclude that the current rules can be better understood in the light of the negotiation history. For the future, we conclude that first an agreement on the objectives of including LULUCF in the future climate regime should be developed, e.g. to contribute significantly to the ultimate objective of the convention. Further, a solid set of data should be developed that can assess the magnitude of possible options. The rules should be scientifically sound, complete and balanced as well as unambiguous before the quantitative targets are defined. They should further be simple and inclusive to include all carbon pools, i.e. provide incentives to avoid deforestation and unsustainable logging in all countries.  相似文献   

13.
土地利用的变化可以直接反映人类活动程度,赤水河作为长江流域上游的重要支流,在共抓长江大保护的时代背景下,掌握其土地利用动态变化有利于土地优化管理和区域可持续发展。利用1990—2018年共7期土地利用数据,根据区域特点,整合水田、旱地、林地、草地、水域、城乡建设用地、未利用地7种土地利用类型,从分布格局、土地利用单一动态度、土地利用转移矩阵方面对赤水河流域土地利用类型的空间分布与时空变化进行分析。结果表明:赤水河流域各土地利用类型面积占比为林地>旱地>水田>草地>城乡建设用地>水域>未利用地,林地分布广泛,集中分布在赤水河流域下游,旱地多分布在流域上游,水田多分布在流域下游,草地和城乡建设用地多沿河谷分布;各土地利用类型动态度变化随时间逐渐升高,其中草地、城乡建设用地在2015—2018年动态度变化明显提高;受退耕还林政策的影响,林地与旱地间的转化较多,且2006—2015年转化程度高于1990—2000年,而2006—2015年、2015—2018年草地、城乡建设用地与其他土地利用类型间的转化明显增多。赤水河流域GDP总量增长速率逐年升高,与城乡建设用地增长速率相比,2015—2018年有所减缓,城乡建设用地单位面积经济产出逐年降低,土地利用效率有待提高。  相似文献   

14.
15.
运用GIS和遥感技术分析了玛曲县1975、1990和2005年的土地利用/覆盖特征,在此基础上使用生态价值系数(C)计算出该县生态系统服务价值.结果表明,该区域1975~2005年间生态系统服务价值从129.713亿元减少到123.961亿元,共损失5.75亿元,且损失量和损失幅度呈持续增加趋势;该区域生态系统服务价值中,废物处理价值最高,气候调节价值次之,原材料价值最低,且30年间各服务类型的价值均呈减小趋势;玛曲县1975、1990和2005年人均生态系统服务价值分别为58.96,42.80,29.51万元,表明玛曲县由于人口的增长,环境压力呈持续增大趋势.草地和湿地退化是导致该区域生态系统服务价值减少的主要原因.CS检验说明本研究所选C值较为合理.  相似文献   

16.
土地利用变化影响着浅层地下水水质,以滇池流域为研究对象,综合运用遥感影像解译、马尔科夫转移矩阵和冗余分析,对近20年(2002~2020)滇池流域土地利用和浅层地下水质变化进行分析,揭示长时间尺度下土地利用变化对浅层地下水水质的影响.结果表明:2002和2020年滇池流域土地利用类型以草地、林地和耕地为主,分别占总面积20.91%和17.43%、43.21%和37.99%、22.11%和17.08%,2002~2020年间耕地向建筑用地和林地、林地向草地和耕地、草地向林地和建筑用地转移概率分别为22.59%和20.72%、13.16%和10.49%、26.30%和15.65%,耕地面积减少146km2,建筑用地面积增加279km2.2002~2020年滇池流域浅层地下水化学类型由HCO3-·SO42--Mg2+型转变为HCO3-·SO42--Ca<...  相似文献   

17.
The Liupan Mountains are located in the southern Ningxia Hui Autonomous Region of China, that forms an important divide between landforms and biogeographic regions. The populated part of the Liupan Mountain Region has suffered tremendous ecological damage over time due to population pressure, excessive demand and inappropriate use of agricultural land resources. To present the relationship between land use/cover change and spatio-temporal variation of soil erosion, data sets of land use between the late 1980s and 2000 were obtained from Landsat Thematic Mapper (TM) imagery, and spatial models were used to characterize landscape and soil erosion conditions. Also, soil erosion in response to land use and land cover change were quantified and analyzed using data from geographical information systems and remote sensing. Soil erosion by water was the dominant mode of soil loss, while soil erosion by wind was only present on a relatively small area. The degree of soil erosion was classified into five severity classes: slight, light, moderate, severe, and very severe. Soil erosion in the Liupan Mountain Region increased between the late 1980s and 2000, both in terms of acreage and severity. Moderate, severe, and very severe eroded areas accounted for 54.86% of the total land area. The lightly eroded area decreased, while the moderately eroded area increased by 368817 ha (22%) followed by severe erosion with 146552 ha (8.8%), and very severe erosion by 97067.6 ha (5.8%). Soil loss on sloping cropland increased with slope gradients. About 90% of the cropland was located on slopes less than 15°. Most of the increase in soil erosion on cropland was due to conversion of steep slopes to cropland and degradation of grassland and increased activities. Soil erosion was severe on grassland with a moderate or low grass cover and on dry land. Human activities, cultivation on steep slopes, and overgrazing of pastures were the main reasons for the increase in erosion severity.  相似文献   

18.
Agriculture, Forestry and Other Land Use (AFOLU) sectors account for 53 % of the domestic greenhouse gas emissions (GHG) in Vietnam in 2000. However, due to political focus on adaptation, Vietnamese government has not formulated particular policy on mitigation in the sectors. This study aims to identify and assess mitigation potential in AFOLU sectors in Vietnam up to 2030 using AFOLU Bottom-up model. Therefore, the results can help government towards building mitigation strategies in the country. The methodology involves: (1) development of future assumptions of crops harvested areas, livestock population and area of land use and land use change and (2) identification of mitigation countermeasures with high potential and assessment of their cost-effectiveness. In 2030, 11 MtCO2eq/year of emission can be reduced by no-regret countermeasures which take zero or negative cost. In the case of full application of countermeasures, 48 MtCO2eq/year can be reduced compared to the baseline emission level. Mitigation countermeasures, which have great contribution for GHG reduction in Vietnam, are midseason drainage in rice paddy (7 MtCO2eq/year), off-season incorporation of rice straw (3 MtCO2eq/year) and conservation of existing protection forests (17 MtCO2eq/year). Based on our findings, a package of mitigation countermeasures at 10 USD/tCO2eq is expected to have the most economic efficiency and high mitigation for GHG mitigation in AFOLU sectors in Vietnam.  相似文献   

19.
20.
土地利用动态变化的空间分析测算模型   总被引:129,自引:5,他引:129  
论文首先从土地利用变化的空间涵义出发,细分出未变化部分、转移部分和新增部分等3种空间类型,并据此对现有测算土地利用变化速率的数量分析和动态度模型进行了评析,提出了修正后的空间分析测算模型,旨在更为精细和准确地测算各土地利用类型的动态变化程度;并以北京城市边缘区的土地利用变化作为案例,对3种模型的测算结果进行了比较分析。结果表明:空间分析测算模型由于细分并同时考虑了各土地利用类型的空间转移及新增过程,能更为准确地测算出各种土地利用类型的动态变化程度与速率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号