首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When Phanerochaete chrysosporium was cultured using conditions which promote the expression of cellobiose dehydrogenase (CDH), but not the ligninolytic peroxidases, the fungus effectively solubilized and mineralized an insoluble, crosslinked polyacrylate and an insoluble polyacrylate/polyacrylamide copolymer. Addition of iron to the cultures increased CDH activity in the cultures and the rate and extent of solubilization and mineralization of both polymers. Solubilization of both polymers was observed when incubated with purified CDH, ferric iron and hydrogen peroxide.  相似文献   

2.
Biodegradation of two superabsorbent polymers, a crosslinked, insoluble polyacrylate and an insoluble polyacrylate/ polyacrylamide copolymer, in soil by the white-rot fungus, Phanerochaete chrysosporium was investigated. The polymers were both solubilized and mineralized by the fungus but solubilization and mineralization of the copolymer was much more rapid than of the polyacrylate. Soil microbes poorly solublized the polymers and were unable to mineralize either intact polymer. However, soil microbes cooperated with the fungus during polymer degradation in soil, with the fungus solubilizing the polymers and the soil microbes stimulating mineralization. Further, soil microbes were able to significantly mineralize both polymers after solubilization by P. chrysosporium grown under conditions that produced fungal peroxidases or cellobiose dehydrogenase, or after solubilization by photochemically generated Fenton reagent. The results suggest that biodegradation of these polymers in soil is best under conditions that maximize solubilization.  相似文献   

3.
A novel photocatalytic oxidation reactor, using Degussa P-25 TiO2 as a stationary phase with a thickness of 1.5-2.0 um on the blades of agitator, was developed to study the photocatalytic oxidation of xenobiotics. Particularly in this device, separation of photocatalyst from the purified water after oxidation reaction was not necessary, and no other aeration equipment was required to supply oxygen. To examine the efficiency of this device, photocatalytic degradation of xenobiotic organics such as carbofuran was studied as an example. Results indicated that carbofuran could be degraded completely with mineralization efficiency of 20% after 6 hours of oxidation under the imposed conditions. The mineralization rate of carbofuran was found to follow the pseudo-first order reaction kinetics. Moreover, the rate constant of mineralization was found to be proportional to TiO2 film area and the square root of UV light intensity. These results implied the mineralization efficiency of carbofuran could be improved through increasing TiO2 film area and UV light intensity. Accordingly, this novel device showed potential application for degrading xenobiotics in water.  相似文献   

4.
More than 50% of municipal sewage sludges cannot be used on agricultural land because of their heavy metals content. Therefore, microbial leaching of heavy metal from municipal sludge was studied in a continuously stirred tank reactor without recycling (CSTR) or with sludge recycling (CSTRWR) at residence times of 1, 2, 3 and 4 days. The reactor CSTRWR is supposed to be more efficient for bacterial process due to the recycling of active bacteria from the settling tank to the reactor. The CSTRWR and the CSTR with 1 g litre(-1) FeSO(4).7H(2)O addition were equally efficient because of copper reprecipitation or recomplexation in the settling tank of the CSTRWR. In the CSTR, about 62% of copper and about 77% of zinc were dissolved in 3 days residence time compared to 50% of copper and 64% of zinc in the CSTRWR, if 3 g litre(-1) FeSO(4).7H(2)O was added. Thus with larger amount of substrate, the CSTR was more efficient than the CSTRWR. Residence time and pH were the main factors for zinc solubilization while for copper, the redox potential was also a major factor. The effect of FeSO(4).7H(2)O concentration on bacterial activity to solubilize heavy metals was also studied, increased concentration of FeSO(4).7H(2)O yielded better copper solubilization while it had no effect or a negative effect on zinc. This supports the hypothesis of a direct mechanism for zinc solubilization and of an indirect mechanism for copper solubilization.  相似文献   

5.
研究构建了2个容积为1.1 L的好氧活性污泥反应器(即1号和2号反应器)1,号反应器每天直接通加低剂量臭氧(投加量为0.01 g O3/g TSS),不加臭氧的2号反应器作为对照平行运行,均采用每天换一次人工污水的充/排式操作。运行71 d的结果表明2,个反应器对人工污水COD的处理效果基本相同。反应器运行40 d后1,号反应器的污泥浓度比2号反应器的污泥浓度低1 400~1 700 mg/L并可稳定在8 200 mg/L,污泥减量化效果明显。低剂量臭氧的直接通加明显降低了胞内ATP浓度,并影响了微生物的抗氧化活性,2号反应器的平均超氧化物歧化酶和过氧化氢酶酶活比1号反应器分别高了24.3%和9.5%。PCR-DGGE对两反应器微生物种群的分析结果表明:Uncultured gammaproteobacteria bacteri-um、Nannocystis exedens和Uncultured actinobacterium为1号反应器的主要种群;而2号反应器的主要种群为Uncultured bacte-rium和Uncultured gammaproteobacteria bacterium。  相似文献   

6.
初步比较气升式内循环蜂窝陶瓷反应器(IAL-CHS)和内循环三相流化床反应器(ITFB)对微污染水源水进行生物预处理的效果。IAL-CHS反应器比ITFB反应器挂膜启动速度快,但是在挂膜期承受冲击负荷能力较ITFB反应器差。在进水相同条件下,两者所能达到的最小水力停留时间、最大体积负荷和容积负荷相差不大,但是ITFB反应器的曝气强度却为IAL-CHS反应器的3.33倍,并且比IAL-CHS反应器出水SS高,浊度去除率低,单位载体的生物量及活性生物量小。  相似文献   

7.
Abstract

A novel photocatalytic oxidation reactor, using Degussa P‐25 TiO2 as a stationary phase with a thickness of 1.5–2.0 um on the blades of agitator, was developed to study the photocatalytic oxidation of xenobiotics. Particularly in this device, separation of photocatalyst from the purified water after oxidation reaction was not necessary, and no other aeration equipment was required to supply oxygen. To examine the efficiency of this device, photocatalytic degradation of xenobiotic organics such as carbofuran was studied as an example. Results indicated that carbofuran could be degraded completely with mineralization efficiency of 20 % after 6 hours of oxidation under the imposed conditions. The mineralization rate of carbofuran was found to follow the pseudo‐first order reaction kinetics. Moreover, the rate constant of mineralization was found to be proportional to TiO2 film area and the square root of UV light intensity. These results implied the mineralization efficiency of carbofuran could be improved through increasing TiO2 film area and UV light intensity. Accordingly, this novel device showed potential application for degrading xenobiotics in water.  相似文献   

8.
Degradation of acid orange 7 in an aerobic biofilm.   总被引:6,自引:0,他引:6  
A stable microbial biofilm community capable of completely mineralizing the azo dye acid orange 7 (AO7) was established in a laboratory scale rotating drum bioreactor (RDBR) using waste liquor from a sewage treatment plant. A broad range of environmental conditions including pH (5.8-8.2), nitrification (0.0-4.0 mM nitrite), and aeration (0.2-6.2 mg O2 l(-1)) were evaluated for their effects on the biodegradation of AO7. Furthermore the biofilm maintained its biodegradative ability for over a year while the effects of these environmental conditions were evaluated. Reduction of the azo bond followed by degradation of the resulting aromatic amine appears to be the mechanism by which this dye is biodegraded. Complete loss of color, sulfanilic acid, and chemical oxygen demand (COD) indicate that AO7 is mineralized. To our knowledge this is the first reported occurrence of a sulfonated phenylazonaphthol dye being completely mineralized under aerobic conditions. Two bacterial strains (ICX and SAD4i) originally isolated from the RDBR were able to mineralize, in co-culture, up to 90% of added AO7. During mineralization of AO7, strain ICX reduces the azo bond under aerobic conditions and consumes the resulting cleavage product 1-amino-2-naphthol. Strain SAD4i consumes the other cleavage product, sulfanilic acid. The ability of the RDBR biofilm to aerobically mineralize an azo dye without exogenous carbon and nitrogen sources suggests that this approach could be used to remediate industrial wastewater contaminated with spent dye.  相似文献   

9.
The effects of oxygen limitation on solid-bed bioleaching of heavy metals (Me) were studied in a laboratory percolator system using contaminated sediment supplemented with 2% elemental sulfur (So). Oxygen limitation was realized by controlling the gas flow and oxygen concentration in the aeration gas. The oxygen supply varied between 150 and 0.5 mol So (-1) over 28 d of leaching. Moderate oxygen limitation led to temporarily suppression of acidification, rate of sulfate generation and Me solubilization. Lowering the oxygen supply to 0.5 mol O2 mol So (-1) resulted in retarding acidification over a period of three weeks and in poor Me solubilization. Oxidation of So occurred even under strong oxygen limitation at a low rate. High surplus of oxygen was necessary for almost complete oxidation of the added So. The maximum Me solubilization was reached at an oxygen supply of 7.5 mol O2 mol So (-1). Thus, the oxygen input during solid-bed bioleaching can be reduced considerably by controlling the gas flow without loss of metal removal efficiency. Oxygen consumption rates, ranging from 0.4 x 10(-8) to 0.8 x 10(-8) Kg O2 Kg dm (-1) S(-1), are primarily attributed to high reactivity of the sulfur flower and high tolerance of indigenous autotrophic bacteria to low oxygen concentrations. The So related oxygen consumption was calculated assuming a molar yield coefficient Y O2/S of 1.21. The oxygen conversion degree, defined as part of oxygen feed consumed by So oxidation, increased from 0.7% to 68% when the oxygen supply was reduced from 150 to 0.5 mol O2 mol So (-1).  相似文献   

10.
An activated sludge aeration tank (40 x 40 x 300 cm, width x length x height) with a set of 2-mm orifice air spargers was used to treat gas-borne volatile organic compounds (VOCs; toluene, p-xylene, and dichloromethane) in air streams. The effects of liquid depth (Z), aeration intensity (G/A), the overall mass-transfer rate of oxygen in clean water (KLaO2), the Henry's law constant of the tested VOC (H), and the influent gaseous VOC concentration (C0) on the efficiency of removal of VOCs were examined and compared with a literature-cited model. Results show that the measured VOC removal efficiencies and those predicted by the model were comparable at a G/A of 3.75-11.25 m3/m2 hr and C0 of approximately 1000-6000 mg/m3. Experimental data also indicated that the designed gas treatment reactor with KLaO2 = 5-15 hr(-l) could achieve > 85% removal of VOCs with H = 0.24-0.25 at an aerated liquid depth of 1 m and > 95% removal of dichloromethane with H = 0.13 at a 1-m liquid depth.  相似文献   

11.
Degradabilities of four kinds of commercial biodegradable plastics (BPs), polyhydroxybutyrate and hydroxyvalerate (PHBV) plastic, polycaprolactone plastic (PCL), blend of starch and polyvinyl alcohol (SPVA) plastic and cellulose acetate (CA) plastic were investigated in waste landfill model reactors that were operated as anaerobically and aerobically. The application of forced aeration to the landfill reactor for supplying aerobic condition could potentially stimulate polymer-degrading microorganisms. However, the individual degradation behavior of BPs under the aerobic condition was completely different. PCL, a chemically synthesized BP, showed film breakage under the both conditions, which may have contributed to a reduction in the waste volume regardless of aerobic or anaerobic conditions. Effective degradation of PHBV plastic was observed in the aerobic condition, though insufficient degradation was observed in the anaerobic condition. But the aeration did not contribute much to accelerate the volume reduction of SPVA plastic and CA plastic. It could be said that the recalcitrant portions of the plastics such as polyvinyl alcohol in SPVA plastic and the highly substituted CA in CA plastic prevented the BP from degradation. These results indicated existence of the great variations in the degradability of BPs in aerobic and anaerobic waste landfills, and suggest that suitable technologies for managing the waste landfill must be combined with utilization of BPs in order to enhance the reduction of waste volume in landfill sites.  相似文献   

12.
Electrodegradation of landfill leachate in a flow electrochemical reactor   总被引:21,自引:0,他引:21  
Sanitary landfills are the major method used today for the disposal and management of municipal solid waste. Decomposition of waste and rainfall generate leachate at the bottom of landfills, causing groundwater contamination. In this study, leachate from a municipal landfill site was treated by electrochemical oxidation in a pilot scale flow reactor, using oxide-coated titanium anode. The experiments were conducted under a constant flow rate of 2000 lh(-1) and the effect of current density on chemical oxygen demand, total organic carbon, color and ammonium removal was investigated. At a current density of 116.0 mA cm(-2) and 180 min of processing, the removal rates achieved were 73% for COD, 57% for TOC, 86% for color and 49% for ammonium. The process proved effective in degrading leachate, despite this effluent's usual refractoriness to treatment.  相似文献   

13.
The present study deals with the biodegradation of catechol through co-metabolism with glucose in aqueous solution as primary substrate in an upflow anaerobic sludge blanket (UASB) reactor. Batch studies indicated that the 1000mgl(-1) glucose concentration was sufficient to cometabolize and degrade catechol in an aqueous solution up to a concentration of 1000mgl(-1). The reactor operated at 35+/-2 degrees C, and at a constant hydraulic retention time of 8h with a gradual stepwise increase in catechol concentration from 100 to 1000mgl(-1) along with glucose as a cosubstrate. The results showed that the catechol was successfully mineralized in an UASB reactor in which microbial granulation was achieved with only glucose as the substrate. The reactor showed > or = 95% COD removal efficiency with 500-1000mgl(-1)catechol concentration in the feed and a glucose concentration of 1500mgl(-1) as a cosubstrate. Similar efficiency was obtained at a constant catechol concentration of 1000mgl(-1) with 500-1000mgl(-1) glucose concentration. Once the reactor got acclimatized with catechol, higher concentrations of catechol can be mineralized with a minimum amount of glucose as the cosubstrate without affecting the performance of the UASB reactor.  相似文献   

14.
厌氧-局部循环供氧生物膜技术处理农村污水   总被引:1,自引:0,他引:1  
通过模拟农村生活污水水质和间歇进水特点,利用“厌氧-局部循环供氧生物膜”技术,研究该工艺对有机物、氮、磷的去除效果.厌氧池和局部循环供氧池有效容积比为1∶1.6,曝气装置位于局部循环供氧池中间底部,环形导流板将局部循环供氧池分隔成中间好氧区和四周缺氧区,斜管沉淀池前置到厌氧池与局部循环供氧池之间,出水端设置循环水池.装置连续稳定运行12个月,平均进水量为140 L/d,生物反应区HRT为1.3d.监测结果表明,出水COD、BOD、NH3-N、TN和TP平均浓度分别在40.31、3.38、2.69、11.98和0.75 mg/L,达到了国家城镇污水处理厂污染物排放指标(GB-18918-2002)中的一级排放标准.研究表明,厌氧-局部循环供氧技术是一种适合农村分散污水处理的新工艺,可有效减轻农业面源污染.  相似文献   

15.
A potential method for cleaning water from point-source pollution by organic compounds is using biological reactors. In this study, four reactors were tested for their ability to retain and degrade pesticides. The pesticides tested were the insecticide chlorpyrifos, the fungicide metalaxyl and the herbicide imazamox. The reactors were filled with differing mixtures of vine-branch, citrus peel, urban waste and public green compost. The reactor volume was 188 l. Forced circulation of the contaminated solution was programmed to decontaminate the solution. Both retention and degradation of the compounds by the reactors was studied. Chlorpyrifos was the best retained, due to its physico-chemical characteristics, while only one substrate effectively retained metalaxyl and imazamox (citrus peel+urban waste compost). Degradation of the pesticides in the reactors was faster than published values for degradation in soil. The half-life of all pesticides in the reactors was less than 14 days, compared to literature values of 60-70 days in soil. The combined retention and fast degradation make the biofilter a feasible technique to reduce spill-related and point environmental contamination by pesticides. The technique is most effective against persistent pesticides, while for mobile pesticides, the efficiency can be improved with several passages of the contaminated solution through biofilters.  相似文献   

16.
采用厌氧流化床(AFB)-序批式反应器(SBR)工艺处理蓝皮制革工业废水。分别考察了水力停留时间(HRT)、容积负荷对厌氧流化床以及曝气时间、污泥浓度、溶解氧浓度对SBR反应器处理效果的影响。试验结果表明,AFB将实验废水的BOD_5/COD(B/C)值由0.19~0.26提高至0.35~0.42,有效提高了其可生化性;在进水COD浓度为1 700~1 890 mg/L、HRT为1 d、容积负荷为1.792 kg COD/(m~3·d)时,COD去除率达65.2%~68.5%,且具有良好的抗冲击负荷能力。SBR在进水COD浓度为628~712 mg/L、污泥浓度为2.9 g/L、曝气时间为10 h、溶解氧浓度为2 mg/L工况下,COD去除率达87.6%,NH_3-N去除率达93.6%,处理后出水水质符合污水综合排放标准(GB 8978-1996)中的一级标准要求。  相似文献   

17.
Franke R  Franke C 《Chemosphere》1999,39(15):219-2659
A laboratory scale flow-through model reactor for the degradation of persistent chemicals using titanium dioxide (TiO2) as photocatalyst immobilized on glass beads is presented. In the test system with a volume of 18 L contaminated water is pumped to the upper part of the floating reactor and flows over the coated beads which are exposed to UV-radiation. The degradation of two dyes of different persistance was investigated. Primary degradation of methylene blue did not fit a first order kinetic due to coincident adsorption onto the photocatalyst and direct photolysis, resulting in a half-life of 6 h. A filtrate of a green algae suspension accelerated the colour removal. In contrast, reactive red 2 was degraded only by photocatalysis; neither adsorption nor direct photolysis led to a colour removal. The course of primary degradation followed a first order kinetic with a half-life of 18 h and a rate constant of 0.04 h−1. Analysis of the degradation products indicated mineralization by detection of NO2 and NO3, accompanied by a decrease of pH and an increase of conductivity. A successful adaptation of the model reactor (scale 1:10) to dimensions required for surface waters and waste water treatment plants would be a costefficient and environmentally sustainable application of photocatalysis for the treatment of industrially polluted water and could be of relevance for third world contries, particularly those favoured by high solar radiation.  相似文献   

18.
Improved solubilization of activated sludge by ozonation in pressure cycles   总被引:1,自引:0,他引:1  
Cheng CJ  Hong PK  Lin CF 《Chemosphere》2012,87(6):637-643
The generation of a large volume of activated sludge (AS) from wastewater treatment has increasingly become a great burden on the environment. Anaerobic digestion is routinely practiced for excess waste sludge; however, the process retention time is long because of kinetic limitation in the hydrolysis step. We tested the feasibility of applying ozone in pressure cycles to enhance the disintegration and solubilization of AS with the goal to prepare them for digestion using reduced ozone dose and contact time. The AS was subjected to repetitive pressure cycles in a closed vessel in which an ozone gas mixture was compressed into the slurry to reach 1040 kPa in the headspace to be followed by rapid venting. For a returned AS with total COD (tCOD) of 8200 mg L(-1), a dose of 0.01 gO(3)g(-1) total suspended solids (TSS) delivered via 20 pressure cycles within 16 min resulted in a 37-fold increase of the sCOD/tCOD ratio (due to increased soluble COD, i.e. sCOD) and a 25% reduction of TSS, in comparison to a dose of 0.08 gO(3)g(-1) TSS via bubbling contact over 15 min that resulted in a 15-fold increase of the sCOD/tCOD ratio and a 12% reduction of TSS. Sludge solubilization was evidenced by increased dissolved contents of total phosphorous (from 10 to 64 mg L(-1)), total nitrogen (from 14 to 120 mg L(-1)), and protein (from <15 to 39 mg L(-1)) in the sludge suspension after treatment, indicating significant solubilization of AS.  相似文献   

19.
Remediation of heavy metal polluted sediment by extracting the metals with sulfuric acid can be performed as follows: abiotic suspension leaching, microbial suspension leaching, abiotic solid-bed leaching, and microbial solid-bed leaching. Abiotic leaching means that the acid is directly added, while microbial leaching means that the acid is generated from sulfur by microbes (bioleaching). These four principles were compared to each other with special emphasis on the effectiveness of metal solubilization and metal removal by subsequent washing. Abiotic suspension leaching was fastest, but suspending the solids exhibits some disadvantages (low solid content, costly reactors, permanent input of energy, high water consumption, special equipment required for solid separation, large amounts of waste water, sediment properties hinder reuse), which prevent suspension leaching in practice. Abiotic solid-bed leaching implies the supply of acid by percolating water which proceeds slowly due to a limited bed permeability. Microbial solid-bed leaching means the generation of acid within the bed and has been proven to be the only principle applicable to practice. Metal removal from leached sediment requires washing with water. Washing of solid beds was much more effective than washing of suspended sediment. The kinetics of metal removal from solid beds 0.3, 0.6 or 1.2m in height were similar; when using a percolation flow of 20lm(-2)h(-1), the removal of 98% of the mobile metals lasted 57-61h and required 8.5, 4.2 or 2.3lkg(-1) water. This means, the higher the solid bed, the lower the sediment-mass-specific demand for time and water.  相似文献   

20.
Beck M  Radke M 《Chemosphere》2006,64(7):1134-1140
Concentrations of steroids and inorganic ions were measured in waste water of an aerated sand trap as well as in aerosol particles emitted from this tank at the waste water treatment plant (WWTP) of Bayreuth, Germany, in January and February 2003. The investigations comprised seven sterols, two estrogens, and several inorganic ions. Since an appropriate method for the determination of sterols in waste water was not available, a new method based on solid phase extraction was developed. The concentrations of the sterols coprostanol and cholesterol amounted to 30-180 microg l(-1) in waste water and to 400-5000 pg m(-3) in aerosol particles. All other sterols were present in markedly lower concentrations. The mean concentrations of the two estrogens estrone and 17beta-estradiol were about 165 pg m(-3) in aerosol particles. The steroid concentrations in both waste water and aerosol particles varied greatly over time, however with the exception of coprostanol, no clear correlation was detected between concentrations in waste water and aerosol particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号