首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We provide first evidence of a link from daily air pollution exposure to sleep loss in a panel of Chinese cities. We develop a social media-based, city-level metric for sleeplessness, and bolster causal claims by instrumenting for pollution with plausibly exogenous variations in wind patterns. Estimates of effect sizes are substantial and robust. In our preferred specification a one standard deviation increase in AQI causes an 11.6% increase in sleeplessness, and for PM2.5 is 12.8%. The results sustain qualitatively under OLS estimation but are attenuated. The analysis provides a previously unaccounted for benefit of more stringent air quality regulation. It also offers a candidate mechanism in support of recent research that links daily air quality to diminished workplace productivity, cognitive performance, school absence, traffic accidents, and other detrimental outcomes.  相似文献   

2.
It has been confirmed that the NOx-concentration in air is highest over industrial areas and that it decreases by more than 75%, parallel to traffic density, over urban areas as related to forested areas. A significant correlation excists between NO2-concentration and the parameters of “traffic density,” followed by “road density” and “number of inhabitants/km2” in urban areas. No positive correlation was found with the number of “registered cars” and the parameters of “land use”. In forested areas, the traffic density correlated with the NO2-concentration, but the correlation was not significant. The other parameters had no positive correlation with NO2-concentration. In forest, urban- and industrial-areas, the NOx-concentration in the air had a fairly constant ratio to traffic density.  相似文献   

3.
Fine particulate matter (PM2.5) levels, carbon dioxide (CO2) levels and particle-number concentrations (PNC) were monitored in train carriages on seven routes of the mass transit railway in Hong Kong between March and May 2014, using real-time monitoring instruments. The 8-h average PM2.5 levels in carriages on the seven routes ranged from 24.1 to 49.8 µg/m3, higher than levels in Finland and similar to those in New York, and in most cases exceeding the standard set by the World Health Organisation (25 µg/m3). The CO2 concentration ranged from 714 to 1801 ppm on four of the routes, generally exceeding indoor air quality guidelines (1000 ppm over 8 h) and reaching levels as high as those in Beijing. PNC ranged from 1506 to 11,570 particles/cm3, lower than readings in Sydney and higher than readings in Taipei. Correlation analysis indicated that the number of passengers in a given carriage did not affect the PM2.5 concentration or PNC in the carriage. However, a significant positive correlation (p < 0.001, R 2 = 0.834) was observed between passenger numbers and CO2 levels, with each passenger contributing approximately 7.7–9.8 ppm of CO2. The real-time measurements of PM2.5 and PNC varied considerably, rising when carriage doors opened on arrival at a station and when passengers inside the carriage were more active. This suggests that air pollutants outside the train and passenger movements may contribute to PM2.5 levels and PNC. Assessment of the risk associated with PM2.5 exposure revealed that children are most severely affected by PM2.5 pollution, followed in order by juveniles, adults and the elderly. In addition, females were found to be more vulnerable to PM2.5 pollution than males (p < 0.001), and different subway lines were associated with different levels of risk.  相似文献   

4.
Identifying the major sources contributing to air pollution is a problem of fundamental importance in developing effective air quality management plans. Multivariate receptor modeling aims to achieve this goal by unfolding the air pollution data into components associated with different sources based on factor analysis models. We analyze the PM10 data obtained from 17 monitoring sites in Seoul to locate the major source regions using multivariate receptor modeling. The model uncertainty caused by the unknown number of sources and identifiability conditions is assessed by posterior probability of each model. The estimated source spatial profiles seem to be consistent with our prior expectation about the PM10 sources in Seoul.  相似文献   

5.
We estimate the effect of short-term air pollution exposure (PM2.5 and ozone) on several categories of crime, with a particular emphasis on aggressive behavior. To identify this relationship, we combine detailed daily data on crime, air pollution, and weather for an eight-year period across the United States. Our primary identification strategy employs extremely high dimensional fixed effects and we perform a series of robustness checks to address confounding variation between temperature and air pollution. We find a robust positive effect of increased air pollution on violent crimes, and specifically assaults, but no relationship between increases in air pollution and property crimes. The effects are present in and out of the home, at levels well below Ambient Air Pollution Standards, and PM2.5 effects are strongest at lower temperatures. The results suggest that a 10% reduction in daily PM2.5 and ozone could save $1.4 billion in crime costs per year, a previously overlooked cost associated with pollution.  相似文献   

6.
Zhang  Chao  Li  Sha  Guo  Gan-lan  Hao  Jing-wen  Cheng  Peng  Xiong  Li-lin  Chen  Shu-ting  Cao  Ji-yu  Guo  Yu-wen  Hao  Jia-hu 《Environmental geochemistry and health》2021,43(9):3393-3406

Numerous studies had focused on the association between air pollution and health outcomes in recent years. However, little evidence is available on associations between air pollutants and premature rupture of membranes (PROM). Therefore, we performed time-series analysis to evaluate the association between PROM and air pollution. The daily average concentrations of PM2.5, SO2 and NO2 were 54.58 μg/m3, 13.06 μg/m3 and 46.09 μg/m3, respectively, and daily maximum 8-h average O3 concentration was 95.67 μg/m3. The strongest effects of SO2, NO2 and O3 were found in lag4, lag06 and lag09, and an increase of 10 μg/m3 in SO2, NO2 and O3 was corresponding to increase in incidence of PROM of 8.74% (95% CI 2.12–15.79%), 3.09% (95% CI 0.64–5.59%) and 1.68% (95% CI 0.28–3.09%), respectively. There were no significant effects of PM2.5 on PROM. Season-specific analyses found that the effects of PM2.5, SO2 and O3 on PROM were more obvious in cold season, but the statistically significant effect of NO2 was observed in warm season. We also found the modifying effects by maternal age on PROM, and we found that the effects of SO2 and NO2 on PROM were higher among younger mothers (<?35 years) than advanced age mothers (≥?35 years); however,?≥?35 years group were more vulnerable to O3 than?<?35 years group. This study indicates that air pollution exposure is an important risk factor for PROM and we wish this study could provide evidence to local government to take rigid approaches to control emissions of air pollutants.

  相似文献   

7.
Epiphytic lichens as indicators for changes in air pollution and climate. Results of a comparative survey 1989/2007 in north-west Germany Background, aim, and scope Lichens growing on tree bark (epiphytic lichens) respond very sensitively to environmental effects such as chemical substances and air temperature. Therefore, they are used as biomonitors for atmospheric pollution in environmental assessments. Based on a survey of epiphytic lichens in 1989, a repetition was performed in an intensively-used agricultural area of north-west Germany in 2007. The objective of this study was to assess possible changes in air pollution and climate. Materials and methods The study is based on a comparative inventory of epiphytic lichens, growing on 335 trees at 45 monitoring sites. A simplified half quantitative survey technique of the first survey was used. Results Indeed, major changes to the epiphytic lichen flora were found. Overall, nearly all monitoring points showed an increase in the level of lichen species. A sharp decrease in acidophileous species and a sharp increase in basidophileous and nitrophileous species were detected. In addition, an increase in thermophileous species which are mainly inhabitants of southern European countries was observed, combined with decreases in boreo-montanic species. Discussion These trends correspond with supra-regional observations. They are primarily attributed to changes in air pollution involving a decrease in SO2 and an increase in NH3 concentrations. Clear effects from climate change are evident as well. Conclusions Changes to epiphytic lichens over a 18-year period could be demonstrated using a relatively low-cost investigation. They are relevant for assessing the changing environmental situation, which is of great importance for other organism groups and ecosystems. Recommendations and perspectives Using standardized techniques epiphytic lichens are suitable bioindicators for obtaining different types of information about the air pollution in urban areas and in intensively-used agricultural regions. Furthermore they are obviously good indicators of temperature changes in their environment. More research is needed about the suitability of epiphytic lichens for a biomonitoring of climate changes.  相似文献   

8.
Air pollution has a deleterious impact on public health and the environment. There is few knowledge on the effect of air pollution on terrestrial microbial communities, despite the major role of microbes in ecosystems. Here, we designed an in situ trial ecosystem to assess the impact of moderate atmospheric pollution, below World Health Organization (WHO) thresholds, on an indigenous microbial communities, including bacteria, fungi, ciliates, algae, cyanobacteria, testate amoebae, rotifers and nematodes, extracted from terrestrial bryophytes. These micro-ecosystems were placed at a rural, an urban and an industrial site in France and were thus exposed to various levels of nitrogen dioxide (NO2), from 6.6–67.9 μg·m?3, and particulate matter, from 0.7–7.9 μg·m?3. Microbial analysis was performed by microscopy. We determined atmospheric temperature, relative humidity and particulate matter with diameter lower than 10 µm (PM10), Cu, Cr, Fe, Ni, Pb, Zn in PM10, and (NO2). Results show a significant impact of chronic moderate exposure to NO2 and copper Cu-associated particulate matter on the global microbial network complexity. This is evidenced by a loss of about 40 % of microbial co-occurrence links during incubation. Most lost microbial links are ecologically positive links. Moreover, most changes in community co-occurrence networks are related to testate amoebae, a major top predator of microbes. Overall, our findings demonstrate that air pollution can have strong deleterious effects on microbial interactions, even at levels below WHO thresholds.  相似文献   

9.
In the past 30 years, China has suffered from air pollution and heavy haze created by fast industrial growth and economic expansion. This article reviews the techniques for remediation of air pollution. Then, I propose a geoengineering method for mitigating air pollution and haze in China’s cities by using water to scavenge air pollution. Here, water should be sprayed into the atmosphere like watering garden. The scientific rationale and mechanism for the geoengineering scheme are explained. It is found that precipitation scavenging coefficients are very sensitive to the size distributions of both aerosol and raindrops, and rain intensity. I found that the water spray geoengineering method can reduce the PM2.5 pollution in the atmosphere very efficiently to 35 μg m?3 level in a very short time period from few minutes to hours or days, depending on the precipitation characteristics. In addition, the water spray geoengineering method has excellent advantages such as rapidity, already available technology, low cost, and a nature-like process. This proposed geoengineering scheme can be one of the answers for fighting air pollution in the cities globally.  相似文献   

10.
The development of industry in Beijing, the capital of China, particularly in last decades, has caused severe environmental pollution including particulate matter (PM), dust–haze, and photochemical smog, which has already caused considerable harm to local ecological environment. Thus, in this study, air particle samples were continuously collected in August and December, 2014. And elements (Si, Al, V, Cr, Mn, Fe, Ni, Cu, Zn, Mo, Cd, Ba, Pb and Ti) and ions (\({\text{NO}}_{3}^{-}\), \({\text{SO}}_{4}^{2-}\), F?, Cl?, Na+, K+, Mg2+, Ca2+ and \({\text{NH}}_{4}^{+}\)) were analyzed by inductively coupled plasma mass spectrometer and ion chromatography. According to seasonal changes, discuss the various pollution situations in order to find possible particulate matter sources and then propose appropriate control strategies to local government. The results indicated serious PM and metallic pollution in some sampling days, especially in December. Chemical Mass Balance model revealed central heating activities, road dust and vehicles contribute as main sources, account for 5.84–32.05 % differently to the summer and winter air pollution in 2014.  相似文献   

11.
Volatile organic compounds containing reduced sulphur such as thiols and thioethers are released mostly from biological activities and a number of manufacturing processes, such as papermaking and petroleum refining. Environmentally benign and cost-effective air pollution control technology for reduced sulphur compounds is still a topic of research, e.g., in pulp and paper industry. Due to its advantages, photocatalytic oxidation over titanium dioxide presents a potential alternative for the air treatment strategies. The temperature influence on the reaction pathway and kinetics of gas-phase photocatalytic oxidation and thermal catalytic decomposition of ethanethiol over Degussa P25 TiO2 was established by a continuous flow method in a simple tubular reactor at temperatures from 373 to 453 K. Kinetic parameters for ethanethiol were: adsorption enthalpy −45 kJ mol−1 and activation energy 42 kJ mol−1. Sulphur dioxide, carbon monoxide, carbon dioxide, acetic acid and water were identified as by-products.  相似文献   

12.
The increase in platinum (Pt) in the airborne particulate matter with size ≤2.5 µm (PM2.5) in urban environments may be interpreted as result of the abrasion and deterioration of automobile catalyst. Nowadays, about four million vehicles in Mexico City use catalytic converters, which means that their impact should be considered. In order to evaluate the contribution of Pt to environmental pollution of the metropolitan area of Mexico City (MAMC), airborne PM2.5 was collected at five different sites in the urban area (NW, NE, C, SW, SE) in 2011 during April (dry-warm season), August (rainy season) and December (dry-cold season). Analytical determinations were carried out using a ICP-MS with a collision cell and kinetic energy discrimination. The analytical and instrument performance was evaluated with standard road dust reference material (BCR-723). Median Pt concentration in the analyzed particulate was is 38.4 pg m?3 (minimal value 1 pg m?3 maximal value 79 pg m?3). Obtained Pt concentrations are higher than those reported for other urban areas. Spatial variation shows that SW had Pt concentration significantly higher than NW and C only. Seasonal variation shows that Pt median was higher in rainy season than in both dry seasons. A comparison of these results with previously reported data of PM10 from 1991 and 2003 in the same studied area shows a worrying increase in the concentration of Pt in the air environment of MAMC.  相似文献   

13.
There is growing interest in links between poor health and socio-environmental inequalities (e.g. inferior housing, crime and industrial emissions) under the environmental justice agenda. The current project assessed associations between soil metal content, air pollution (NO2/PM10) and deprivation and health (respiratory case incidence) across Glasgow. This is the first time that both chemical land quality and air pollution have been assessed citywide in the context of deprivation and health for a major UK conurbation. Based on the dataset ‘averages’ for intermediate geography areas, generalised linear modelling of respiratory cases showed significant associations with overall soil metal concentration (p = 0.0367) and with deprivation (p < 0.0448). Of the individual soil metals, only nickel showed a significant relationship with respiratory cases (p = 0.0056). Whilst these associations could simply represent concordant lower soil metal concentrations and fewer respiratory cases in the rural versus the urban environment, they are interesting given (1) possible contributions from soil to air particulate loading and (2) known associations between airborne metals like nickel and health. This study also demonstrated a statistically significant correlation (?0.213; p < 0.05) between soil metal concentration and deprivation across Glasgow. This highlights the fact that despite numerous regeneration programmes, the legacy of environmental pollution remains in post-industrial areas of Glasgow many decades after heavy industry has declined. Further epidemiological investigations would be required to determine whether there are any causal links between soil quality and population health/well-being. However, the results of this study suggest that poor soil quality warrants greater consideration in future health and socio-environmental inequality assessments.  相似文献   

14.

Diesel engine railway traffic causes atmosphere pollution due to the exhaust emission which may be harmful to the passengers as well as workers. In this study, the air quality and PM10 concentrations were evaluated around a railway station in Northeast India where trains are operated with diesel engines. The gaseous pollutant (e.g. SO2, NO2, and NH3) was collected and measured by using ultraviolet–visible spectroscopy. The advanced level characterizations of the PM10 samples were carried out by using ion chromatography, Fourier-transform infrared, X-ray diffraction, inductively coupled plasma optical emission spectrometry , X-ray photoelectron spectroscopy, field-emission scanning electron microscopy with energy-dispersive spectroscopy, and high-resolution transmission electron microscopy with energy-dispersive spectroscopy techniques to know their possible environmental contaminants. High-performance liquid chromatography technique was used to determine the concentration of polycyclic aromatic hydrocarbons to estimate the possible atmospheric pollution level caused by the rail traffic in the enclosure. The average PM10 concentration was found to be 262.11 µg m−3 (maximum 24 hour) which indicates poor air quality (AQI category) around the rail traffic. The statistical and air mass trajectory analysis was also done to know their mutual correlation and source apportionment. This study will modify traditional studies where only models are used to simulate the origins.

  相似文献   

15.
Air pollution poses a serious threat to human health in Asia. This study analyzes the association of air pollutants and greenness with incidence rates of allergic rhinitis in Seoul at the administrative district level to gain insight into district-level urban policies to improve public health. A spatial regression model is constructed to investigate the correlation between allergic rhinitis incidence rates and five air pollutants measured at 128 air pollution monitoring stations around Seoul: sulfur dioxide (SO2), particulate matter less than 10 μm (PM10), ozone (O3), nitrogen dioxide (NO2), and carbon monoxide (CO). The allergic rhinitis incidence data are derived from the National Health Insurance Service’s database that includes the number of allergic rhinitis-related clinic visits by the patients over 20 years of age and living in Seoul. A kriging geostatistical interpolation was used to estimate average air pollution level of 423 administrative districts. To assess pollen concentrations that can affect allergic rhinitis, the average normalized difference vegetation index (NDVI) is measured based on the urban greenness. The model, controlling for built environment and socio-economic attributes, identifies the possibility of a weak association between allergic rhinitis incidence rates and carbon monoxide levels. The NDVI value is negatively correlated with allergic rhinitis incidence rates, implying a complicated aspect in relation to the effect of urban greenness.  相似文献   

16.
A typical driving restriction prohibits drivers from using their vehicles on given weekdays, based on the last digits of their vehicles’ license plates. A number of cities in developing countries have used license plate-based driving restrictions as a policy for reducing urban air pollution and traffic congestion. This paper develops a theoretical model of the effects of license plate-based driving restrictions on air quality that combines an economic model with information about the sources and atmospheric chemistry of different air pollutants. We then draw upon suggestive empirical evidence from license plate-based driving restrictions implemented in Bogotá, Colombia. Consistent with our theory model, we find suggestive empirical evidence that under certain circumstances, due to substitution, the purchase of a second car, the use of alternative modes of transportation, and/or atmospheric chemistry, it is possible for license plate-based driving restrictions to increase air pollution. Also consistent with our theory, we find that license plate-based driving restrictions may have different effects on different air pollutants, reflecting heterogeneity in the sources and atmospheric chemistry of the pollutants. In particular, owing to atmospheric chemistry, it is possible for a license plate-based driving restriction to cause a significant decrease in NO and a significant increase in NO2, NOx, and O3.  相似文献   

17.
18.
Urban energy consumption is one of the most important causes of air pollution. Air pollution-oriented ecological risk assessment is of great significance to the promotion of urban environmental protection. This paper focuses on ecological risk in Xiamen city caused by air pollutant discharge from urban energy consumption. The Long-range Energy Alternatives Planning model was used to establish two scenarios of energy consumption in Xiamen city, and based on different scenarios, we estimated urban energy consumption and discharge quantity of air pollutant (DQAP). A box model and an expert scoring method were used to calculate the air pollution burden (APB) of SO2, NO2, CO, PM10 and PM2.5 and to obtain the probabilities of different air pollution loads. An ecological risk assessment model was developed and utilized to predict Xiamen city’s ecological risks in 2020. The results showed that under an energy-saving scenario, the ecological risks for PM2.5, SO2 and NO2 are high, whereas the ecological risks for CO and PM10 are low. Under a baseline scenario, the ecological risks for PM2.5, SO2 and NO2 are moderate, whereas the ecological risks for CO and PM10 are low. In addition, the APB of SO2, NO2, CO, and PM2.5, but not of PM10, is predicted to rise. In the simulation, energy generation from coal is the main source of air pollution. Although the DQAP from automobiles is not high, it is predicted to rise year-on-year. In summary, the ecological risk due to pollution in Xiamen city is high, and the main pollutants are SO2, NO2 and PM2.5.  相似文献   

19.

Goal and Scope

The constant increase of traffic and the rising energy and material consumption both in industry and trade as well as in private households mean a constant challenge to environmental protection and to the air pollution control. With the commencement of the Federal ambient pollution control act in April 1974, the legal basis for the monitoring of air pollution was created. In future, the limit values laid down in the Council Directive 1999/30/EG, 2000/69/EG and 96/62/EG, will be valid. In town and regional planning there is a great demand for a simple index to evaluate the air quality. From the available data of PM10, NO2, O3, CO, SO2, trends of the air quality will be derived.

Methods

The indices LQI and TLQ suggested by Mayer et al. (2002) were calculated for selected stations of the air pollution monitoring network (ZIMEN) in Rhineland-Palatine. All analysis are based on hourly recorded value, Mean values and frequency distributions are used for the interpretation. Furthermore, the characteristics and trends of the indices under different weather conditions were examined and discussed.

Results

The examination figures out that the air pollutions indices at all stations show similar patterns in the period between January 2001 and December 2002. Neither the LQI, nor the TLQ shows an annual variation. Existing variations are mainly controlled by the general weather situation and the air temperature. High values of the indices appear at extremely high or low mean daily air temperature. The absolute value of the air pollution index is determined by local pollution factors.

Outlook and Recommendations

Both indices are well suitable to evaluate the air quality and to assess the effects of state-aided measures for air pollutant control. Therefore, the indices TLQ and LQI should be published as an additional information in the world wide web.  相似文献   

20.
This review reports the research progress in the abatement of major pollutants in air and water by environmental catalysis. For air pollution control, the selective catalytic reduction of NO x (SCR) by ammonia and hydrocarbons on metal oxide and zeolite catalysts are reviewed and discussed, as is the removal of Hg from flue gas by catalysis. The oxidation of Volatile organic compounds (VOCs) by photo- and thermal-catalysis for indoor air quality improvement is reviewed. For wastewater treatment, the catalytic elimination of inorganic and organic pollutants in wastewater is presented. In addition, the mechanism for the procedure of abatement of air and water pollutants by catalysis is discussed in this review. Finally, a research orientation on environment catalysis for the treatment of air pollutants and wastewater is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号