首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 93 毫秒
1.
航空铝合金材料微动疲劳裂纹扩展寿命研究   总被引:1,自引:1,他引:0  
以断裂力学为基础,根据复合型裂纹断裂判据建立了LY12CZ铝合金材料微动疲劳裂纹扩展寿命预测模型,确定了模型中的参数,通过预测寿命与试验值的对比验证了该模型的正确、有效性。研究结果表明,微动疲劳裂纹形成阶段比较快,其寿命只占整个疲劳寿命的20%~25%,结构失效所消耗的时间主要在裂纹扩展阶段。  相似文献   

2.
目的研究局部塑性对微动疲劳的影响。方法建立2A12铝合金圆柱/平面微动疲劳有限元模型,考虑塑性作用进行有限元分析,研究微动疲劳参数对局部塑性的影响。结果局部塑性变形发生在试件表面或次表面,最大等效塑性变形随着微动垫半径的减小而增大。随着轴向应力的增加,最大切向应力增加;随着摩擦系数的增加,剪应力的最大值急剧增加,粘着区增加,滑移区减小,但摩擦系数对整个接触区的大小没有影响。结论微动疲劳参数对局部塑性有一定的影响。  相似文献   

3.
微动疲劳广泛存在于航空航天等各种机械构件中,加速构件接触表面及表层裂纹的萌生与扩展,微动是导致构件多裂纹损伤的主要原因之一。由于海军飞机服役环境的复杂性,铝合金构件腐蚀相当严重,腐蚀对航空铝合金材料微动疲劳的影响是研究微动疲劳时要考虑的重要因素。总结了国内外铝合金微动疲劳研究现状,阐述了研究存在的主要问题,对飞机构件铝合金材料微动疲劳的研究进行了展望。  相似文献   

4.
预腐蚀LY12CZ铝合金的疲劳寿命预测模型   总被引:2,自引:2,他引:0  
目的研究铝合金预腐蚀疲劳的寿命评估模型。方法利用损伤力学模型,建立预腐蚀构件疲劳寿命预测模型,并利用LY12CZ铝合金进行预腐蚀疲劳的验证性实验。结果利用损伤力学建立的模型所得到的预腐蚀铝合金试件的疲劳寿命与实验结果吻合程度良好。结论基于损伤力学的铝合金预腐蚀疲劳寿命预测模型合理有效。  相似文献   

5.
腐蚀损伤对LY12CZ铝合金疲劳寿命的影响研究   总被引:1,自引:1,他引:1  
对LY12CZ铝合金在EXCO溶液中进行了不同时间的加速腐蚀。通过扫描电镜研究不同腐蚀时间后LY12CZ铝合金的腐蚀损伤,腐蚀损伤的严重程度用腐蚀面积率和腐蚀深度描述。通过对比性疲劳试验获得了腐蚀损伤对LY12CZ铝合金疲劳寿命的影响,为飞机日历寿命评定和飞机结构腐蚀的研究提供了试验依据。  相似文献   

6.
腐蚀损伤对典型铝合金结构疲劳寿命的影响研究   总被引:1,自引:4,他引:1       下载免费PDF全文
目的研究严酷服役条件下飞机结构的寿命衰减问题。方法以飞机关键结构模拟件为研究对象,基于编制的某机场环境加速试验谱进行当量加速腐蚀试验,采用MTS810材料试验系统进行预腐蚀后的疲劳试验。结果通过对试验结果的分析,确定了关键结构疲劳寿命腐蚀影响系数与腐蚀损伤尺寸之间的对应关系。结论关键结构腐蚀损伤宽度与疲劳寿命腐蚀影响系数相关性最好。  相似文献   

7.
基于损伤检测的腐蚀疲劳寿命预测概率模型   总被引:1,自引:3,他引:1  
建立了飞机结构腐蚀疲劳寿命预测的4阶段概率模型,结合腐蚀疲劳损伤检测结果,通过检测的灵敏度和准确度2个随机变量来描述检测技术的可靠性;建立了检测后的修正腐蚀疲劳寿命预测概率模型,通过对比分析修正前后的腐蚀疲劳寿命分布,得出腐蚀损伤尺寸的检测结果。对腐蚀疲劳寿命的评估影响很大,并且检测技术越可靠,寿命评估越准确。  相似文献   

8.
通过对已有LY12CZ腐蚀疲劳试验数据分析,建立腐蚀年限和应力幅值对应疲腐蚀劳寿命的BP网络映射模型来预测其腐蚀疲劳寿命.为了提高网络模型预测精度,采用牛顿插值法扩充历史试验数据,满足神经网络对训练数据致密性要求.研究结果表明,网络预测结果误差较小.利用网络预测结果计算,lgSα和lgN具有较高的线性相关性,R=0.94~0.99,且斜率B为-3.3~ -3.4.  相似文献   

9.
目的 预测钢制全表面轮毂易产生疲劳破坏的危险区域,并分析其弯曲疲劳寿命。方法 针对全表面轮毂的弯曲疲劳试验工况,建立有限元分析模型,综合考虑螺栓拧紧方式、螺栓预紧力以及材料非线性特征的影响,通过在加载轴末端建立局部坐标系,实现载荷的分解,并最终实现弯矩的动态加载。在此基础上,进行轮毂的受力分析,然后构造适用于轮毂的应力寿命曲线,并使用名义应力法进行疲劳寿命预测。结果 动态弯矩的加载方向变化会显著影响轮辐表面的应力分布特点,螺栓预紧力施加后,螺栓孔附近区域的应力显著增大,在计算中应考虑其影响。在获得各节点载荷历程后,以高应力幅和平均应力为标准,筛选出了轮毂的危险节点。结论 基于数值仿真的本型全表面轮毂弯曲疲劳试验,危险节点位置均位于轮辐通风孔的内圆角附近区域,可有针对性地对该区域进行相应的优化设计,以进一步提高轮毂的弯曲疲劳寿命。分析得到当前轮辋弯曲疲劳寿命约7.6万次,符合国家标准的要求。  相似文献   

10.
LY12CZ航空铝合金腐蚀疲劳断口研究   总被引:2,自引:1,他引:1       下载免费PDF全文
借助扫描电镜以及能谱分析技术对预腐蚀LY12CZ铝合金疲劳断口形貌进行了研究,分析了腐蚀疲劳断口形貌与合金中的Si,Mg等元素以及腐蚀损伤对断裂过程的影响。结果表明疲劳断口是以韧性为主的多源性断口。腐蚀坑使得材料局部力学性能退化,成为裂纹萌生源。合金化过程中控制合适的Mg,Si等强化相元素含量,能够使强度与塑性相匹配,从而提高材料的抗疲劳性能。  相似文献   

11.
目的探索2A12铝合金在EXCO溶液中腐蚀损伤形貌的演化规律。方法开展实验室内2A12铝合金的加速腐蚀实验。为实现表面粗糙度与腐蚀损伤相关性的定量研究,首先采用3D扫描成像仪对实验样品进行扫描,取得样品微观几何特征,实现表面粗糙度值的数字化定量表征。观察样品在EXCO溶液中腐蚀损伤的发生发展过程、腐蚀形貌的演化过程,测量腐蚀样品蚀坑深度,并分析表面粗糙度对样品腐蚀损伤的影响。结果当腐蚀时间不超过6 h时,2A12铝合金样品在EXCO溶液中的腐蚀类型主要为点蚀,随着时间的延长,将向全面腐蚀发展。粗糙度值高的试件表面有打磨时形成的较深表面纹理,这些纹理制约了点蚀坑的扩展,使蚀坑沿纹理的方向发展,有演化为微裂纹的可能性,蚀坑边界的不规则处也会萌生微裂纹。粗糙度值较小的样品,腐蚀损伤也较小,但粗糙度对腐蚀损伤的影响随时间的延长而减弱。结论常温下,2A12铝合金在EXCO溶液中首先发生点蚀,由于蚀坑向四周扩展的速度快于深度方向,使腐蚀类型从点蚀向全面腐蚀演变。表面粗糙度对2A12铝合金样品腐蚀损伤形貌的演化有重要影响,表面微观几何特征通过制约蚀坑扩展方向的方式来改变样品的腐蚀行为,并造成腐蚀损伤的明显差异。随着腐蚀时间的延长,材料逐渐失去其原有表面微观几何特征,表面粗糙度对腐蚀行为的影响下降。  相似文献   

12.
预腐蚀铝合金材料裂纹萌生寿命评估   总被引:1,自引:6,他引:1  
铝合金在航空工业中广泛应用,因此对于铝合金构件的寿命评估很重要。利用扫描电子显微镜(SEM)原位观测技术,研究了预腐蚀铝合金试件在循环应力作用下的疲劳裂纹萌生和扩展行为。结果表明腐蚀坑对于裂纹萌生扩展行为具有强烈的影响。基于局部应变法,提出了一种预测带有腐蚀损伤的铝合金疲劳裂纹萌生寿命的评估公式。  相似文献   

13.
目的 研究阳极化处理对SP700钛合金与2A12铝合金电偶对的腐蚀行为和机理的影响。方法 采用电化学极化曲线测试法对阳极氧化处理前后的SP700钛合金的耐蚀性能进行初步研究,并以此作为边界条件,采用有限元数值模拟的方法,对不同状态的SP700钛合金与2A12铝合金组成的偶对电偶腐蚀情况进行模拟计算。同时,开展电偶对的电偶腐蚀试验,对模拟结果进行验证。此外,通过对电偶腐蚀后的试件表面微观形貌进行表征,进一步分析不同电偶对的腐蚀规律差异。结果 SP700钛合金阳极氧化前的自腐蚀电位为‒283 mV,腐蚀电流密度为6.164×10‒9 A/cm2;氧化后的自腐蚀电位为‒270 mV,腐蚀电流密度为8.589×10‒10 A/cm2。SP700钛合金阳极氧化前与2A12铝合金的试验和仿真平均电偶电流密度分别为6.81、6.76 μA/cm2;SP700钛合金阳极氧化后与2A12铝合金的试验和仿真平均电偶电流密度分别为2.58、2.54 μA/cm2。结论 SP700钛合金表面阳极化处理可有效降低与铝合金之间电偶腐蚀的敏感性。  相似文献   

14.
LD2铝合金腐蚀行为研究   总被引:7,自引:4,他引:7       下载免费PDF全文
LD2铝合金广泛应用于直升机结构中。铝合金构件在服役过程中会承受环境所造成的疲劳损伤,从而大大降低其服役寿命,因此必须要研究该材料的腐蚀行为。利用SEM扫描电镜,结合能谱分析对铝合金腐蚀损伤行为进行了高精度微尺度研究,并在疲劳断口上发现腐蚀坑底部的“隧道”,该腐蚀隧道会使腐蚀损伤评定过于保守,为结构寿命预测带来较大的不确定性。  相似文献   

15.
目的通过断口定量分析获得7A09铝合金的疲劳裂纹扩展规律,为7A09铝合金结构的寿命评估提供依据。方法使用EXCO溶液对试验件进行预腐蚀,利用疲劳拉伸机进行疲劳加载直至断裂,使用扫描电镜对疲劳断口进行定量化分析。结果疲劳裂纹在试件的腐蚀坑处萌生,从自由界面附近向纵深发展导致试件的断裂。通过断口分析和Paris公式确定了裂纹的萌生寿命和扩展寿命。结论腐蚀之后的试件裂纹萌生寿命占总寿命的比例下降,当裂纹扩展程度较大之后,受腐蚀影响减轻,得出裂纹扩展速率和应力强度因子的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号