首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于2020年6—8月济南市石化区、市区和南部山区VOCs以及臭氧和气态污染物等在线监测数据,结合气象因素分析了各典型区夏季VOCs污染特征,并通过计算臭氧生成潜势(OFP)和MCM模型模拟分析了不同区域不同污染等级VOCs对臭氧生成的影响,采用PMF模型对市区夏季VOCs进行了来源解析研究.结果表明,石化区VOCs浓度(158.29μg·m-3)明显高于市区(47.71μg·m-3)和南部山区(24.65μg·m-3),VOCs中均以烷烃占比最大,其次为芳香烃,3个区域VOCs浓度均随污染等级升高而升高;不同污染等级下均为石化区OFP(743.7—1474.9μg·m-3)大于市区(156.9—378.1μg·m-3)和南部山区(113.4—168.7μg·m-3),3个区域均是芳香烃OFP占比最大,其次为烯烃,说明芳香烃和烯烃类VOCs对臭氧生成的贡献最大,其中OFP贡献最大的单体为间/对-二甲苯;MCM模拟结果表明石化区O3净生...  相似文献   

2.
为阐明大气污染重点整治和新冠疫情影响下我国华北地区城市春节期间重污染过程PM2.5中水溶性无机离子变化特征及其影响因素,本研究结合气态前体物浓度和气象要素,对天津市2018—2020年连续3年春节假期的2次重污染过程PM2.5中主要水溶性无机离子(WSIIs)浓度进行对比分析.结果表明,2018年和2020年春节假期PM2.5平均浓度(98.32μg·m-3和137.7μg·m-3)显著高于2019年(49.97μg·m-3).PM2.5平均浓度在污染期Ⅱ(2020年为206.5μg·m-3)是污染期Ⅰ(2018年98.32μg·m-3)的2.1倍;2次污染事件中NO2浓度变化不大,而SO2浓度在污染期Ⅱ(14.89μg·m-3)是污染期Ⅰ(30.04μg·m-3)的49.6%.SNA在WSIIs中占比超...  相似文献   

3.
本文分析了银川都市圈的商业/交通/居民混合区和工业区两类典型站点的大气挥发性有机物(VOCs)的日变化特征,并通过臭氧生成潜势(OFP)对其生成臭氧潜力进行了评估,此外,基于观测的光化学模型(OBM模型)分析了银川都市圈臭氧生成对前体物的敏感性.观测结果表明,观测期间银川都市圈臭氧呈单峰型日变化,其中商业/交通/居民混合区采样点峰值出现在16:00—18:00,臭氧日最高小时浓度范围为131—200μg·m-3;工业区采样点峰值出现在14:00—17:00,臭氧日最高小时浓度范围为155—186μg·m-3.商业/交通/居民混合区采样点和工业区采样点总挥发性有机物(TVOCs)日变化浓度均呈现出早晚高、日间低的趋势,最大浓度分别为28.70×10-9、165.84×10-9.烯烃对两个采样点臭氧生成潜势均有较大贡献,商业/交通/居民混合区和工业区采样点的贡献率分别为21.58%—67.59%和57.42%—89.73%.银川都市圈大气臭氧生成速率对VOCs中的烯烃和芳香烃的增量变化最为敏感,对CO以...  相似文献   

4.
为分析钢铁集聚区大气细颗粒物(PM2.5)中碳组分的污染特征,对济南市钢铁集聚区和市区秋季(2020年10月15日至2020年10月24日)、冬季(2020年12月18日至2021年1月7日)和春季(2021年4月23日至5月2日)环境空气中PM2.5进行手工采样,利用热光碳分析仪测定了PM2.5中有机碳(OC)和元素碳(EC)的含量.结果表明,钢铁集聚区秋季OC和EC质量浓度范围分别为5.79—12.56μg·m-3和1.34—3.44μg·m-3;冬季OC和EC质量浓度范围分别为3.92—55.54μg·m-3和0.38—11.39μg·m-3;春季OC和EC质量浓度范围分别为2.14—4.70μg·m-3和0.19—1.33μg·m-3,呈现显著的季节变化,表现为冬季>秋季>春季.钢铁集聚区冬季PM2.5中OC和EC占比最高,分别为28.11%和5.3...  相似文献   

5.
为探究宝鸡市秋季大气PM2.5中水溶性离子的污染特征及来源,于2019年10月15日至11月14日分别对宝鸡市监测站、文理学院和陈仓区环保局的3个站点进行PM2.5样品采集,通过离子色谱仪得到水溶性离子质量浓度,分析了3个站点水溶性离子在清洁时段和污染时段的变化特征及来源.结果表明,三站点PM2.5的质量浓度陈仓区环保局>文理学院>宝鸡市监测站.清洁时段和污染时段PM2.5平均质量浓度分别为40.0μg·m-3和100.1μg·m-3,水溶性离子平均质量浓度分别为(13.7±7.7)μg·m-3和(57.8±15.0)μg·m-3.污染时段NO3-/SO42-值是清洁时段的1.6—1.8倍.污染越重,SNA(NO3-、SO42-和NH4+)质量浓度越大,占总水溶性离子和P...  相似文献   

6.
为研究常州市2022年6月14—21日的臭氧连续超标过程,利用EKMA曲线分析此次污染过程中臭氧生成对其前体物VOCs和NOx的敏感性,通过反距离权重插值算法对网格化数据进行插值对该污染过程进行分析。结果表明:常州市臭氧及其前体物存在明显的日变化特征。6月臭氧超标天的臭氧与温度呈正相关,与相对湿度呈负相关。常州市臭氧处于强VOCs控制区,削减VOCs会使当地臭氧生成潜势逐步降低;不当削减NOx排放反而会使当地臭氧生成潜势上升。6月14—18日,江苏省呈区域型污染,常州市温度偏高有利于臭氧生成;19—20日臭氧污染气团不断向西移动,臭氧高值区处于常州市;21日主导风向转为东南风,常州本地臭氧生成叠加周边区域影响,致使常州市臭氧仍处于高值。  相似文献   

7.
珠三角在全国主要城市群中率先在2015年实现PM2.5达标,但区域O_3上升的势头并没有得到遏制。为深化珠三角空气质量精细化管理,有效遏制区域O_3上升和促进空气质量改善,应用三维空气质量模型对珠三角秋季典型O_3污染进行了40种情景的模拟分析,定量研究了珠三角重污染季节O_3与前体物排放的关系。结果表明,秋季珠三角大部分点位O_3与前体物排放的关系表现出高度非线性的规律。对于江门、中山和珠海等下风向站点,NO_x的减排对O_3污染的控制有强烈的不利效应,若NO_x减排30%,则O_3浓度上升24%~41%,当NO_x削减量在60%以上时,O_3浓度随着NO_x削减而下降;区域VOCs的减排可以有效降低O_3浓度,若NO_x排放不变,VOCs减排30%,则O_3浓度可以下降20%~26%。对于惠州、深圳和东莞等上风向的站点,NO_x减排对O_3污染的不利效应较弱,当NO_x削减量在30%以上时,O_3浓度随着NO_x削减而下降。若NO_x减排比例为12%,VOCs减排比例为50%,珠三角西部O_3浓度下降幅度可达20%以上,其他地区O_3浓度普遍下降10%~16%。若NO_x减排比例为8%,VOCs减排比例为30%,中山、江门与珠海的O_3峰值浓度将下降15%左右,但其他地区的O_3污染改善不明显,广州、东莞、肇庆等地的O_3改善幅度在10%以内。在2017年广东省的臭氧专项行动中,实际的O_3前体物削减力度远未达到建议方案的程度,而且气象条件可能有利于O_3污染加剧,导致O_3控制效果不如预期。要缓解珠三角秋季的O_3污染,珠三角及其邻近地区应该加大VOCs的控制力度,减少NO_x的减排力度。  相似文献   

8.
黄河几字弯都市圈是黄河流域“一轴两区五极”发展动力格局的重要一极,揭示区域PM2.5的时空特征和驱动力,对实施区域联防联控和促进环境的健康发展具有重要意义。基于2015-2021年PM2.5污染物数据,运用地理空间分析方法分析黄河几字弯都市圈PM2.5的时空演变特征,并借助地理探测器工具探究其时空特征的影响因素。结果表明,(1)在时间上,2015-2021年黄河几字弯都市圈PM2.5年均质量浓度整体呈下降趋势,由48μg·m-3降至27μg·m-3,降幅达44%;月均质量浓度呈“U”型变化特征,1月(61μg·m-3)最高,8月(25μg·m-3)最低;季均质量浓度表现为冬季(55μg·m-3)>秋季(38μg·m-3)>春季(34μg·m-3)>夏季(27μg·m-3)。(2)在空间上,2015-2021年...  相似文献   

9.
为研究天津市夏季PM2.5中碳组分的时空变化特征及来源,于2019年7—8月设立2个点位分昼夜采集天津市PM2.5样品,并测定了其中有机碳(OC)和元素碳(EC)的含量。结果表明,城区PM2.5、OC和EC浓度日均值分别为(53.4±20.8)μg·m-3、(8.72±2.56)μg·m-3和(1.67±0.90)μg·m-3,郊区PM2.5、OC和EC浓度日均值分别为(54.2±24.5)μg·m-3、(7.54±2.50)μg·m-3和(1.82±1.06)μg·m-3;白天PM2.5、OC、EC的平均浓度分别为(47.3±16.1)μg·m-3、(8.7±2.1)μg·m-3和(1.5±0.6)μg·m-3,夜间PM2.5、OC、EC的平均浓度分别为(60.2±26.2)μg·m-3、(7.5±2.9)μg·m-3和(2.0±1.2)μg·m-3。OC浓度表现为城区高于郊区,白天高于夜间;EC及PM2.5浓度表现为郊区高于城区,夜间高于白天。OC/EC比值分析得,城区(6.04)高于郊区(5.08);白天(6.58)高于夜间(4.54)。城区OC与EC相关性弱于郊区,白天OC与EC相关性弱于夜间。采用EC示踪法与MRS模型对SOC含量进行估算,得到白天与夜间SOC浓度分别为(5.71±1.35)μg·m-3和(3.81±1.20)μg·m-3,白天SOC污染比夜间严重。丰度分析与主成分分析的结果表明,天津市夏季城郊区PM2.5中碳组分均主要来源于燃煤和机动车尾气排放。  相似文献   

10.
利用2022年9月嘉兴市光化学站小时分辨率的挥发性有机物(volatile organic compounds,VOCs)和臭氧(O3)数据,分析了O3和VOCs的污染特征;采用基于观察数据的(observation-based model,OBM)模型,分析嘉兴市O3敏感性;并通过正定矩阵因子分析(positive matrix factorization,PMF)模型进行了环境VOCs来源解析研究。结果表明:高温(28.8~33℃)、低湿(69%~74%)、小风(1.4~2.0 m/s)等不利的气象条件有利于O3浓度升高。嘉兴市VOCs组分含量烷烃(6.7×10-9)>芳香烃(5.0×10-9)>烯烃(1.7×10-9)>炔烃(0.6×10-9),臭氧生成潜势(ozone formation potential,OFP)芳香烃(74.0μg/m3)>烯烃(19.8...  相似文献   

11.
城市中家居市场集聚区域由于家具陈列与仓储,是城市挥发性有机物(Volatile organic compounds,VOCs)无组织排放主要贡献源之一。对济南市区内家居市场及周边环境空气VOCs进行现场监测,分析了不同类型家居市场VOCs排放特征和成分谱,计算不同类型家居市场VOCs排放因子及排放量,并与周围环境空气中VOCs组分特征进行对比。结果表明,济南市低档家居市场D中VOCs质量浓度最高为653.00μg·m-3,其次为中档家居市场C和B,高档家居市场A内VOCs质量浓度最低,为149.00μg·m-3;市场内VOCs主要种类为OVOCs、芳香烃和卤代烃,低档家居市场D中芳香烃占比最高(39.05%),其他家居市场OVOCs占比最高;各家居市场臭氧生成潜势OFP从大到小依次为D>B>C>A,芳香烃OFP在家居市场占比最大;不同档次家居市场中VOCs组分种类有差异,低档家居市场VOCs组分种类最多,各家居市场均检出丙酮、甲苯和邻二甲苯,主要是受市场内胶合板类家具释放的影响,低...  相似文献   

12.
石河子市是位于新疆乌昌石区域中部的工业城市,2020年12月和2021年1月在石河子市城区和工业区共布设2个采样点,全天候采集细颗粒物(PM2.5)样品61 d,利用电感耦合等离子质谱仪(ICP-MS)对24种元素含量进行分析,并通过富集因子法(EF)解析PM2.5中无机元素的污染特征及来源.结果表明,冬季采样期间,石河子市重度及以上污染天数占整个采样期的53.2%,以PM2.5为首要污染物的污染天数占整个采样期的98.4%,采样期城区和工业区的PM2.5日均值分别为164.7μg·m-3和113.6μg·m-3,表明石河子市冬季PM2.5污染严重;采样期城区和工业区PM2.5中无机元素浓度分别为4.4μg·m-3和3.6μg·m-3,主要成分均为K、Ca、Na、Mg、Al、Fe,6种元素之和在城区和工业区元素中的占比分别为97.4%和97.5%,表明这6种元素为城区和...  相似文献   

13.
采集了2018年保定市污染天气的PM2.5样品,采用离子色谱法测定了PM2.5样品中的水溶性离子(WSIs),分析了不同季节PM2.5及其水溶性离子的分布特征,并采用PMF模型对PM2.5进行了源解析.结果表明,采样期间保定市的PM2.5浓度为18.4—258.0μg·m-3,年均值为(91.5±62.5)μg·m-3;季节规律是冬季(160.6μg·m-3)>秋季(105.3μg·m-3)>春季(57.6μg·m-3)>夏季(53.2μg·m-3).WSIs年均值为49.20μg·m-3,占PM2.5.的63.95%,WSIs的季节规律和PM2.5的一致.二次离子占水溶性离子的77.12%.湿度和温度与SOR和NOR成正相关.春夏两季水溶性离子主要以Na...  相似文献   

14.
为研究贵阳市大气臭氧的光化学生成特征,于2016年选取大气臭氧浓度较高的时段,在城区和郊区环境空气质量监测点对贵阳非甲烷烃类的环境浓度进行了观测.并利用基于观测的光化学模型分析了贵阳近地面大气臭氧生成的典型光化学过程和敏感性.通过在臭氧浓度较高时段,对比分析城区和郊区臭氧和臭氧前体物、模拟的主要自由基和光化学链反应终止产物的变化特征,发现贵阳城区与郊区的臭氧生成特征不同.通过分析臭氧主要前体物的相对增量反应活性,进一步发现城区臭氧生成主要受VOCs控制,郊区主要受NOx控制.控制人为源的烯烃和芳香烃对于控制城区臭氧污染最为有效.  相似文献   

15.
通过对太原城区环境空气质量监测站~(201)4年全年臭氧的连续观测,分析了其浓度变化特征,并结合二氧化氮的浓度以及气象数据研究了臭氧变化的影响因素.数据分析显示:太原市城区环境空气中臭氧的小时平均值为32.1μg·m~(-3),日变化总体呈现日间高(44.7μg·m~(-3))于夜间(18.0μg·m~(-3))的特点,季节变化呈夏季(67.7μg·m~(-3))高于冬季(11.1μg·m~(-3))的特征;夏季和冬季的臭氧浓度与二氧化氮、环境温度、相对湿度、能见度的相关系数分别是-0.50、0.75、-0.53、0.14和-0.38、0.32、-0.34、0.25;全年节假日的臭氧浓度比工作日高4.37%.研究结果表明,日间太阳辐射的增强和臭氧前驱物浓度的上升,臭氧浓度在15时达到峰值,此后随着太阳辐射的降低和大气化学反应消耗从而导致臭氧浓度不断降低;人为活动排放的二氧化氮是环境空气中的臭氧生成的重要前体物;温度的增加会加快臭氧的生成,相对湿度的增加有利于前驱物和大气中自由基的累积从而影响臭氧浓度,能见度的增加导致的太阳辐射能力增强会一定程度上增加臭氧的浓度,风速的增加会使臭氧出现先升后降的变化,在西南风和南风情况下臭氧的浓度最高;臭氧浓度具有一定的节假日效应.总之影响太原市城区臭氧浓度变化的主要因素是臭氧前驱物(NO_2等)和气象条件(太阳辐射、温度等)的变化,控制NO_2等臭氧前驱物的排放是控制臭氧污染的主要途径.  相似文献   

16.
本文利用长沙市区环境空气质量监测站点在线观测资料,结合罐采样-三级冷阱预浓缩-气相色谱法分析非甲烷烃类化合物和衍生化-高效液相色谱法分析醛酮类化合物,基于观测的光化学模型分析了长沙市区2017年5月和9月部分时段臭氧生成对前体物的敏感性.结果表明,观测期间长沙市区臭氧浓度日变化均呈现典型的单峰特征,峰值浓度出现在15时左右,凌晨高浓度一氧化氮呈现对臭氧明显的滴定效应;5月非甲烷烃浓度和醛酮总浓度较9月高,非甲烷烃主要组成为烷烃和芳香烃类,其次为植物源烃类,而甲醛、乙醛和丙酮为醛酮类化合物主要组分.白天随着光化学过程的发展,非甲烷烃被逐渐消耗,其活性浓度随之降低.模型分析发现:5月份氮氧化物和植物源烃类对长沙市区臭氧生成贡献最大,削减氮氧化物对臭氧控制最为有效;而9月臭氧生成对烯烃和芳香烃最为敏感,削减人为源烯烃和芳香烃对臭氧控制最为有效.  相似文献   

17.
利用2013年6月至2014年5月长三角地区16个城市环境监测站点的臭氧小时浓度数据,分析长三角地区臭氧污染时空分布特征。结果表明,长三角地区臭氧浓度呈现夏季高、冬季低的季节变化特征。近海城市臭氧年均浓度较高,均高于60μg·m-3,内陆城市浓度较低,均低于50μg·m-3,而NO2分布与之相反,呈现夏季低、冬季高的季节变化特征。长三角地区四季臭氧日变化皆为典型的单峰型,夏季日最小值出现在06:00,其他季节推迟约1 h,日最大值均出现在15:00前后。夏季臭氧日变化的峰值浓度最大,为168μg·m-3,冬季臭氧日变化的峰值浓度最小,为85μg·m-3。  相似文献   

18.
碳质气溶胶是大气颗粒物的重要组成部分,具有很强的环境和气候效应,是气溶胶科学研究领域的热点.为探究庐山风景区居民区PM2.5中碳质组分的污染特征及来源,于2019年12月2日—2020年10月31日在庐山风景区居民区进行PM2.5样品采集,并对其碳质组分有机碳(OC)和元素碳(EC)进行分析.结果表明,观测期间庐山风景区居民区PM2.5的平均质量浓度为(46.45±18.64)μg·m-3,其中OC和EC平均质量浓度分别是(4.08±1.61)μg·m-3和(0.23±0.10)μg·m-3,占PM2.5总质量的8.78%和0.50%.且碳质颗粒的污染水平普遍低于城市地区,介于国内其他典型高山背景点之间.采用EC示踪法对PM2.5中的二次有机碳(SOC)进行估算,发现采样期间SOC的平均浓度为(1.51±1.22)μg·m-3,占OC的33.2%,表明SOC是PM2.5...  相似文献   

19.
为研究嘉兴地区嘉善冬季污染时段和清洁时段PM2.5化学组分特征,结合气象数据对2019年1月嘉兴市嘉善县善西超级站在线自动监测PM2.5及化学组分数据、气态污染物(NO2和SO2)进行了分析.结果表明,2019年1月嘉善善西超级站污染时段PM2.5浓度(97.18μg·m-3)为清洁时段(36.77μg·m-3)的2.6倍.污染时段水溶性离子浓度(41.58μg·m-3)较清洁时段(19.82μg·m-3)高21.76μg·m-3,但占比有所降低,含碳组分比例增加.OC;EC比值为3.93,可能受到燃煤及机动车排放的共同影响.低风速及高湿有利于NO2和SO2等气态污染物进行二次转化,污染时段硫转化率和氮转化率均比清洁时段高,分别增高7.93%和54.11%,说明NOx向硝酸盐二次转化较为明显,导致颗粒物浓度升高.聚类分析结果显示67.34%气流来自北方,且相应的气流轨迹上污染物浓度比周边高,说明污染物存在一定的长距离输送.结合风玫瑰图可以看出,污染主要为本地及其周边的输送,污染物的长距离输送在短时会使污染浓度突增.因此,在重点关注本地及周边污染的同时,偏北气流下的污染物区域输送不可忽视.  相似文献   

20.
为研究中国典型沿海城市冬季PM2.5中碳组分的污染特征及来源,于2018年12月5日—2019年1月30日分别在天津(TJ)、上海(SH)和青岛(QD)同步采集PM2.5样品。结果表明,天津、上海和青岛PM2.5的平均浓度分别为(116.96±66.93)、(31.21±25.62)、(74.93±54.60)μg·m-3,OC和EC的空间分布均为天津(18.69±7.95)μg·m-3和(4.98±2.08)μg·m-3>青岛(16.45±8.94)μg·m-3和(2.01±1.04)μg·m-3>上海(7.28±3.11)μg·m-3和(1.05±1.25)μg·m-3。3个站点的OC和EC均呈现较好的相关性,表明OC和EC具有相似的来源;OC/EC比值范围在2.37—7.53、5.47—46.41和4.77—13.36之间,证明各采样点均存在二次有机碳(SOC)的生成;采用最小R2法(MRS)估算SOC浓度,得到3个采样点SOC的平均质量浓度为(5.09±4.68)、(3.90±1.65)、(4.21±4.31)μg·m-3,分别占OC总量的27.2%、55.8%和19.5%,其中上海的SOC在OC中的占比最大,说明上海二次有机碳污染较为严重,这主要归因于冬季严重污染源排放和有利的二次转化气象条件,而天津和青岛的碳组分主要来自污染源的直接排放。主成分分析(PCA)结果发现,天津PM2.5中碳组分主要来源于道路尘、生物质燃烧和机动车尾气,上海PM2.5中碳组分主要来源于生物质燃烧、道路扬尘和机动车尾气。青岛PM2.5中碳组分主要来源于道路扬尘、机动车尾气。后向轨迹聚类分析表明,来自西北方向的气团对天津的影响较大,PM2.5和碳组分的浓度值最大;而对上海而言,主要受北方气溶胶经过海面又传输回上海的气团的影响;青岛站点主要受华北地区污染物和本地排放源的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号