首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of cable oil concentration, nutrient amendment and bioaugmentation on cable oil component biodegradation in a pristine agricultural soil was investigated. Biodegradation potential was evaluated over 21 d by measuring cumulative CO2 respiration on a Micro-Oxymax respirometer and 14C-phenyldodecane mineralisation using a 14C-respirometric assay. Cable oil concentration had a significant effect upon oil biodegradation. Microbial respiratory activity increased with increasing cable oil concentration, whereas 14C-phenydodecane mineralisation decreased. Bioaugmentation achieved the best cable oil biodegradation performance, resulting in increases in cumulative CO2 respiration, and maximum rates and extents of 14C-phenyldodecane mineralisation. Generally, nutrient amendment also enhanced cable oil biodegradation, but not to the extent that degrader amendment did. Cable oil biodegradation was a function of (i) cable oil concentration and (ii) catabolic ability of microbial populations. Bioaugmentation may enhance cable oil biodegradation, and is dependent upon composition, cell number and application of catabolic inocula to soil.  相似文献   

2.
Jiang XJ  Luo YM  Liu SL  Ding KQ  Wu SC  Zhao QG  Christie P 《Chemosphere》2003,50(6):855-861
A laboratory incubation study was conducted using a paddy soil spiked with two quantities of Zn as soluble Zn(NO3)2 and unamended controls. Three single extractants (1 M ammonium acetate (pH 7.0), 0.43 M acetic acid and 0.05 M EDTA) were used to assess the bioavailability of Zn. Biological community assessments were made microbial biomass (chloroform fumigation), soil basal respiration and dehydrogenase activity. During the 84-day period of the experiment, addition of Zn at both 500 and 1,000 mg kg(-1) had little detectable effect on soil pH. The concentration of NH4OAc-extractable Zn decreased rapidly within the initial six weeks. The concentration of HOAc-extractable Zn showed no decrease during 84 days incubation. EDTA-extractable Zn was greater than NH4OAc- and HOAc-extractable fractions, and showed a similar trend to NH4OAc-extractable after incubation. Microbial biomass, soil basal respiration and dehydrogenase activity all decreased over time during 84 days incubation. Addition of Zn resulted in a significant increase in specific respiration (qCO2). Microbial biomass and dehydrogenase activity did not appear to be influenced by added Zn, probably due to the strong buffering capacity of the soil. The Zn extracted by EDTA, HOAc and NH4OAc showed close relationships with each other (p < 0.001). Zinc extracted by 0.05 M EDTA and NH4OAc were highly correlated with soil basal respiration and specific respiration rate (p < 0.01). The results suggest that NH4OAc-extractable Zn combined with soil specific respiration could be used as parameters for risk assessment.  相似文献   

3.
Effect of tetraconazole application on the soil microbial community   总被引:1,自引:0,他引:1  
Tetraconazole is one of the most commonly used triazole fungicides in agricultural practice, and its continuous application poses a potential risk for non-target soil microorganisms. Therefore, the objective of this study was to evaluate the effect of tetraconazole at the field rate (T1, 0.33 mgkg?1 of soil), three times the field rate (T3, 1.00 mgkg?1 of soil) and 10 times the field rate (T10, 3.33 mgkg?1 of soil) on the soil microorganisms. To ascertain this effect, the tetraconazole concentration and the microbial properties with potential as bioindicators of soil health (i.e. microbial biomass C, basal respiration, substrate-induced respiration, structure diversity and functional community profiling) were determined. The results showed that the degradation half-lives of tetraconazole varied from 69 to 87 days, depending on the three application concentrations. The microbial biomass C, basal respiration and substrate-induced respiration were inhibited, but they tended to recover at the end of the incubation when tetraconazole was applied at the recommended field rate. The ratios of the gram-negative to gram-positive (GN to GP) bacteria decreased, and the fungi to bacteria ratio increased after a temporal decrease on the seventh day. A principal component analysis of the PLFAs showed that tetraconazole application significantly shifted the microbial community structure on day 7. Different functional community profiles were observed, depending on the tetraconazole application rates. It was concluded that tetraconazole application decreases the soil microbial biomass and activity and changes the structures of the soil microbial community.  相似文献   

4.
Eight soil samples from five wells of a former gas plant site differing in the contamination with BTEX and PAHs as well as the nutrient content were investigated by soil respiration measurements. The basal, glucose as well as NH4+ and PO4(3-) induced cumulative oxygen consumption and carbon dioxide production in 72 and 120 h were determined and additionally the maximal turnover rates and the limitation quotients were calculated. Without additional carbon source only one of five investigated samples was clearly nutrient limited. After glucose supplementation four of seven investigated samples showed nutrient limitation that was in accordance with the available ammonium and phosphorous content. BTEX and PAHs did not exhibit an inhibiting effect on the respiration rate. In contrast, BTEX containing samples exhibited the highest oxygen consumption indicating biodegradation of the contaminants. The results show that oxygen consumption and carbon dioxide production as well as the kinetic of these processes are all informative parameters characterizing the whole microbial respiration potential and their nutrient limitation in soil samples. Therefore this fast respirometric method can be used for the decision if further detailed studies of the bioremediation are useful and if nutrient supplementation is recommended to enhance natural attenuation.  相似文献   

5.
Monitoring of bioremediation by soil biological activities   总被引:20,自引:0,他引:20  
An evaluation of soil biological activities as a monitoring instrument for the decontamination process of a mineral-oil-contaminated soil was made using measurements of microbial counts, soil respiration, soil biomass and several enzyme activities. The correlations between these parameters and with the levels of hydrocarbon residues were investigated; the effects of different N- and P-sources on hydrocarbon decontamination and soil biological activities were determined. Inorganic nutrients stimulated hydrocarbon biodegradation but not all biological activities to a significant extent. Biodegradation could be monitored well by soil biological parameters: the residual hydrocarbon content correlated positively with soil respiration, biomass-C (substrate-induced respiration), and with activities of soil dehydrogenase, urease and catalase. Soil lipase activity and the number of hydrocarbon utilizers correlated negatively (P < 0.0001) with the remaining hydrocarbon content.  相似文献   

6.
The microbial accessibility of native phenanthrene and pyrene was determined in soils representing background scenarios for pollution by polycyclic aromatic hydrocarbons (PAHs). The soils were selected to cover a wide range of concentrations of organic matter (1.7-10.0%) and total PAHs (85-952 μg/kg). The experiments included radiorespirometry determinations of biodegradation with 14C-labeled phenanthrene and pyrene and chemical analyses to determine the residual concentrations of the native compounds. Part of the tests relied on the spontaneous biodegradation of the chemicals by native microorganisms; another part also involved inoculation with PAH-degrading bacteria. The results showed the recalcitrance of PAHs already present in the soils. Even after extensive mineralization of the added 14C-PAHs, the concentrations of native phenanthrene and pyrene did not significantly decrease. We suggest that aging processes operating at background concentrations may contribute to recalcitrance and, therefore, to ubiquitous pollution by PAHs in soils.  相似文献   

7.
Surface soil and passive air samples from a network of 23 sampling sites across Costa Rica were analyzed for polycyclic aromatic hydrocarbons (PAHs), allowing for an evaluation of absolute levels, spatial distribution patterns, air/soil concentration (A/S) ratios and relative composition. Annual mean concentrations of four-ring PAHs in air were low (median of approximately 40 pg m−3), except in Costa Rica's densely populated central valley (approximately 650 pg m−3). PAH concentrations in soil were also low (median of 5 ng g−1 dry weight) and comparable to those reported for other tropical regions. These low soil concentrations result in A/S ratios of four-ring PAHs in Costa Rica that are higher than the equilibrium air–soil partitioning coefficients and also higher than A/S ratios reported for temperate locations. A series of model calculations of increasing complexity were used to seek an explanation for variable A/S ratios of PAHs under tropical and temperate conditions. Temperature-driven changes in air–soil partitioning and differences in PAH degradability under temperate and tropical conditions are insufficient to explain the higher soil concentrations and lower A/S ratios in temperate regions. However, these can be explained by atmospheric deposition of PAHs during historical periods of much higher emissions and air concentrations and by persistence of PAHs in soils on the order of decades. Low PAH concentrations in tropical soils were found to be consistent with constant or increasing emissions, and in particular, do not require that degradation rates in soil are much faster than in temperate areas. In comparison to temperate soils, soils from Costa Rica and other tropical regions have a higher relative abundance of the lighter PAHs. This likely reflects a higher source contribution from biomass burning in the tropics, as well as the preferential loss of lighter PAHs from temperate soils that experienced high PAH deposition in the past.  相似文献   

8.
Nitrogen mineralization in PAHs contaminated soil in presence of Eisenia fetida amended with biosolid or vermicompost was investigated. Sterilized and unsterilized soil was contaminated with PAHs, added with E. fetida and biosolid or vermicompost and incubated aerobically for 70 days, while dynamics of inorganic N were monitored. Addition of E. fetida to sterilized soil increased concentration of NH(4)(+) 100> mg N kg(-1), while concentrations in unsterilized remained <60 mg N kg(-1) except for soil amended with biosolid plus PAHs where it increased to >80 mg kg(-1). Addition of PAHs had no significant effect on concentration of NH(4)(+) compared to the unamended soil, except in the soil added with biosolid. Addition of E. fetida to sterilized soil increased concentration of NO(2)(-) 15> mg N kg(-1) while concentrations in unsterilized soil remained <7.5 mg N kg(-1) except for soil amended with biosolid where it increased to >20 mg kg(-1). Addition of PAHs had no significant effect on concentration of NO(2)(-) compared to the unamended soil. Addition of biosolid and vermicompost increased concentration of NO(3)(-), while addition of E. fetida decreased concentration of NO(3)(-) in biosolid amended soil. It was found that NH(4)(+) and NO(2)(-) oxidizers were present in the gut of E. fetida, but their activity was not sufficient enough to inhibit a temporarily increase in concentrations of NH(4)(+) and NO(2)(-). Contamination with PAHs induced immobilization of N in biosolid or vermicompost amended soil, as did feeding of E. fetida on biosolid or vermicompost.  相似文献   

9.
The goal of this study was to compare diesel fuel to biodiesel fuel by determining the toxicity of analyzed materials and by quantitatively evaluating the microbial transformation of these materials in non-adapted aerated soil. The toxicity levels were determined by measuring the respiration of soil microorganisms as well as the activity of soil dehydrogenases. The quantitative evaluation of biotransformation of analyzed materials was based on the principle of balancing carbon in the following final products: (a) carbon dioxide; (b) humus compounds; (c) the remainder of non-biodegraded analyzed material; and (d) intermediate biodegradation products and the biomass of microorganisms. The results of these studies indicate that diesel fuel has toxic properties at concentrations above 3% (w/w), while biodiesel fuel has none up to a concentration of 12% (w/w). The diesel fuel is more resistant to biodegradation and produces more humus products. The biodiesel is easily biotransformed.  相似文献   

10.
The residual ecotoxicity of long-term bioremediated soils concomitantly spiked with three PAHs at four levels (15, 75, 150, 300 mg Sigma 3 PAHs kg(-1) soil) was evaluated using physico-chemical analyses, solid-phase bioassays and soil microbial activities. The pot-scale bioremediation process consisted of weekly moderate waterings in the presence or absence of sewage sludge compost (SSC) under greenhouse conditions. After 15 months, anthracene and pyrene were almost completely degraded whereas benzo[a]pyrene was still persisting, most apparently in SSC-amended soil treatments. However, no apparent toxic effects of the residual PAHs could be detected. SSC application at 40 t ha(-1) was performed to valorize the biowaste and stimulate PAH biodegradation but caused soil salinization and pH reduction at the end of the bioremediation process. Consequently, SSC-amended soils were characterized by strong phytotoxicity to lettuce and had adverse effects on the ostracod Heterocypris incongruens. Despite the smaller number of culturable bacterial populations in SSC-amended soils, soil enzymatic activities were not affected by the organic amendment and residual PAHs; and the bioremediation efficiency was likely to be more limited by the bioavailability of PAHs rather than by the total number of PAH-degraders.  相似文献   

11.
The aim of the study was to determine centimeter-scale spatial variation in mineralization potential in diffusely polluted soil. To this end we employed a 96-well microplate method to measure the mineralization of 14C-labeled organic compounds in deep-well microplates and thereby compile mineralization curves for 348 soil samples of 0.2-cm3. Centimeter-scale spatial variation in organic matter and the mineralization of glucose, benzoic acid, and PAHs (phenanthrene and pyrene) was determined for urban road-side soil sampled as arrays (7 × 11 cm) of 96 subsamples. The spatial variation in mineralization was visualized by means of 2-D contour maps and quantified by means of semivariograms. The geostatistical analysis showed that the easily degradable compounds (glucose and benzoic acid) exhibited little spatial variation in mineralization potential, whereas the mineralization was highly heterogeneous for the PAH compounds that require specialized degraders. The spatial heterogeneity should be taken into account when estimating natural attenuation rates.  相似文献   

12.
Extensive contamination of soils by highly recalcitrant contaminants such as polycyclic aromatic hydrocarbons (PAHs) is an environmental problem arising from rapid industrialisation. This work focusses on the remediation of soil contaminated with 3- and 4-aromatic ring PAHs (phenanthrene (PHE) and fluoranthene (FLUT)) through catalysed hydrogen peroxide propagation (CHP). In the present work, the operating parameters of the CHP treatment in packed soil column was optimised with central composite design (H2O2/soil 0.081, Fe3+/soil 0.024, sodium pyrophosphate (SP)/soil 0.024, pH of SP solution 7.73). The effect of contaminant aging on PAH removals was also investigated. Remarkable oxidative PAH removals were observed for the short aging and extended aging period (up to 86.73 and 70.61 % for PHE and FLUT, respectively). The impacts of CHP on soil biological, chemical and physical properties were studied for both spiked and aged soils. Overall, the soil functionality analyses after the proposed operating condition demonstrated that the values for soil respiration, electrical conductivity, pH and iron precipitation fell within acceptable limits, indicating the compatibility of the CHP process with land restoration.  相似文献   

13.

Electrokinetic (EK) remediation technology can enhance the migration of reagents to soil and is especially suitable for in situ remediation of low permeability contaminated soil. Due to the long aging time and strong hydrophobicity of polycyclic aromatic hydrocarbons (PAHs) from historically polluted soil, some enhanced reagents (oxidant, activator, and surfactant) were used to increase the mobility of PAHs, and remove and degrade PAHs in soil. However, under the electrical field, there are few reports on the roles and combined effect of oxidant, activator, and surfactant for remediation of PAHs historically contaminated soil. In the present study, sodium persulfate (PS, oxidant, 100 g L?1) or/and Tween 80 (TW80, surfactant, 50 g L?1) were added to the anolyte, and citric acid chelated iron(II) (CA-Fe(II), activator, 0.10 mol L?1) was added to catholyte to explore the roles and contribution of enhanced reagents and combined effect on PAHs removal in soil. A constant voltage of 20 V was applied and the total experiment duration was 10 days. The results showed that the removal rate of PAHs in each treatment was PS + CA-Fe(II) (21.3%) > PS + TW80 + CA-Fe(II) (19.9%) > PS (17.4%) > PS + TW80 (11.4%) > TW80 (8.1%) > CK (7.5%). The combination of PS and CA-Fe(II) had the highest removal efficiency of PAHs, and CA-Fe(II) in the catholyte could be transported toward anode via electromigration. The addition of TW80 reduced the electroosmotic flow and inhibited the transport of PS from anolyte to the soil, which decreased the removal of PAHs (from 17.4 to 11.4% with PS, from 21.3 to 19.9% with PS+CA-Fe(II)). The calculation of contribution rates showed that PS was the strongest enhancer (3.3~9.9%), followed by CA-Fe(II) (3.9~8.5%) (with PS), and the contribution of TW80 was small and even negative (?1.4~0.6%). The above results indicated that the combined application of oxidant and activator was conducive to the removal of PAHs, while the addition of surfactant reduced the EOF and the migration of oxidant and further reduced the PAHs removal efficiency. The present study will help to further understand the role of enhanced reagents (especially surfactant) during enhanced EK remediation of PAHs historically contaminated soil.

  相似文献   

14.
Polycyclic aromatic hydrocarbons (PAHs) are one of the main classes of contaminants in the terrestrial environment. Concentrations of biphenyl, fluorene, phenanthrene and pyrene were added to soil samples in order to investigate the anaerobic degradation potential of PAHs under denitrifying conditions. A mixed population of microorganisms obtained from a paddy soil was incubated for 20 days in anaerobic conditions in the presence of soil alone or with nitrate, adding, as electron donors, PAHs and, in some samples, glucose or acetate. At regular time intervals oxidation-reduction potential, PAHs concentration, microbial ATP and nitrate concentration into the solution were measured. Degradation trends for each hydrocarbon are similar under all conditions, indicating that the molecular conformation prevails over other parameters in controlling the degradation. Poor degradation results were obtained when PAHs were the only organic matter available for the inoculum, thus confirming the recalcitrance to degradation of these compounds. Biodegradation was influenced by the addition of other carbon sources. As better degradation results were generally obtained when acetate or glucose were added, the hypothesis of a co-metabolic enhancement of PAH biodegradation seems likely. Thus, anaerobic biodegradation of PAHs studied, biphenyl, fluorene, phenanthrene and pyrene, seems to be possible both through fermentative and respiratory metabolism, provided that low molecular weight co-metabolites and suitable electron acceptors (nitrate) are present.  相似文献   

15.
The biodegradation of nonextractable residues (NER) of pesticides in soil is still poorly understood. The aim of this study was to evaluate the influence of NER ageing and fresh soil addition on the microbial communities responsible for their mineralisation. Soil containing either 15 or 90-day-old NER of 13C-2,4-D (NER15 and NER90, respectively) was incubated for 90 days with or without fresh soil. The addition of fresh soil had no effect on the mineralisation of NER90 or of SOM, but increased the extent and rate of NER15 mineralisation. The analyses of 13C-enriched FAME (fatty acids methyl esters) profiles showed that the fresh soil amendment only influenced the amount and structure of microbial populations responsible for the biodegradation of NER15. By coupling biological and chemical analyses, we gained some insight into the nature and the biodegradability of pesticide NER.  相似文献   

16.
Liste HH  Prutz I 《Chemosphere》2006,62(9):1411-1420
Two greenhouse pot experiments were conducted to investigate the potential of 13 plant species (grasses, cruciferes, legumes, herbs) to thrive in a long-term contaminated soil from a former manufactured gas plant (MGP) site, to promote the proliferation of total and aromatic ring dioxygenase-expressing bacteria (ARDB) in the root zone, and to foster the biodegradation of petrol hydrocarbons (PHCs) and polycyclic aromatic hydrocarbons (PAHs). PHCs at 23200 mg kg(-1) and PAHs at 2194 mg kg(-1) reduced seed germination, plant survival, and shoot yields for most plants. Total bacteria and ARDB were generally more abundant in contaminated soil and were most numerous in the rhizosphere of mustard. During 68 d, the loss of total petrol hydrocarbons (TPHs) and total US EPA priority PAHs (TPAHs) was greatest in soil planted with hemp and mustard. Pea, cress, and pansy increased the amounts of PAHs extracted from soil, including an almost 60% increase for dibenzo(ah)anthracene. Plants may enhance the chemical extractability and perhaps biological availability of initially unextractable molecules.  相似文献   

17.
The influence of PAH chemical structure and concentration, added in either single (75 or 300 mg kg−1) or multiple (2 × 75, 2 × 150 or 4 × 75 mg kg−1) applications as single- or multiple-contaminant systems, on the development of PAH biodegradation in a pristine soil was investigated. Development in microbial catabolic ability was assessed at 0, 28, 56 and 84 d by monitoring 14C-naphthalene, 14C-phenanthrene and 14C-pyrene mineralisation over 14 d in respirometric assays. The presence of other contaminants influenced the ability of the indigenous microflora to mineralise structurally different contaminants over time. 14C-Naphthalene mineralisation was inhibited by the presence of other contaminants; whereas the presence of naphthalene significantly enhanced rates of mineralisation in multiple-contaminant systems containing 14C-phenanthrene and 14C-pyrene. Generally, increasing the number of contaminant applications has implications for catabolic activity of soil microbes. It is suggested the toxic nature of PAHs retarded mineralisation at increased contaminant concentrations.  相似文献   

18.
The desorption of polycyclic aromatic hydrocarbons (PAHs) often exhibits a biphasic profile similar to that observed for biodegradation whereby an initial rapid phase of degradation or desorption is followed by a phase of much slower transformation or release. Most investigations to-date have utilised a polymeric sorbent, such as Tenax, to characterise desorption, which is methodologically unsuitable for the analysis of soil. In this study, desorption kinetics of 14C-phenanthrene were measured by consecutive extraction using aqueous solutions of hydroxypropyl-β-cyclodextrin (HPCD). The data indicate that the fraction extracted after 24 h generally approximated the linearly sorbed, rapidly desorbing fraction (Frap), calculated using a three-compartment model. A good linear correlation between phenanthrene mineralised and Frap was observed (r2 = 0.89; gradient = 0.85; intercept = 8.20). Hence HPCD extraction (24 h) and first-order three-compartment modelling appear to provide an operationally straightforward tool for estimating mass-transfer limited biodegradation in soil.  相似文献   

19.
The concentrations, profiles, sources and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) were determined in 40 surface soil samples collected from Beijing, Tianjin and surrounding areas, North China in 2007, and all sampling sites were far from industrial areas, roadsides and other pollution sources, and across a range of soil types in remote, rural villages and urban areas. The total concentrations of 16 PAHs ranged from 31.6 to 1475.0 ng/g, with an arithmetic average of 336.4 ng/g. The highest PAH concentrations were measured in urban soils, followed by rural village soils and soils from remote locations. The remote-rural village-urban PAH concentration gradient was related to population density, gross domestic product (GDP), long-range atmospheric transport and different types of land use. In addition, the PAH concentration was well correlated with the total organic carbon (TOC) concentration of the soil. The PAH profile suggested that coal combustion and biomass burning were primary PAH sources.  相似文献   

20.
Concentrations of polycyclic aromatic hydrocarbons (PAHs) were measured in soil and XAD-based passive air samples taken from a total of 22 sites along three transects (Revelstoke, Yoho, and Observation, 6-8 sites for each transect) in the mountains of Western Canada in 2003-2004. Median concentrations in air (4-ring PAHs: 33 pg/m3) were very low and comparable to those in global background regions such as the Arctic. Low median soil concentrations (16 EPA PAHs: 16 ng/g dry weight) and compositional profiles dominated by naphthalene and phenanthrene are similar to those of tropical soils, indicative of remote regions influenced mostly by PAHs from traffic and small settlements. Comparing levels and composition of PAHs in soils between and along transects indeed suggests a clear relationship with proximity to local sources. Sampling sites that are closer to major traffic arteries and local settlements have higher soil concentrations and a higher relative abundance of heavier PAHs than truly remote sites at higher elevations. This remains the case when the variability in soil organic carbon content between sites is taken into account. Both air/soil concentration ratios and fugacity fractions suggest atmospheric net deposition of four-ring PAHs to soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号