首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the use of slurry cutoff walls in conjunction with monitoring wells to detect contaminant releases from a solid waste landfill. The 50 m wide by 75 m long landfill was oriented oblique to regional groundwater flow in a shallow sand aquifer. Computer models calculated flow fields and the detection capability of six monitoring networks, four including a 1 m wide by 50 m long cutoff wall at various positions along the landfill's downgradient boundaries and upgradient of the landfill. Wells were positioned to take advantage of convergent flow induced downgradient of the cutoff walls. A five-well network with no cutoff wall detected 81% of contaminant plumes originating within the landfill's footprint before they reached a buffer zone boundary located 50 m from the landfill's downgradient corner. By comparison, detection efficiencies of networks augmented with cutoff walls ranged from 81 to 100%. The most efficient network detected 100% of contaminant releases with four wells, with a centrally located, downgradient cutoff wall. In general, cutoff walls increased detection efficiency by delaying transport of contaminant plumes to the buffer zone boundary, thereby allowing them to increase in size, and by inducing convergent flow at downgradient areas, thereby funneling contaminant plumes toward monitoring wells. However, increases in detection efficiency were too small to offset construction costs for cutoff walls. A 100% detection efficiency was also attained by an eight-well network with no cutoff wall, at approximately one-third the cost of the most efficient wall-augmented network.  相似文献   

2.
徐州市生活垃圾填埋场地下水典型金属污染物研究   总被引:1,自引:0,他引:1  
在对徐州地区生活垃圾填埋场调查分析的基础上,根据填埋特征和地质状况选取4座典型填埋场为调查对象,采用ICP-MS对垃圾渗滤液及地下水中26种重金属进行监测分析。结果表明,在4个垃圾填埋场地下水及渗滤液中ρ(Sr)均相对较高(700μg/L);地下水中金属元素均正在以Ca,Mg为主向Na,Mg为主转化;地下水中Al,B质量浓度大小顺序为Y场(雁群)S场(睢宁)C场(翠屏山)P场(邳州);4个垃圾填埋场共同典型重金属污染物为Mn,Fe,Zn,Ba;除上述污染物外,Y场地下水潜在典型重金属污染物为Pb和Mo;S场为Mo和As;C场为Tl和Co;P场为As。  相似文献   

3.
The purpose of this paper is to assess the groundwater quality near a landfill site using the modified water quality index. A total of 128 groundwater samples were analyzed for pH, electrical conductivity (EC), total organic carbon (TOC), polycyclic aromatic hydrocarbon (PAH), Cd, Pb, Zn, Cu, Cr, and Hg. The analytical results have showed a decreasing trend in concentration for TOC, Cd, Pb, Hg, and Cu and an increasing one for pH, EC, and PAH. The modified water quality index, which was called landfill water pollution index (LWPI), was calculated to quantify the overall water quality near the landfill site. The analysis reveals that groundwater in piezometers close to the landfill is under a strong landfill impact. The LWPI in piezometers ranged from 0.52 to 98.25 with a mean value of 7.99. The LWPI in groundwater from the nearest house wells varied from 0.59 to 0.92. A LWPI value below 1 proves that analyzed water is not affected by the landfill. Results have shown that LWPI is an efficient method for assessing and communicating the information on the groundwater quality near the landfill.  相似文献   

4.
Groundwater monitoring networks were derived for 15 alternative compliance boundaries, located from 10 to 150 meters downgradient of a landfill. For each compliance boundary, a mass transport model was used to define the linear monitoring transect, perpendicular to groundwater flow, requiring the fewest detection wells. The distance (dt) to the optimal monitoring transect was consistently 0.40 to 0.75 times the distance to the compliance boundary (dc). Compliance boundaries located near a landfill provide capability for early detection, but also require a substantial number of closely spaced wells. As dc increases, the minimum number of wells (No) required along the optimal transect decreases. However, the rate of decrease (No/dc) is progressively smaller in the downgradient direction. And there is a value for dc, in this example 70 meters, beyond which the decrease in No is negligible.  相似文献   

5.
Effects of distance lags between landfills and monitoring wells on contaminant detection capability were quantified in several groundwater velocity settings. Detection efficiency calculations were made with and without imposing a time limit on contaminant travel. In general, longer distance lags yieldedhigher detection efficiencies. However, detection efficienciesdecreased as monitoring wells approached a buffer zone boundaryimposing a maximum permissible contaminant transport distance.Imposing a time limit on contaminant travel substantially reduced detection efficiency in low velocity settings, especiallyat longer distance lags. Time limits were less significant in high velocity settings where contaminants more quickly reachedmonitoring wells. Detection efficiencies also decreased as velocity increased, but decreases were minor once the velocityreached a threshold value.  相似文献   

6.
A statistical quality control approachto detect changes in groundwater quality from aregulated waste unit is described. The approachapplies the combined Shewhart-CUSUM control chartmethodology for intrawell comparison of analyteconcentrations over time and does not require anupgradient well. A case study from the U.S.Department of Energy's Hanford Site is used forillustration purposes. This method is broadlyapplicable in groundwater monitoring programs wherethere is no clearly defined upgradient location, thegroundwater flow rate is exceptionally slow, or wherea high degree of spatial variability exists inparameter concentrations. This study also indicatesthat the use of the Data Quality Objectives (DQO)process can assist in designing an efficient andcost-effective groundwater monitoring plan to achievethe optimum goal of both low false positive and lowfalse negative rates (high power).  相似文献   

7.
An evaluation of the source of volatile organic compounds in groundwater samples was performed at a landfill in southern California. The 3H (tritium) content of the water in leachate and water from the gas-collection system (condensed water and entrained water droplets) and the delta 13C and 14C content of the inorganic carbon in landfill gas CO2, leachate, and gas-collection system water were used to characterize the dissolved inorganic carbon (DIC) inside the landfill, while the same parameters were monitored in groundwater samples from affected monitoring wells and an unaffected well. Tritium levels from leachate and gas-collection system condensate ranged from approximately 2000 TU to over 4000 TU, orders of magnitude higher than unaffected groundwater. The average 14C content of DIC in the landfill pore-water samples was 121 pMC and the 14C content of unaffected groundwater DIC was 93 pMC, while the 14C content of the dissolved inorganic carbon in groundwater with VOC detections ranged from 105 to 119 pMC. The delta 13C of DIC in pore water was consistently above 0 per thousand and the delta 13C of unaffected groundwater DIC was -20.3 per thousand, while the delta 13C of DIC in affected groundwater samples was increased from -17.3 to -13.2 per thousand. The increases in both delta 13C and 14C in landfill gas-impacted groundwater DIC generally correlated with the number of volatile organic compounds detected and their concentrations. Based on the tritium and DIC 14C levels in leachate and water from the gas-collection system compared to those of unaffected water, significant increases in the tritium content of the water would be expected to accompany VOC detections and increases in delta 13C and 14C caused by landfill water. The results rule out landfill water as the VOC source, leaving landfill gas as the source. The identities and concentrations of the specific VOCs in affected groundwater samples varied among wells as well as between two leachate samples, ruling out the use of a VOC "fingerprint" for leachate or landfill gas to be compared to groundwater VOC concentrations.  相似文献   

8.
This study deals with the implications of depletion of groundwater levels in three layered aquifers and its management to optimize the supply demand in the urban settlement near Kahota Industrial Triangle area, located adjacent to the Soan River, Islamabad Pakistan. Initially, a groundwater 3-D steady-state flow model has been developed, calibrated to the known observed heads of 24 water wells, verified, and confirmed that convergence has actually arrived and hydraulic heads are no more changing. Later, the transient simulation was carried out with the constant discharge rates of groundwater by means of pumping wells, storage factor, porosity, and observed drawdown matched with the simulated drawdown that appears to fall in close agreement with a difference of 0.25 m. As such, the developed groundwater model has facilitated to understand, evaluate, and to predict regional trends of groundwater flow regimes and their ultimate utilization at a maximum rate of 4.5 million gallons/day for the growing urban settlement. The calibrated and verified model was then used to simulate the depletion of groundwater level, annual water balance, discharge versus time drawdown, and a temporal behavior of the system over an extended period of pumping. The modeling results indicate that, due to the pumping, the direction of flow has changed: first from groundwater regimes to the Soan River and then it is entirely reversed from the Soan River to the groundwater regimes as the drawdown started to deepen.  相似文献   

9.
This paper was conducted in order to determine the groundwater and soil pollution within and around the landfill of Eskisehir, Turkey. In this paper, mud, leachate and groundwater samples were collected seasonally a year from near Eskisehir landfill-site to investigate the possible impact of leachate which affects soil and groundwater quality. Concentrations of various heavy metals (Fe, Cu, Zn, Mn, Co, Pb, Cr, Ni and Mo) were determined in mud, leachate and groundwater samples. In addition, the heavy metal transportation infiltrated from landfill through a porous medium into the groundwater was modelled in order to determine the potential groundwater pollution caused by the leachate of the landfill. The modelling of the contaminant transportation was carried out by using a multiflow computer programme which simulates the distribution of heavy metal concentrations. As a result of this study, the distribution of the contaminant concentration was modelled and determined with respect to time and distance. Hence, the contaminant concentrations were determined at any time interval according to distance. The heavy metal contamination in groundwater does not affect the wells found at far points from the source in a short time, e.g. 10, 20 and 30 days according to the obtained experimental results. When the time intervals extended more than 1 year, heavy metal concentrations decrease with distance but the concentration of the contamination increases when it gets closer to the pollution source. In this study, the potential contamination of groundwater was effectively estimated.  相似文献   

10.
针对某基岩区简易封场后的固体废物填埋场,采用多层次、递进式调查策略,配合使用地球物理探测、直压式土壤快速取样、现场快速检测等技术,分3个阶段开展填埋场及其周边环境调查。第1阶段,调查地质环境特征,开展地球物理探测;第2阶段,调查填埋物、渗滤液主要组分及对周边积水、农田土壤、民用井水的污染情况;第3阶段,划定重点污染区域,开展土壤和地下水污染调查。调查结果显示,填埋区已发生明显渗漏,对邻近区域土壤、地下水及地表积水造成了一定污染,但未对周边农用地土壤、民用井水质等产生不利影响,总体处于可控范围。提出,通过削减污染源,切断污染物迁移、暴露途径,消除已有污染影响,长期跟踪监测等多项管控治理措施进行综合整治。  相似文献   

11.
Mercury (Hg) distribution and migration in different landfill stabilization processes were evaluated in this study. Wide ranges of Hg concentrations were observed because of the heterogeneity and variability of landfill refuse. In addition, temporally variable conditions, including pH, organic matter, and vegetation cover, which influence Hg migration in landfills, may also affect the temporal distribution of Hg in landfill refuse. The main fraction of Hg, elemental Hg, decreased with time, while the stable fractions of Hg increased. The fulvic acid (FA) extracted from the landfill leachate had much lower overall Hg-complexation stability constants, which suggests that organic S groups might have been rapidly saturated by small amounts of Hg while leaving oxygen functional groups, such as carboxylic functional or phenolic groups, acting as the primary binding sites for Hg.  相似文献   

12.
Groundwater pollution in the vicinity of a landfill site in Nagpur, India is assessed with the help of resistivity imaging and GPR tools. The resistivity imaging survey indicates high conductive anomalies in the topsoil as well as the underlying fractured rocks. Significant reflections from the GPR records known as radargrams are extracted with the help of maximum peak module and Hilbert transform module in RADAN 6. These reflections can be attributed to presence of fractures, which are potential pathways for migration of the fluid. The geophysical findings are strengthened by the results of groundwater analysis from wells located close to the profile where resistivity and GPR survey have been carried out. The study has indicated the vulnerability of the unconfined aquifer underlying the predominantly clay layer.  相似文献   

13.
Abandoned landfills and dumps, where untreated waste materials were deposited in the past, are a main anthropogenic source of relevant gaseous emissions. The determination of stability is a crucial target in the context of landfill risk assessment. FTIR spectroscopy and simultaneous thermal analysis in association with multivariate statistical methods were applied to landfill materials in order to get information on the kind of waste and its reactivity. The spectral and thermal patterns are fingerprints of the material. Industrial waste and the material from a 5-year-old reactor landfill were distinguished from the defined classes of mechanically-biologically treated ("MBT") waste and 30 to 40-year-old stable landfills containing municipal solid waste and construction waste ("LF") by a classification model based on soft independent modeling of class analogy (SIMCA). Degradation experiments were carried out with the fresh material originating from one MBT plant that was subjected to aerobic and anaerobic conditions in lab-scale reactors. These samples were compared to samples of one reactor landfill and to the landfill fraction from the MBT plant to demonstrate the efficiency of the biological pretreatment before final disposal. Prediction models that are based on spectral or thermal characteristics and the corresponding reference analyses were calculated by means of a partial least squares regression (PLS-R). The developed models of the biological oxygen demand (BOD) and the dissolved organic carbon (DOC) were based on spectral data, the models of the total organic carbon (TOC) and total nitrogen (TN) were based on thermal data (heat flow profiles and mass spectra of combustion gases). Preliminary results are discussed. The enthalpy of the materials decreases with progressing mineralization, whereas the enthalpy of the remaining organic matter increases. The ratio of the enthalpies was used as an indicator of stability. Selected samples comprising old landfills, a recent reactor landfill, MBT landfills and MBT materials were classified according to the calculated ratios.  相似文献   

14.
Leachate, the hazardous liquid that percolated through the refuse layers of a sanitary landfill, if it leaks through the landfill lining system, can become a serious source of groundwater pollution. In the past, leaks have been detected in many landfills lined with flexible membrane liners (FML) whose failure may be attributed to flaws such as imperfect seaming, rips, and tears of the membrane, or from chemical attack that dissolves the membrane. Recent studies have shown that composite lining systems which include either a clayey subbase or a layer of geotextile in addition to the FML, can substantially reduce the leakage of leachate. Therefore in this study, four different lining systems are proposed and evaluated to determine their effectiveness in controlling leachate flow under various degree of flaws (referred to as leakage fraction LF) in the FML. The Hydrologic Evaluation of Landfill Performance (HELP) computer model of the Environmental Protection Agency of USA, currently the most widely accepted model for predicting the performance of leachate collection systems in that country, is used to evaluate the following lining systems: (1) a single FML or liner, (2) a single FML with a clayey composite, (3) a single FML with a geotextile called Claymax, and (4) a double FML. Based on the climatic conditions and the present lining construction cost of Alaska, the study shows that a single FML or liner is the most economical but it is also the least effective in controlling leachate flow. Design (3), a single FML with a geotextile, costs about 50 percent more but it reduces the leakage of leachate by several orders. Design (2) is also effective but the cost incurred in constructing a 3 feet thick clayey subbase is prohibitive and thus to effectively and economically minimize the hazards of potential groundwater contamination by leachate, Design (3) is recommended as the composite lining system for future landfill sites.  相似文献   

15.
In present study focus has been given on estimating quality and toxicity of waste with respect to heavy metals and its impact on groundwater quality, using statistical and empirical relationships between different hydrochemical data, so that easy monitoring may be possible which in turn help the sustainable management of landfill site and municipal solid waste. Samples of solid waste, leachate and groundwater were analyzed to evaluate the impact of leachates on groundwater through the comparison of their hydrochemical nature. Results suggest the existence of an empirical relationship between some specific indicator parameters like heavy metals of all three above mentioned sample type. Further, K/Mg ratio also indicates three groundwater samples heavily impacted from leachate contamination. A good number of samples are also showing higher values for and Pb than that of World Health Organization (WHO) drinking water regulation. Predominance of Fe and Zn in both groundwater and solid waste samples may be due to metal plating industries in the area. Factor analysis is used as a tool to explain observed relation between numerous variables in term of simpler relation, which may help to deduce the strength of relation. Positive loading of most of the factors for heavy metal clearly shows landfill impact on ground water quality especially along the hydraulic gradient. Cluster analysis, further substantiates the impact of landfill. Two major groups of samples obtained from cluster analysis suggest that one group comprises samples that are severely under the influence of landfill and contaminated leachates along the groundwater flow direction while other assorted with samples without having such influence.  相似文献   

16.
Geochemical study of groundwater from a structurally deformed granitic terrain near Hyderabad (India) was carried out to understand and evaluate the hydrogeochemical processes and quality of groundwater. Several trace elements (Fe, Mn, Be, Al, V, Cr, Co, Ni, Cu, Zn, As, Sr, Mo, Cd, Sb, Ba, Pb, U) along with major ions and minor elements were precisely estimated in shallow and drilled wells to know the suitability of water for drinking and irrigation purposes. Analytical data shows that pH and major ion chemistry in dug wells and bore wells do not vary significantly, while some trace elements (Fe, Mn, Al, Be, Co, Pb, U and Zn) vary in dug wells and bore wells, which can be attributed to differential mineral weathering and dissolution/precipitation reactions along fractures/joints. Although the water is not potable, it was found to be suitable for irrigation with little danger in the development of harmful level of exchangeable sodium. It is inferred that the chemical composition of the groundwater in this region is likely to have its origin from silicate weathering reactions and dissolution/precipitation processes supported by rainfall and groundwater flow.  相似文献   

17.
A comprehensive subsurface monitoring program should include contaminant detectors in both the vadose and saturated zones. Vadose zone detectors can provide an early warning of an impending groundwater contamination problem, and also yield information relevant to placing groundwater monitoring wells. Moisture probes, gas monitoring wells, and pore-liquid samplers deployed in the vadose zone complement groundwater detection wells. The objective(s) of a monitoring program, spatial-scales, and hydrogeology are important considerations for designing subsurface monitoring networks. Often, these networks are used to detect potential releases or characterize existing contamination beneath land-based waste storage facilities. A case study in Santa Barbara, California, U.S.A., illustrates the utility of vadose zone monitoring in characterizing a gasoline contamination problem and guiding the placement of groundwater monitoring wells.  相似文献   

18.
Contaminant plumes were derived for constant and variable loading functions at locations within a landfill. Annually, the alternative loading functions injected the same volume of contaminated water. Mass transport modeling was used to evaluate the detection efficiencies of 25 monitoring transects, spaced evenly between the landfill and a downgradient compliance boundary. Respectively, the most efficient transects (requiring the fewest monitoring wells) for constant and variable loading were located at 60–64 and 40 percent of the distance to the compliance boundary. The mean detection efficiency was 29 percent higher for variable loading, but the variation in detection efficiency was similar for constant and variable loading. At the most efficient transects, the minimum number of detection wells was 20 percent lower for variable loading. Given the influence of source loading on monitoring efficiency, alternative loading functions should be considered when designing detection monitoring networks in aquifers.  相似文献   

19.
A survey conducted in water wells located in the rhyolithic volcanic area of Mandamados, Lesvos Island, Greece, indicated that significant seasonal variation of arsenic concentration in groundwater exists mainly in wells near the coastal zone. However, there were differences among those coastal wells with regard to the processes and factors responsible for the observed seasonal variability of the element, although they are all located in a small homogeneous area. These processes and factors include (a) a higher rate of silicate weathering and ion exchange during the dry period followed by the dilution by the recharge water during the wet period, (b) enhanced desorption promoted by higher pH in summer and subsequent dilution of As by rainwater infiltration during the wet period, and (c) reductive dissolution of Mn during the wet period and by desorption under high pH values during the dry period. On the other hand, in wells located in higher-relief regions, the concentration of As in groundwater followed a fairly constant pattern throughout the year, which is probably related to the faster flow of groundwater in this part of the area due to a higher hydraulic gradient. In general, seasonal variation of As in groundwater in the study area was found to be related to geology, recharge rate, topography—distance from coast, and well depth.  相似文献   

20.
石油石化企业的含油物质泄漏进入地下水,会对生态环境造成负面影响。通过构建地下水井模型,比选不同原理的挥发性有机物(VOCs)检测传感器,建立了基于VOCs浓度反演的地下水中含油物质泄漏原位实时在线监测方法。研究发现,常规水质六参数传感器对含油物质泄漏的响应会产生滞后现象,在实时预警监测地下水井中含油物质时可不安装常规水质六参数传感器,节约企业污染防控监测成本。将该方法应用于企业现场进行原位实时监测,当实时监测值超过数据监控平台预警阈值时,系统会发出警报,实现了地下水井中含油物质泄漏实时预警监测。该监测方法具有响应速度快、准确性高、成本低、监测过程简单等优势,将帮助企业实时掌握地下水污染状况,提高地下水污染防控预警效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号