首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A soypolyol based on epoxidized soybean oil (ESO) was prepared in the presence of HBF4 and diethanolamine (DEA) was used as ring opener. A series of polyurethane rigid foam were prepared by mixing polyol with TDI using an isocyanate index of 1.1. The polyol used in this paper were a mixture of soypolyol and a commercial PL-5601 polyester polyol and the mass fraction of PL-5601 was in the range of 0–60%. The thermal properties of the resins were characterized by DSC and TG. The results showed that these rigid foams possess high thermal stability. There were two glass transition temperature of each foam and Tg1 was increasing with the increasing of OH value. The compression strength of the foam was also recorded, and the effect of mass ratio of soypolyol and PL-5601 polyester polyol on the compression strength was discussed.  相似文献   

2.
Polyurethane (PUR) plastic sheets were prepared by reacting hydroxylated polymeric soybean oil (PSbOH) synthesized from autoxidized soybean oil with polyethylene glycol (PEG) in the presence of isophorone diisocyanate (IPDI). FTIR technique was used to identify of chemical reactions. These polyurethanes have different valuable properties, determined by their chemical composition. The effect of stoichiometric balance (i.e., PSbOH/PEG-2000/IPDI weight ratio) on the final properties was evaluated. The polyurethane plastic sheets with the PSbOH/PEG-2000/IPDI weight ratio 1.0/1.0/0.67 and 1.0/0.3/0.3 had excellent mechanical properties indicating elongation at break more than 200%. Increase in IPDI and decrease in PEG weight ratio cause the higher stress–strain value. The properties of the materials were measured by differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA), stress–strain measurements and FTIR technique.  相似文献   

3.
Octenyl succinic starch (OSA starch) was synthesized from an aqueous medium and pyridine medium using previously established literature methods. Such a substitution would conceivably impart some hydrophobicity to the already hydrophilic starch chain. Thus, an amphiphilic character could be introduced wherein while the water solubility of the final product would be retained or enhanced, interactions with hydrophobic phases could be enhanced. These products find a variety of applications. The emulsifying activity of OSA starch was tested against different oil phases. It was found that the activity was dependent on the oil phase chosen. The activity was largely independent of the concentration of the substrates when the modification was conducted in an aqueous medium. Products from an organic medium did show an increase in activity with concentration. This difference in activity was attributed to the molecular weight of the final product, which seemed to be lower for the products from an organic medium as suggested by viscometry. The granular state of starch could also have a great effect on the properties of modified starch.  相似文献   

4.
This research work aims to investigate the synergistic effect of pozzolanic materials such as oil palm ash (OPA) and oil palm empty fruit bunch (OPEFB) on the developed hybrid polymer composites. The OPEFB and OPA fillers of different particle sizes (250, 150, and 75 µm) were mixed at OPEFB:OPA ratios of (0:100; 20:80; 40:60; 60:40; 80:20 and 100:0) and incorporated into an unsaturated polyester resin. Furthermore, both mechanical and morphological properties of the composites were analyzed and it was found that tensile, flexural, and impact properties were significantly improved at OPEFB:OPA of 75 µm particle size hybridization of the polymer. The increase of OPEFB to OPA filler ratio up to 80:20 significantly improved the tensile properties of the composites while 40:60 ratio of 75 µm gave the optimum filler ratio to obtain the highest flexural and impact properties of the composites among all studied samples. Scanning electron micrograph images showed strong particle dispersion of the embedded fillers with resin which explained the excellent mechanical strength enhancement of the composite.  相似文献   

5.
Starches modified by Ophiostoma spp. have been investigated to develop bio-materials with enhanced mechanical and physical properties for thermoplastic applications. In this study, glass transition temperature (Tg) of modified starches was investigated in both dynamic mechanical analyzer (DMA) and differential scanning calorimeter (DSC) to detect molecular changes in the starch’s structure. Overall, two thermal transitions were observed in modified starches, as opposed to one in their native counterparts. Scanning electron microscopy of granular modified starch indicated visible damages and internal structural perturbations in addition to occlusion of granular pores by extraneous materials owing to possible enzymatic degradation and production of secondary metabolites. Modified starches registered two-fold improvement in storage modulus as compared to that of native starches. From the study of second derivative of the mass loss against temperature, two thermal transitions were also identified in modified starches. X-ray diffraction analyses showed that crystalline regions of the starch granules remained intact after the modification. It is proposed that the second phase transition potentially corresponds to modified amylose fractions and/or exopolysaccharides produced by the fungi.  相似文献   

6.
In the present work, polylactic acid, PLA, samples were degraded by hydrothermal treatment, and then their molecular weights, crystallinity, surface charges and compositions, were determined, respectively, by using viscometry, 1H NMR, Differential Scanning Calorimetry (DSC), microelectrophoresis and Infra Red spectroscopy methods. The viscometry and 1H NMR data indicate that the molecular weight, of the polymer, decreases after the hydrothermal treatment. However, the crystalline fractions of the PLA samples, as obtained from the DSC and X-ray data, were not altered after the hydrothermal treatment. Furthermore, the zeta potential data, as determined by microelectrophoresis, show for both non-degraded and degraded PLA, an increase of the polymer surface charge density with the pH of the aqueous phase. However, at acidic pH values, the surface charge density for the degraded PLA was higher as compared to the non degraded one. These differences in surface charge densities of the PLA samples were confirmed by Infrared study, according to which the spectra of degraded polymer show the appearance of carboxyl groups occurring at 1,600 cm−1 at the polymer surface.  相似文献   

7.
The aim of this paper was to investigate the effect of recycled polypropylene (PP) on the rheological, mechanical and thermal properties of wood flour polypropylene composites. Beforehand, the influence of wood flour treated with a coupling agent on the rheological behaviour had been looked at. By analysing moduli and viscosity curves and studying the thermal and mechanical properties of samples with 10% filler it was possible to see that the recycled PP that was added change in either its physical properties or its rheology. In the other wood plastic composites (WPC) studied, slight changes in the rheology behaviour were observed. However, the same processing parameters may be used with and without recycled PP. Recycled PP is appropriate for these kinds of composites to maintain the optimal rheological properties that make it easier to process the material by extrusion. Furthermore, it is also possible to maintain the thermal and mechanical properties in comparison with the behaviour of virgin PP/wood flour composites.  相似文献   

8.
White-rot fungi applied for soil bioremediation have to compete with indigenous soil microorganisms. The effect of competition on both indigenous soil microflora and white-rot fungi was evaluated with regard to degradation of polycyclic aromatic hydrocarbons (PAH) with different persistence in soil. Sterile and non-sterile soil was artificially contaminated with 14C-labeled PAH consisting of three (anthracene), four (pyrene, benz[a]anthracene) and five fused aromatic rings (benzo[a]pyrene, dibenz[a,h]anthracene). The two fungi tested,Dichomitus squalens and Pleurotus ostreatus, produced similar amounts of ligninolytic enzymes in soil, but PAH mineralization by P. ostreatus was significantly higher. Compared to the indigenous soil microflora, P.ostreatus mineralized 5-ring PAH to a larger extent, while the indigenous microflora was superior in mineralizing 3-ring and 4-ring PAH. In coculture the special capabilities of both soil microflora and P. ostreatus were partly restricted due to antagonistic interactions, but essentially preserved. Thus, soil inoculation with P. ostreatus significantly increased the mineralization of high-molecular-weight PAH, and at the same time reduced the mineralization of anthracene and pyrene. Regarding the mineralization of low-molecular-weight PAH, the stimulation of indigenous soil microorganisms by straw amendment was more efficient than application of white-rot fungi.  相似文献   

9.
Journal of Polymers and the Environment - Polyurethane nanofibers recognized to perform as a sub-layer were employed herein as a medial-layer of high porosity in the fabrication of a novel class of...  相似文献   

10.
Interpenetrating polymer networks from agricultural products such as glycerol modified castor oil polyurethanes and cardanol based dyes have not been extensively studied so far. Such polymers were synthesized using benzoyl peroxide as initiator and ethylene glycol dimethacrylate as cross-linker. Characterizations of these polymers were performed by Fourier Transform infra red spectra and thermal analysis techniques such as thermogravimetric analysis, derivative thermogravimetry and differential thermal analysis. The kinetic parameters such as activation energies and orders of reaction were estimated by using Freeman?CAnderson??s method. The effects of changes in polyurethane to dye monomer weight ratio and NCO/OH molar ratio of polyurethanes on the properties of such polymers were studied.  相似文献   

11.

Membrane separation has been widely used for various applications including microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF) processes in the fields of biomedicine, food, and water purification. In this work, a facile synthesis of new polyamide thin-film composite nanofiltration membranes (NF-TFC) for water purification was described. The polyamide thin film was deposed over a synthetic cellulose acetate (CA) support by interfacial polymerization method. 1,3 cyclohexane bis (methylamine) (CHMA) and trimesoyl chloride (TMC) were used as monomers. The membranes were characterized using Scanning Electron Microscopy (SEM), Fourier Transform Infrared spectroscopy (FT-IR), water uptake, porosity, contact angle, water permeability and rejection towards specific salt and dye molecules. The effect of the variation of the CHMA concentration (0.2–2 wt.%) on the morphology, porosity, water permeation and rejection properties of the prepared membranes was studied. SEM results displayed the growth of the membrane thickness when the CHMA concentration increased from 0.2 to 2 wt.%. The strong adhesion between the cellulose acetate substrate and the polyamide layer explained by the formation of the polyamide film in the substrate surface and inside the pores. The water permeability varied from 36.02 to 17.09 L h?1 m?2 bar?1. The salt rejection of Na2SO4 and NaCl increased from 9 to 68% and from 38.41% to 89.4%, respectively, when the CHMA concentration was changed from 0.2 to 2 wt.%. The prepared membranes were further applied successfully for the removal of malachite green and congo red. The results indicated that the maximum rejection reached 89% and 85% for malachite green and congo red, respectively.

  相似文献   

12.
Poly(vinyl alcohol) (PVA) and polyethylene (PE) were blended with a soil for cultivation, and their effects were investigated on the growth behavior of red pepper and tomato by examining the stems, the leaves, and the roots. PVA retarded the growth of red pepper significantly even at a concentration as low as 0.05%. The roots were depauperated more than the stems and the leaves. Tomato was also affected by PVA but to a lesser extent than red pepper. In contrast, the presence of both round pieces (10 mm diameter) of PE film and powdery PE influenced negligibly the growth of red pepper as well as that of tomato up to 35 wt% in soil.  相似文献   

13.
Thermal decomposition kinetics of three palm oleic acid-based alkyds with different oil lengths and having different molecular weights were studied using TGA measurements under non-isothermal conditions. Activation energies were obtained from Kissinger and Ozawa, Flynn and Wall (OFW) methods and subsequently the pre-exponential factor, A, degradation rate constant, k, for all the alkyds were also determined. From kinetic analysis of the thermal decomposition using the OFW method, it was found that degradation of all the alkyds has taken place in more than two stages, corresponding to different mechanisms. As shown from Ozawa and Kissinger methods, the chemical composition of the alkyds influenced the thermal degradation; increasing the phthalic anhydride and glycerol, and decreasing the oleic acid increased the thermal stabilities of the alkyds.  相似文献   

14.
Epoxy resin prepared by the reaction of a diglycidyl ether of bisphenol A (DGEBA) and m-xylylenediamine (m-XDA) was modified with 10% wt of epoxidized palm oil (EPO). The EPO was first pre-polymerized with m-XDA at various temperatures and reaction times. The resulting product was then mixed with the epoxy resin at 40?°C and allowed to react at 120?°C for another 3?h. The fully reacted DGEBA/m-XDA/EPO blend was characterized by using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal gravimetric analysis, tensile test, hardness indentation and dynamic mechanical analysis. The SEM study shows that different types of morphology, ranging from phase separated to miscible blends were obtained. A miscible blend was obtained when the m-XDA and EPO were reacted for more than 2?h. The results from DSC analysis show that the incorporation of EPO at 10% wt in the epoxy blend reduced the glass transition temperature (T g). The lowered T g and mechanical properties of the modified epoxy resins are caused by a reduction in crosslinking density and plasticizer effect.  相似文献   

15.
Seeds of red pepper and tomato were sowed and cultivated in a soil blended with powdery poly(l-lactide) (PLLA), and poly(butylene succinate) (PBS). PBS depressed the growth of the two plants significantly even at a concentration as low as 5%, whereas PLLA up to 35% affected negligibly or even boosted the growth of the two plants. pH and number of microbial cells in the soil after 80 days of cultivation were almost the same independently whether the soil was blended with the two polymers or not. In contrast, the molecular weight of PBS decreased much faster than that of PLLA. Because succinic acid and 1,4-butane diol, from which PBS was synthesized, exhibited toxicity to both plant and animal cells to retard the germination rate of young radish seeds and to deform the morphology of HeLa cells significantly [1], the monomers and the oligomers produced from the PBS degradation should have a detrimental influence on the growth of the two plants.  相似文献   

16.
Alarming environmental pollution from petroleum based non-biodegradable disposable packaging films has generated concern for development of alternatives from natural polymers such as starch. In the present work, the biodegradability of a self-supporting film made from starch and polyvinyl alcohol (PVA) (starch:PVA?=?9:1 as the polymer) together with glutaraldehyde as crosslinker and sodium propionate (SP) as antimicrobial was investigated by soil burial method. The changes in soil composition namely pH, organic carbon, available and total nitrogen, and water holding capacity as a result of biodegradation were also estimated. The film underwent ≈?90% biodegradation within a period of 28 days, with simultaneous increase in soil nutrients. Moreover, the pH remained in the accepted limit for plant growth. Thus, antimicrobial in the film did not hamper its biodegradation, rather disposal of the film in soil might facilitate plant growth.  相似文献   

17.
Journal of Polymers and the Environment - Biodegradable materials provide a primary function in preserving and protecting food products, helping to extend shelf life. The present work aims to...  相似文献   

18.
Journal of Polymers and the Environment - The influence of alkaline treatment on the thermal and mechanical properties of polypropylene (PP) reinforced with fibers from macadamia nutshell (5 to 30...  相似文献   

19.
This article contains a concept of the mechanical properties improvement of the highly crystalline poly(lactic acid) (PLA) and filled composites. PLA as a semi-crystalline thermoplastic polymer was plasticized with poly(ethylene glycol) and filled with 30 vol% of organic and/or inorganic filler. The degree of crytallinity was intentionally increased by annealing. The filler/polymer matrix interphase was modified with the addition of 4, 4′-Methylenediphenyl diisocyanate (MDI). The effect of compatibilizing as well as plasticizing agent on the thermal and mechanical properties, the water-absorption behaviour and crystallization characteristics were studied. The results indicated that high content of filler and crystallites have a strong influence on the composite′s mechanical properties despite of the plasticizer content, showing a high Young modulus. The MDI seems to react in preference easy with plasticizing agent and then alternatively with filler due to the low functionality of commercial PLA grade.  相似文献   

20.
The aim of this work was to develop biodegradable films based on blends of gelatin and poly (vinyl alcohol) (PVA), without a plasticizer. Firstly, the effect of five types of PVA with different degree of hydrolysis (DH) on the physical properties of films elaborated with blends containing 23.1% PVA was studied. One PVA type was then chosen for the study of the effect of the PVA concentration on the mechanical properties, color, opacity, gloss, and water solubility of the films. The five types of PVA studied allowed for films with different characteristics, but with no direct relationship with the DH of the PVA. Therefore, the PVA Celvol®418 with a DH = 91.8% was chosen for the second part, because they produced films with greater tensile strength. The PVA concentration affected all studied properties of films. These results could be explained by the results of the DSC and FTIR analyses, which showed that some interactions between the gelatin and the PVA occurred depending on the PVA concentration, affecting the crystallinity of the films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号