首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
设计了隔膜体系电解槽,制作了聚四氟乙烯(PTFE)/碳黑三相气体扩散电极,系统研究了隔膜、电流密度、电极间距、初始溶液酸度、电解质、空气量和时间等因素对过氧化氢累积产生浓度和电流效率的影响。结果表明,在有隔膜体系,电流密度为70 m A/cm2,电极间距为1 cm,初始p H=0.5,电解质为0.10 mol/L Na2SO4溶液,空气量为40 m L/min的条件下,电解时间1 h时过氧化氢累积浓度最高可至20 096.05 mg/L,此时对应的电流效率为63.37%。在确定的最佳条件下,进行电解液循环实验,1 h时电流效率升高到98.4%,12 h之后,过氧化氢累积浓度为46 042.43 mg/L。实验原位产生的高浓度酸性过氧化氢溶液可以直接应用于Fenton试剂。  相似文献   

2.
为了同时去除地下水中的氟和砷,提出了Al/C/Fe复合电极电絮凝法和Al/C—Fe/C依次除氟砷法,并进行效果对比。研究了Al/C/Fe复合电极电絮凝法的影响因素,并对复合电极电絮凝产生的絮体进行了SEM-EDX分析。结果表明,Al/C/Fe复合电极电絮凝法对氟、砷的去除速率分别是Al/C-Fe/C依次除氟砷法的1.43倍和4.73倍;初始氟/砷浓度为4.0/1.0、4.0/0和0/1.0mg/L3种条件下,通过铝极板、铁极板的电流密度均为0.10mA/cm2时,达到最好的除氟除砷效果,与初始氟/砷浓度无关。  相似文献   

3.
高铁酸钠电化学合成条件的研究   总被引:6,自引:0,他引:6  
利用含铁材料为阳极,铜为阴极,NaOH溶液为电解液,于隔膜电解槽中电解制备高铁酸钠。探索了该工艺所必需的各种参数和反应条件,确定了隔膜材料,并对Na2FeO4浓度和电流效率的非一致性变化作出了解释。研究结果表明:在阳极距离为1.3cm(极距2.3cm)、阳极电解液浓度为14mol/L,阴极电解液浓度为4mol/L、温度为35℃、电压为8~9V时,电解2h后得到的Na2FeO4浓度为18.7g/L,电流效率为20%。  相似文献   

4.
以GC-MS为分析方法,采用Pd/Fe双金属对水溶液中四氯乙烯(PCE)进行了催化还原脱氯处理,考察了PCE初始浓度、钯含量、Pd/Fe用量和溶液初始pH值等各因素对脱氯效果影响及还原动力学规律。结果表明,Pd/Fe双金属对PCE有较好的还原脱氯效率,反应遵循准一级反应动力学规律,以反应物PCE浓度为参照的反应速率常数K变化范围为0.019min^-1~0.16min^-1,对应的PCE半衰期从6min到36min,揭示反应有可能是在过量的Pd/Fe双金属表面进行。当PCE溶液初始浓度为1mmol/L,投加1.2g钯含量为0.03%的Pd/Fe双金属,在25℃下反应60min,PCE的脱氯率达到95%以上。增大钯含量和Pd/Fe用量可有效提高脱氯率,在初始pH值为弱酸性条件下有利于还原脱氯反应进行。  相似文献   

5.
采用气体扩散电极为阴极,钛基氧化物(Ti/SnO2-Sb2O5-IrO2)和金属铁构成组合阳极,构建了新型电化学氧化体系用于降解有机污染物。利用该氧化体系,在不同实验条件下考察了苯胺降解的效果与降解过程的相关规律。结果表明,阴极电位、铁阳极通电时间以及苯胺初始浓度均显著影响苯胺的降解效果。当阴极电位为-0.7V,pH3.0,铁阳极通电时间20min时,电化学处理200mg/L苯胺480min,TOC的去除效率达到80.4%,矿化电流效率(MCE)为8.6%,显示了该氧化体系具有良好的有机物降解能力。此外,苯胺降解过程中氨氮和硝态氮浓度的变化表明,苯胺分子中的氮主要转化为NH4和NO3^-。  相似文献   

6.
通过对六硝基芪(HNS)生产过程中第二段工艺的产品洗涤废水进行水质分析,针对该段废水含有大量吡啶和多种溴代和硝基芳香类化合物的特点,探究了减压蒸馏耦合锌碳微电解法处理二段洗水的效果并优化工艺参数。结果显示,70℃条件下,二段洗水蒸馏至原体积的86.9%时,蒸馏剩余废水TOC去除率为44%,并且此前收集的馏分中吡啶浓度为10%~31.9%(V/V)。减压蒸馏工艺起到收集吡啶同时降低废水TOC的双重作用。减压蒸馏后,残留在废水中的有机物以溴代和硝基芳香化合物为主,采用微电解工艺,其条件优化实验的结果显示,在废水初始pH=1.0,锌投加量为25g/L,锌碳投加比为1:1,反应60min后,废水TOC去除率为33%,采用多级微电解工艺可提高去除效果。  相似文献   

7.
以铁板为阴极,石墨为阳极,吸附饱和的活性炭粒子为填充材料,研究了复极性三维电极法处理硝基苯废水时各因素对处理效率的影响。通过单因素实验确定了复极性三维电极法处理硝基苯废水的最佳操作条件为:电解电压20V,反应时间60min,活性炭填充量25g/L,电极板间距4cm,废水初始pH值6~7,电解质的投加量0.8g/L。此条件下废水的硝基苯去除率达到80%以上,COD去除率达到50%以上,显示出良好的处理效果。  相似文献   

8.
以活性炭纤维为阳极,不锈钢电极为阴极,研究了活性炭纤维电极电催化氧化去除水中三烯丙基异氰脲酸酯(TAIC)的方法.采用单因素实验法研究pH,电流密度,电解质种类和浓度对电催化氧化性能的影响,并找到最佳反应条件.实验结果表明,在TAIC模拟废水中,TAIC初始浓度为150 mg/L,pH为7,电流密度为50 mA/cm2,以0.06 mol/LNa2SO4为电解质溶液时反应效果最佳,60 min时TAIC的去除率为90.7%.  相似文献   

9.
以250W照明金属卤化物灯为光源,研究了水中雌酮(E1)在UV-Vis/Fe(Ⅲ)/H2O2体系中的光降解;考查了初始pH、Fe(Ⅲ)、H2O2、E1初始浓度对E1光降解的影响。结果表明,UV-Vis/Fe(Ⅲ)/H2O2体系能有效地光降解E1,在[Fe(Ⅲ)30-20.8μmol/L、[H2O2]0=1664μmol/L、pH=3.0时,光照160min,18.5btmol/L E1的光降解率可达98.4%;在pH3.0~8.0范围内,pH初始值越小,E1降解率越大,反应初始速率越大;实验条件下,Fe(Ⅲ)、H2O2初始浓度越大,E1降解率越大,反应初始速率越大;E1初始浓度越低,E1降解率越大,反应初始速率越小。pH=3.0,实验浓度范围内的表观动力学方程为:dCE1/dt=0.00093[H2O2]^0.47[Fe(Ⅲ)]^0.62[E1]0.24;Fe(Ⅲ)是影响反应速率的主要浓度因素。  相似文献   

10.
钯修饰碳纳米管电极电催化氧化三氯生   总被引:1,自引:0,他引:1  
郑红涛  胡翔  吴欣 《环境工程学报》2012,6(6):1790-1794
采用钯修饰多壁碳纳米管(MWCNTs)电极电催化氧化降解三氯生,考察了极板间距、电流密度、离子强度、pH、初始浓度和电解时间对三氯生去除效率的影响,并探讨了其反应动力学。结果表明:钯修饰多壁碳纳米管(MWCNTs)电极电催化氧化降解三氯生的最佳条件为:三氯生初始浓度为50 mg/L,电流密度约为10 mA/cm2,极板间距为1 cm,pH为11,电解质Na2SO4浓度为1 000 mg/L。此条件下,反应时间为3 h时三氯生的去除率可达到99%以上,三氯生的降解为零级反应。  相似文献   

11.
电化学氧化法去除超高盐榨菜废水中的氨氮   总被引:1,自引:0,他引:1  
采用电化学氧化法去除超高盐榨菜废水中的氨氮,阳极为Ti/RuO2-TiO2-IrO2-SnO2网状电极,阴极为网状钛电极,考察了电流密度、电解时间、极板间距、初始pH以及极水比对氨氮去除率的影响,并分析了电流密度对氨氮能耗和阳极效率的影响。结果表明,在初始氨氮浓度为472.73 mg/L,电流密度为156 mA/cm2,极板间距为1.5 cm,极水比为0.8dm2/L,原水pH为4.3~5.0时,电解30 min和60 min时氨氮的去除率分别为89.75%和99.94%,电解30 min时,氨氮能耗最低为96 kWh/kg,阳极效率最高为8.47 g/(h.m2.A)。  相似文献   

12.
实验研究了活性炭纤维电极对敌草隆的去除作用。考察了电流强度以及敌草隆浓度对敌草隆去除的影响,对活性炭纤维用于吸附和用作电极去除敌草隆的效应进行了比较分析。结果表明,在0.01~0.05 A内,敌草隆的去除随着电流强度的增加而增加,其去除率为58%~91%。敌草隆浓度在5~40 mg/L时,其去除率随着浓度的增加而减小,但至1.5 h 时,去除率均可达95%以上。对于20 mg/L的敌草隆,活性炭纤维对其吸附去除率为90%左右,重复使用导致去除效率下降;活性炭纤维电极电化学氧化对其去除率达95%,并且重复使用其效果未见下降。活性炭纤维电极电化学氧化导致敌草隆分子结构破坏、苯环开环发生分解而最终得以去除。活性炭纤维电极可用于水中敌草隆的去除。  相似文献   

13.
为有效处理含异噁草酮除草剂废水,以Sb掺杂Ti/SnO2电极为阳极,不锈钢板为阴极,采用电催化氧化技术对异噁草酮废水进行降解,研究了不同影响因素对异噁草酮去除率的影响,并分析了异噁草酮的降解效果。结果表明,当异噁草酮初始浓度为100mg/L、电流密度为20mA/cm2、电解质投加量为0.10mol/L,反应120min后,异噁草酮去除率达到94%,此时TOC去除率为57.9%,能耗为25kWh/m2,且废水的可生化性能显著提高。  相似文献   

14.
三维电极/电-Fenton法降解苯酚   总被引:1,自引:0,他引:1  
采用电-Fenton耦合三维电极法处理苯酚模拟废水,研究了活性炭作为第三电极的三维电极体系中苯酚的去除效果,重点考察了常温下初始pH值、电流强度、Fe2+浓度等因素对苯酚降解的影响。结果表明:在常温下,曝气速率20 L/min,初始pH=3,电流强度为0.3 A/m2,Fe2+浓度为0.1 mmol/L,反应时间60 min时,废水的苯酚的氧化降解率为91%,COD去除率为64%。在此条件下,三维电极/电-Fenton表现出较强的氧化能力,具有较好的去除效果,可应用于含苯酚废水的处理。  相似文献   

15.
为有效处理含异草酮除草剂废水,以Sb掺杂Ti/SnO2电极为阳极,不锈钢板为阴极,采用电催化氧化技术对异草酮废水进行降解,研究了不同影响因素对异草酮去除率的影响,并分析了异草酮的降解效果。结果表明,当异草酮初始浓度为100 mg/L、电流密度为20 mA/cm2、电解质投加量为0.10 mol/L,反应120 min后,异草酮去除率达到94%,此时TOC去除率为57.9%,能耗为25 kWh/m3,且废水的可生化性能显著提高。  相似文献   

16.
利用自制的滴液电极,运用循环伏安和方波伏安法,对Pb~(2+)在水/甲基异丁基酮(MIBK)界面上通过双硫腙(HDz)促迁移的反应机制进行了研究.结果表明,该迁移过程为不可逆过程,Pb~(2+)的迁移峰电位为0.122 V,且当Pb~(2+)摩尔浓度为5.0×10~(-7)~4.0×10~(-5)mol/L时,峰电流和Pb~(2+)浓度呈线性相关关系;水相中常见的Na~+等金属离子浓度比Pb~(2+)浓度大百倍时,或水相中常见的Mg~(2+)、Ni~(2+)浓度与Pb~(2+)浓度相同时,对峰电流测定结果产生的干扰都较小(相对误差小于10.0%),但当水相中有Zn~(2+)、Cu~(2+)、Fe~(3+)存在时,即使其浓度都与Pb~(2+)浓度相同,也会对峰电流测定结果产生明显干扰(相对误差分别为-12.2%、-28.7%、-60.3%);以方波伏安法取代循环伏安法进行峰电流测定,以新型绿色溶剂室温离子液体(RTILs)取代四苯硼四丁基铵作为有机相电解质,能极大提高Pb~(2+)浓度测定的灵敏度.  相似文献   

17.
电化学脱硝过程参数的响应曲面优化研究   总被引:1,自引:0,他引:1  
以Ti/IrO2-TiO2-RuO2为阳极,Cu/Zn合金电极为阴极,在无隔膜电解池中对这一新构造电极对的脱硝氮性能进行了研究。为了有效结合阴极硝氮还原能力和阳极氧化能力,采用响应曲面法中的Box-Behnken设计优化了对电化学脱硝过程有显著影响的4个重要因素:氯化钠含量、电流密度、pH和初始硝氮浓度。优化结果表明,相对于pH和初始硝氮浓度,氯化钠含量和电流密度对脱硝性能影响更大,而阴极硝氮还原性能主要受初始硝氮浓度、pH的影响。以6 h内电极对脱氮百分率为响应量,优化得最佳电化学脱硝过程参数为:氯化钠含量,1 g/L;电流密度,24.99 mA/cm2;pH,1.81;初始硝氮浓度100 mg/L。在此实验条件下,6 h内电极对脱氮百分率预测值为99.84%。通过3次重复验证实验,确认实际6 h内电极对脱氮百分率为91.34%。预测值与实测值两者相差不大,由此可知,Box-Behnken设计是一种优化电化学脱氮实验参数的有效方法,经过优化后的电极对具有较佳的脱氮效率。  相似文献   

18.
光电催化氧化法降解藻毒素MCLR   总被引:1,自引:1,他引:0  
使用DSA阳极,对光电催化氧化降解藻毒素MCLR的效能及其影响因素进行了研究。结果表明,电极表面的TiO2在光催化氧化降解MCLR的过程中发挥了明显的光催化作用。在光降解、电催化氧化、光催化氧化和光电催化氧化4个过程中,光电催化氧化对MCLR和TOC的去除率最高,分别可达100%和13%,并且光电催化氧化的去除率大于光催化氧化和电催化氧化之和,表明后两者的耦合过程产生了一定的协同作用。辐照光源和电流密度存在最佳匹配条件,分别为UVC辐照、电流密度10 mA/cm2和UVA辐照、电流密度1.0 mA/cm2,此条件下光电协同作用最显著。在光电催化氧化过程中,随极板间距增大而出现的去除率下降取决于电催化过程,而不是光催化过程;光电催化氧化MCLR的去除率随其初始浓度增加而减小。  相似文献   

19.
采用电沉积法制备铈修饰的PbO2/C电极,通过SEM、XRD、XPS及循环伏安对PbO2/C、Ce-PbO2/C电极进行表征,结果表明,Ce-PbO2/C电极比PbO2/C颗粒细小,表面均匀致密,电化学氧化能力较强,修饰电极中Ce以CeO2的形态存在。以Ce-PbO2/C为工作电极,电解浓度为1 000 mg/L的高盐酸性红B模拟活性染料废水,考察了电压、pH、电解质浓度、极间距对脱色率、氨氮去除率及COD去除率的影响。确定适宜工艺条件为:初始酸性红B溶液浓度为1 000 mg/L,pH值为6,电压10 V,电解时间1 h,电极间距1.5 cm,该条件下脱色率、氨氮去除率和COD去除率分别为99.98%、97.23%和90.17%。通过UV-Vis及GC-MS初步分析了降解过程可能存在的中间产物及降解途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号