首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In vivo exposure of rats to 10 ppm nitrogen dioxide (NO2) for 12h caused changes in fatty acids composition of alveolar lavage phospholipids. Among the fatty acid species, the relative ratio of palmitic acid, myristic acid and palmitoleic acid increased significantly. While the relative ratio of stearic acid, oleic acid, linoleic acid and arachidonic acid decreased significantly. Both the increase in the incorporation of palmitic acid in phosphatidylcholine which would be released into the alveoli and the increase in the release of phosphatidylcholine into the alveoli may account for the changes in the fatty acid composition of the present findings.  相似文献   

2.
One-month-old soybean (Glycine max [L.] Merrill), cultivar 'Williams', plants were exposed to nitrogen dioxide (0.1, 0.2, 0.3 and 0.5 ppm) and carbon filtered air (control), 7 h per day, for 5 days, under a controlled environment. Leaf chlorophyll content (Ch a, Ch b, and total Ch content) and foliar nitrogen content (%N) were determined before and after the exposure. The influence of NO(2) treatments up to 0.3 ppm on leaf chlorophyll content was negligible although a stimulatory effect was evident in Ch a and total Ch content with 0.2 ppm NO(2). Marked decline in Ch content was observed with 0.5 ppm treatment; the reductions in Ch a and total Ch were 45% and 47%, respectively. Foliar-N contents of plants treated with 0.2 and 0.3 ppm NO(2) were higher than the control; plants exposed to 0.5 ppm NO(2) showed a 41% reduction in foliar-N compared to pre-exposure values.  相似文献   

3.
Irritant gases in concentrations that occur in polluted atmospheres might play a role in the degranulation and histamine release processes of mast cells in lung tissue. To test this hypothesis, young rats weighing 140-150 g were exposed to 1 ppm nitrogen dioxide for 2 hr. One group was killed immediately, and another group 24-27 hr after exposure. A third group was exposed to 0.5 ppm nitrogen dioxide for 4 hr and killed immediately. Animals serving as controls were placed for 1 hr into the exposure chamber ventilated with ambient air. Standard histological preparations were made after Carnoy’s fixative and subsequent staining with toluidine blue. The mast cells of the control animals appeared relatively intact with no evidence of disorientation. The cells of the animals exposed to NO2 and sacrificed immediately revealed rupture and loss of cytoplasmic granules with some disorientation. These changes were observed in the pleura, bronchi, and surrounding tissue with the effects more marked in the mediastinum. The mast cells of exposed animals sacrificed about 24-27 hr after discontinuing the exposure showed in some cases a combination of ruptured and intact cells with a predominance of the latter, and in other cases could not be differentiated from the controls. These findings indicate that 24 hr or more are required to reverse the acute effects of NO2 inhalation. The toxicological implications will be discussed. The release of granular substances in the lung tissue when NO2 is inhaled signifies the onset of an acute inflammation.  相似文献   

4.
The effect of dichlorvos (DDVP) (0-0, dimethyl 2:2-dichlorovinyl phosphate), on various lipid fractions and lipid peroxidation in the discrete areas of the brain and spinal cord were studied in the fresh water teleost (Heteropneustes fossilis). Fishes were exposed to three different doses (3.0, 6.0 and 9.0 ppm) of DDVP daily for 7 days. Dose-related increase in the levels of total lipids, cholesterol and esterified fatty acids was detected in the fore brain, optic lobes, cerebellum, medulla oblongata and spinal cord. However, phospholipids were significantly decreased in the aforementioned regions of the central nervous system. The rate of lipid peroxidation was significantly increased in all the regions of the CNS.  相似文献   

5.
Abstract

The effect of dichlorvos (DDVP) (0–0, dimethyl 2: 2‐dichlorovinyl phosphate), on various lipid fractions and lipid peroxidation in the discrete areas of the brain and spinal cord were studied in the fresh water teleost (Heteropneustes fossilis). Fishes were exposed to three different doses (3.0, 6.0 and 9.0 ppm) of DDVP daily for 7 days. Dose‐related increase in the levels of total lipids, cholesterol and esterified fatty acids was detected in the fore brain, optic lobes, cerebellum, medulla oblongata and spinal cord. However, phospholipids were significantly decreased in the aforementioned regions of the central nervous system. The rate of lipid peroxidation was significantly increased in all the regions of the CNS.  相似文献   

6.
Phaseolus vulgaris cv. Kinghorn Wax seedlings grown in darkness at 25 degrees C for 7 days with half strength Hoagland's nutrient solution containing no nitrogen, were transferred to lit continuous stirred tank reactors (CSTRs) in atmospheres containing 0 or 0.3 ppm NO(2) and irrigated with a nutrient solution containing 0 or 5 mm nitrate as sole nitrogen source and allowed to grow for a period of up to 5 days in a 14 h photoperiod. Exposure to NO(2) increased total Kjeldahl nitrogen in the leaves. Further, the exposure to NO(2) increased chlorophyll content from day 3 onwards and inhibited the leaf dry weight substantially on days 4 and 5. The primary leaves of the seedlings exposed to 0.3 ppm NO(2) and supplied with nitrate accumulated some nitrite after 5 days of exposure. Some of the seedlings were returned from CSTRs to growth chambers and allowed to grow for a further period of 5 days in a 14 h photoperiod without NO(2). The growth which developed after the NO(2) exposure growth period, as measured by fresh and dry weights of the leaves, was significantly less in NO(2)-exposed plants than in nitrate-grown plants. The experiments demonstrate that the leaves of greening seedlings are able to assimilate NO(2) and that a reduction in leaf dry weight by prolonged NO(2) exposure in the presence of nutrient nitrate can be associated with nitrite accumulation, and that NO(2) has a carry-over effect beyond the duration of NO(2) exposure. It is apparent that NO(2) induces some durable biochemical or cytological aberration in the presence of nutrient nitrate, which adversely affects subsequent leaf growth.  相似文献   

7.
Absorption of nitrogen dioxide (NO(2)) by various broad-leaved tree species was determined by the (15)N dilution method. The tree seedlings were continuously exposed to 0.3 ppm (microl litre(-1)) NO(2) or the mixture of 0.3 ppm NO(2) and 0.1 ppm O(3) for 30 days. The total amount of NO(2)-nitrogen absorbed by a seedling during the 30-day exposure period primarily depended on the size of the seedling. Among the tested tree species, three cultivars of Populus showed the highest rate of NO(2) absorption per unit leaf area, reaching as much as 0.3 mg N per dm(2) per day. The absorption rates for Populus cultivars were more than four times greater than those for Viburnum or Cinnamomum which had the lowest rate. A highly significant correlation was recognised between the rate of NO(2) absorption and the stomatal conductance among the species. Three cultivars of Populus which had the highest rates of NO(2) absorption were most susceptible to the mixture of NO(2) and O(3). On the contrary, Cinnamomum, Viburnum and Quercus, which showed the lowest rate of NO(2) absorption, were very tolerant to the mixed gas. These results indicate that the species difference in susceptibility to the mixture of NO(2) and O(3) was mainly determined by the difference in rate of absorption of these gases. Exposure to NO(2) alone had no detrimental effect on the tested tree species.  相似文献   

8.
In view of the present increasing trends of anthropogenic emissions of carbon dioxide (CO2) and sulphur dioxide (SO2) throughout the world, the present study was aimed at investigating the long-term influence of elevated concentrations of CO2 and SO2, singly and in combination on the physiological and biochemical characteristics of two cultivars of wheat (Triticum aestivum L. cv. Malviya 234 and HP1209). For this purpose, the plants were grown in open top chambers under field conditions and were fumigated with 600 ppm CO2, 0.06 ppm SO2 and 600 ppm CO2 + 0.06 ppm SO2 separately for 8 h daily (0800-1600 h) from germination to grain maturity. The individual treatment of SO2 advers#ely affected both the cultivars of wheat by reducing protein and starch contents. The respiration rate, total soluble sugars and total phenolics, however, increased in response to SO2. Stimulation of photosynthesis rate and reduction in stomatal conductance and transpiration rate were observed under CO2 treatment. Concentrations of total soluble sugars, starch and total phenolics increased in response to CO2 and CO2 + SO2 treatments. In combined treatment, CO2 modified the plant response to SO2 in both the cultivars. Elevated CO2 increased the photosynthesis rate under combined treatment. Higher levels of starch and soluble sugars under combined treatment provided extra carbon for SO2 detoxification. The pattern of intraspecific response of wheat to different treatments was more or less similar, but the magnitude of response differed significantly.  相似文献   

9.
Oxides of nitrogen (NOx) [nitrogen oxide (NO) + nitrogen dioxide (NO2)] and sulfur dioxide (SO2) are removed individually in traditional air pollution control technologies. This study proposes a combined plasma scrubbing (CPS) system for simultaneous removal of SO2 and NOx. CPS consists of a dielectric barrier discharge (DBD) and wet scrubbing in series. DBD is used to generate nonthermal plasmas for converting NO to NO2. The water-soluble NO2 then can be removed by wet scrubbing accompanied with SO2 removal. In this work, CPS was tested with simulated exhausts in the laboratory and with diesel-generator exhausts in the field. Experimental results indicate that DBD is very efficient in converting NO to NO2. More than 90% removal of NO, NOx, and SO2 can be simultaneously achieved with CPS. Both sodium sulfide (Na2S) and sodium sulfite (Na2SO3) scrubbing solutions are good for NO2 and SO2 absorption. Energy efficiencies for NOx and SO2 removal are 17 and 18 g/kWh, respectively. The technical feasibility of CPS for simultaneous removal of NO, NO2, and SO2 from gas streams is successfully demonstrated in this study. However, production of carbon monoxide as a side-product (approximately 100 ppm) is found and should be considered.  相似文献   

10.
Concentrations of air pollutants, nitrogen dioxide (NO(2)), sulfur dioxide (SO(2)), ozone (O(3)), particulate matter (PM(2.5) and PM(10)), trace metals, and polycyclic aromatic hydrocarbons (PAHs) were measured in 2008 and 2009 in the city of Eski?ehir, central Turkey. Spatial distributions of NO(2), SO(2), and ozone were determined by passive sampling campaigns carried out during two different seasons with fairly large spatial coverage. A basic population exposure assessment was carried out employing Geographical Information System techniques by combining population density maps with pollutant distribution maps of NO(2) and SO(2). It was found that 95 % of the population is exposed to NO(2) levels close to the World Health Organization guideline value. Regarding SO(2), a large proportion of the population (83 %) is exposed to levels above the WHO second interim target value. Concentrations of all the pollutants showed a seasonal pattern increasing in winter period, except for ozone having higher concentrations in summer season. Daily PM(10) and PM(2.5) concentrations exceeded European Union limit values almost every sampling day. Toxic fractions of the measured PAHs were calculated and approximately fourfold increase was observed in winter period. Copper, Pb, Sn, As, Cd, Zn, Sb, and Se were found to be moderately to highly enriched in PM(10) fraction, indicating anthropogenic input to those elements measured. Exposure assessment results indicate the need for action to reduce pollutant emissions especially in the city center. Passive sampling turns out to be a practical and economical tool for air quality assessment with large spatial coverage.  相似文献   

11.
This study considers the characteristics of carbon monoxide (CO), nitrogen dioxide (NO(2)), ozone (O(3)) and sulfur dioxide (SO(2)) in two major South Korean cities, including the capital city of Seoul, over a time period of 7-8 years. Changes in the annual mean and percentiles of the daily 1-h maximum and other hour-based concentrations varied according to the compound and city type. Seasonal variations varied according to the compound, yet not with the city type. Both Seoul and Taegu exhibited lower O(3) concentrations in July compared to other summer months. There was a high degree of correlation between the daily 1- and 8-h maximum or daily mean concentrations of all compounds in both cities, with an R(2) of 0.66-0.90 at p<0.0001. It was indicated that for CO and O(3), the 8-h standard was more stringent than the 1-h standard, while for NO(2) and SO(2), the 1-h standard was more stringent than the 24-h standard. The correlation coefficients between the daily 1-h maximum and daily mean concentrations decreased as the maximum concentration values of NO(2), O(3 ), and SO(2) increased in the two cities. For all the target compounds, Seoul recorded a substantially higher frequency of days with concentrations above the relevant 1-, 8-, and 24-h standards compared to Taegu.  相似文献   

12.
While the ciliary activity in the airways of rats exposed to sulfur dioxide at low concentration has been studied repeatedly, the effects of chronic exposure to realistic levels of sulfur dioxide and particulates has not been determined. This paper describes the response of white albino rats to the inhalation of low concentrations of sulfur dioxide while exposed to relatively high concentrations of an inert dust. Test results indicate that no change is found in the ciliary activity or the relative number of dust cells in the alveolar structure of rats exposed to 1 ppm of sulfur dioxide and 1 mg/m3 of a graphite dust.  相似文献   

13.
In the present study, female Clarias batrachus were exposed to two sublethal concentrations of gamma-BHC (2 and 8 microg litre(-1)) and malathion (1 and 4 microl litre(-1)) for 4 weeks during different phases of their reproductive cycle. Impact of these pesticides on free fatty acids, monoglycerides, diglycerides, triglycerides, phospholipids, free and esterified cholesterol in the liver, plasma, ovary and muscle was assessed. During the pre-vitellogenic and regressed phases, they suppressed the levels of fatty acids and glycerides in the liver, but had no effect on their levels in the plasma, ovary and muscle. However, in the vitellogenic phase, fatty acids in the liver and plasma were increased, but were decreased in the ovary and muscle. Glycerides were also decreased in the studied tissues. In the post-vitellogenic phase, these pesticides increased the levels of fatty acids and glycerides in the liver and ovary, but decreased their levels in the plasma. Both pesticides decreased hepatic phospholipids in the pre-vitellogenic phase, while in the vitellogenic phase only gamma-BHC reduced its levels in the liver. These pesticides also restricted their mobilisation to the ovary. Cholesterol biosynthesis seemed unaffected, but the hydrolysis of esterified cholesterol to free cholesterol was adversely affected during the period of estrogen biosynthesis.  相似文献   

14.
Foliar phenol concentrations (total and simple phenols) were determined in Aleppo pine (Pinus halepensis Mill.) needles collected in June 2000, from 6 sites affected by various forms of atmospheric pollutants (NO, NO(2), NO(x), O(3) and SO(2)) monitored during two months. Results show an increase in total phenol content with exposure to sulphur dioxide and a reduction with exposure to nitrogen oxide pollution. p-Coumaric acid, syringic acid and 4-hydroxybenzoic acid concentrations increase with exposure to nitrogen oxide pollution, whereas gallic acid and vanillin decrease in the presence respectively of sulphur dioxide and ozone. This in situ work confirms the major interest of using total and simple phenolic compounds of P. halepensis as biological indicators of air quality.  相似文献   

15.
Results are presented as to the extent of chain scission (crosslinking) suffered by various polymers exposed to 1 atm of air and near ultraviolet light (λ > 2800 Å) in presence and absence of nitrogen dioxide, sulfur dioxide, and ozone, respectively, in the concentration range of 1 to 5 ppm. Vinyl polymers are scarcely affected by SO2 and NO2, respectively; however, nylon and elastomers are quite sensitive toward these gases. These conclusions agree with observations, found in the literature, on tensile tests, elongations, flexibilities, and infrared measurements in presence of sulfur dioxide under similar conditions.  相似文献   

16.
One month old soybean (Glycine max (L.) Merrill) cv. 'Williams' plants were exposed to nitrogen dioxide (NO2 at 0.1, 0.2, 0.3, and 0.5 microl liter(-1) and carbon filtered air (control), 7 h per day for five days, under controlled environment. Data were collected on net photosynthetic rate (PN), stomatal resistance (SR), and dark respiration rate (DR), immediately following the fifth day of exposure and 24 h after termination of exposure. Chlorophyll a (Ch a), chlorophyll b (Ch b), total chlorophyll (tot Ch) and foliar nitrogen (N) were measured before and after exposures. Growth characteristics--relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), and root shoot ratio (RSR) -- were computed for treated plants using standard growth equations. Increases of 18% and 23% in PN were observed immediately following exposure to 0.2 microl liter(-1) NO2 and after 24 h recovery period, respectively. With 0.5 microl liter(-1) NO2 treatment, reductions in PN of 23% and 50% were observed, immediately after exposure and following 24 h recovery, respectively. DR rates with 0.2 l liter(-1) treatment were higher than the control. Chlorophyll a and tot Ch showed significant reduction with 0.5 microl liter(-1) NO2 treatment. The percent reduction in Ch a and tot Ch with 0.5 microl liter(-1) NO2 were 45% and 47%, respectively. Increases in foliar nitrogen content after 0.2 and 0.3 microl liter(-1) NO2 treatments were 46% and 69%, respectively. Nitrogen dioxide at 0.5 microl liter(-1) reduced RGR and NAR by 47% and 51%, respectively. Leaf area ratio was 42% higher in 0.5 microl liter(-)1 NO2 treated plants, compared with the control; this increase was insufficient to compensate for the decrease in NAR resulting in a net decline in RGR. Nitrogen dioxide up to 0.2 microl liter(-1) increased PN and foliar-N content of soybean. With 0.5 microl liter(-1) NO2, significant decreases were observed in PN, leaf chlorophyll, foliar-N, NAR and RGR. Nitrogen dioxide up to 0.2 microl liter(-)1 has a favorable influence on overall growth characteristics of soybean; however, inhibitory effects were seen with NO2 treatment at 0.5 microl liter(-1).  相似文献   

17.
Concentrations of air pollutants were monitored during the May November 1999 period on a network of forested sites in Sequoia National Park, California. Measurements were conducted with: (1) active monitors for nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3); (2) honeycomb denuder/filter pack systems for nitric acid vapor (HNO3), nitrous acid vapor (HNO2), ammonia (NH3), sulfur dioxide (SO2), particulate nitrate (NO3-), ammonium (NH4+), and sulfate (SO4(2-)); and (3) passive samplers for O3, HNO3 and NO2. Elevated concentrations of O3 (seasonal means 41-71 ppb), HNO3 (seasonal means 0.4-2.9 microg/m3), NH3 (seasonal means 1.6-4.5 microg/m3), NO3 (1.1-2.0 microg/m3) and NH4+ (1.0-1.9 microg/m3) were determined. Concentrations of other pollutants were low. With increasing elevation and distance from the pollution source area of O3, NH3 and HNO3 concentrations decreased. Ammonia and NH4+ were dominant N pollutants indicating strong influence of agricultural emissions on forests and other ecosystems of the Sequoia National Park.  相似文献   

18.
In Asia, limited studies have been published on the association between daily mortality and gaseous pollutants of nitrogen dioxide (NO2), ozone (O3), and sulfur dioxide (SO2). Our previous studies in Wuhan, China, demonstrated long-term air pollution effects. However, no study has been conducted to determine mortality effects of air pollution in this region. This study was to determine the acute mortality effects of the gaseous pollutants in Wuhan, a city with 7.5 million permanent residents during the period from 2000 to 2004. There are approximately 4.5 million residents in Wuhan who live in the city's core area of 201 km2, where air pollution levels are highest, and pollution ranges are wider than the majority of the cities in the published literature. We used the generalized additive model to analyze pollution, mortality, and covariate data. We found consistent NO2 effects on mortality with the strongest effects on the same day. Every 10-microg/m3 increase in NO2 daily concentration on the same day was associated with an increase in nonaccidental (1.43%; 95% confidence interval [CI]: 0.87-1.99%), cardiovascular (1.65%; 95% CI: 0.87-2.45%), stroke (1.49%; 95% CI: 0.56-2.43%), cardiac (1.77%; 95% CI: 0.44-3.12%), respiratory (2.23%; 95% CI: 0.52-3.96%), and cardiopulmonary mortality (1.60%; 95% CI: 0.85-2.35%). These effects were stronger among the elderly than among the young. Formal examination of exposure-response curves suggests no-threshold linear relationships between daily mortality and NO2, where the NO2 concentrations ranged from 19.2 to 127.4 microg/m3. SO2 and O3 were not associated with daily mortality. The exposure-response relationships demonstrated heterogeneity, with some curves showing nonlinear relationships for SO2 and O3. We conclude that there is consistent evidence of acute effects of NO2 on mortality and suggest that a no-threshold linear relationship exists between NO2 and mortality.  相似文献   

19.
Plant growth inhibition by ozone is significantly affected by previous exposure to nitrogen dioxide. Experiments on the early growth of four crop species showed that daily pretreatment with NO2 (0.08–0.10 ppm for 3 h) immediately prior to exposure to O3 (0.08–0.10 ppm for 6 h) increased the inhibition of radish and wheat growth, decreased the inhibition of bush bean growth, but had no effect on the growth of mint. The magnitudes of the interactive effects indicate that in regions where relatively high concentrations of O3 are produced by photochemical processes, for example, downwind from urban centres, assessments of the impact of O3 on vegetation based on knowledge of response to O3 alone may be seriously flawed.  相似文献   

20.
A multistaged combustion burner designed for in-furnace NOx control and high combustion efficiency is being evaluated for high nitrogen content fuel and waste incineration application in a 0.6 MW package boiler simulator. A low NOx precombustion chamber burner has been reduced in size by approximately a factor of two (from 600 to 250 ms first-stage residence time) and coupled with (1) air staging, resulting in a three-stage configuration, and (2) natural gas fuel staging, yielding up to four stolchlometric zones. Natural gas, doped with ammonia to yield a 5.8 percent fuel nitrogen content, and distillate fuel oil, doped with pyridine to yield a 2 percent fuel nitrogen content, were used to simulate high nitrogen content fuel/waste mixtures. The multistaged burner reduced NO emissions by 85 percent from emission levels from a conventional unstaged burner mounted on a commercial package bollerTA minimum NO emission level of 110 ppm was achieved in the fuel oil tests, from a level of 765 ppm for conventional firing. This is compared with a 160 ppm minimum NO level achieved in gaseous fuel tests, from an uncontrolled level of 1000 ppm. Boiler fuel staging, or reburnlng, appears to be superior to air staging for high combustion efficiency due to its minimal fuel-rich core and second flame front in the boiler.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号