首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Local mate competition (LMC) occurs when brothers compete with each other for mating opportunities, resulting in selection for a female-biased sex ratio within local groups. If multiple females oviposit in the same patch, their sons compete for mating opportunities with non-brothers. Females, in the presence of other females, should thus produce relatively more sons. Sex ratio theory also predicts a more female-biased sex ratio when ovipositing females are genetically related, and sex-ratio responses to foundress size if it differentially affects fitness gains from sons versus daughters. The mating system of the parasitoid wasp Ooencyrtus kuvanae meets assumptions of LMC. Females insert a single egg into each accessible egg of gypsy moth, Lymantria dispar, host egg masses. Wasps complete development inside host eggs and emerge en masse, as sexually mature adults, resulting in intense competition among brothers. We tested the hypothesis that O. kuvanae exhibits LMC by manipulating the number of wasp foundresses on egg masses with identical numbers of eggs. As predicted by LMC theory, with increasing numbers of wasp foundresses on an egg mass, the proportions of emerging sons increased. In contrast, the presence of a sibling compared to a non-sibling female during oviposition, or the size of a female, did not affect the number or sex ratio of offspring produced. The O. kuvanae system differs from others in that larvae do not compete for local resources and thus do not distort the sex ratio in favor of sons. With no resource competition among O. kuvanae larvae, the sex ratio of emergent son and daughter wasps is due entirely to the sex allocation by ovipositing wasp foundresses on host egg masses.  相似文献   

2.
We examined whether several facultatively gregarious encyrtid (Hymenoptera: Encyrtidae) endoparasitoids of brown soft scale, Coccus hesperidum L., manifest precise sex allocation under field conditions. Metaphycus luteolus (Timberlake), Metaphycus angustifrons (Compere), Metaphycus stanleyi (Compere), and Microterys nietneri (Motshulsky) evince brood sex ratios that are female-biased and extremely precise (low variance in the number of sons per host). Typically, this sex allocation pattern is attributed to extreme local mate competition (LMC) in which only one foundress exploits a patch of hosts and mating occurs mostly between her offspring. However, such a pattern of sex allocation was not detected for Metaphycus helvolus (Compere). Also, a large proportion of the broods in all five species contained only daughters; thus, an excess of male-only broods was expected if unmated females (i.e., females that can produce only sons) contribute offspring before mating. All-male broods were rare in our samples. This finding coupled with the life history characteristics of these wasps, such as the exploitation of aggregated hosts and the long life span and mobility of males, suggest that nonlocal mating is frequent. Our empirical work suggests that it is advantageous to allocate precise sex ratios in cases in which mating opportunities for males are not restricted to their natal host and/or when multiple foundresses exploit large patches of hosts. Limited theoretical work also supports this prediction but more detailed studies of this taxon’s mating structure and other life history characteristics are necessary to understand their sex allocation decisions.  相似文献   

3.
The populations of many species are structured such that mating is not random and occurs between members of local patches. When patches are founded by a single female and all matings occur between siblings, brothers may compete with each other for matings with their sisters. This local mate competition (LMC) selects for a female-biased sex ratio, especially in species where females have control over offspring sex, as in the parasitic Hymenoptera. Two factors are predicted to decrease the degree of female bias: (1) an increase in the number of foundress females in the patch and (2) an increase in the fraction of individuals mating after dispersal from the natal patch. Pollinating fig wasps are well known as classic examples of species where all matings occur in the local patch. We studied non-pollinating fig wasps, which are more diverse than the pollinating fig wasps and also provide natural experimental groups of species with different male morphologies that are linked to different mating structures. In this group of wasps, species with wingless males mate in the local patch (i.e. the fig fruit) while winged male species mate after dispersal. Species with both kinds of male have a mixture of local and non-local mating. Data from 44 species show that sex ratios (defined as the proportion of males) are in accordance with theoretical predictions: wingless male species<wing-dimorphic male species<winged male species. These results are also supported by a formal comparative analysis that controls for phylogeny. The foundress number is difficult to estimate directly for non-pollinating fig wasps but a robust indirect method leads to the prediction that foundress number, and hence sex ratio, should increase with the proportion of patches occupied in a crop. This result is supported strongly across 19 species with wingless males, but not across 8 species with winged males. The mean sex ratios for species with winged males are not significantly different from 0.5, and the absence of the correlation observed across species with wingless males may reflect weak selection to adjust the sex ratio in species whose population mating structure tends not to be subdivided. The same relationship is also predicted to occur within species if individual females adjust their sex ratios facultatively. This final prediction was not supported by data from a wingless male species, a male wing-dimorphic species or a winged male species. Received: 27 July 1998 / Received in revised form: 11 January 1999 / Accepted: 16 January 1999  相似文献   

4.
Sex allocation theory offers excellent opportunities for testing how animals adjust their behaviour in response to environmental conditions. A major focus has been on instances of local mate competition (LMC), where female-biased broods are produced to maximise mating opportunities for sons. However, the predictions of LMC theory can be altered if there is both local competition for resources during development and an asymmetry between the competitive abilities of the sexes, as has been seen in animals ranging from wasps to birds. In this paper, we test the extent to which asymmetric larval competition alters the predictions of LMC theory in the parasitoid wasp Nasonia vitripennis. We found that the body size of both sexes was negatively correlated with the number of offspring developing within the host. Further, we found that when faced with high levels of competition, the body size of females, but not males, was influenced by the sex ratio of the competing offspring; females were smaller when a higher proportion of the brood was female. This asymmetric competition should favour less biased sex ratios than are predicted by standard LMC theory. We then develop a theoretical model that can be parameterised with our data, allowing us to determine the quantitative consequences of the observed level of asymmetric larval competition for sex allocation. We found that although asymmetric competition selects for less biased sex ratios, this effect is negligible compared to LMC. Furthermore, a similar conclusion is reached when we re-analyse existing data from another parasitoid species where asymmetric larval competition has been observed; Bracon hebetor. Consequently, we suspect that asymmetric larval competition will have its greatest influence on sex ratio evolution in species that have smaller clutches and where local mate competition is not an issue, such as birds and mammals.  相似文献   

5.
Colony level sex allocation in a polygynous and polydomous ant   总被引:2,自引:0,他引:2  
The colony-level sex allocation pattern of eusocial Hymenoptera has attracted much attention in recent studies of evolutionary biology. We conducted a theoretical and empirical study on this subject using the dolichoderine ant Technomyrmex albipes. This ant is unusual in having a dispersal polymorphism in both males and females. New colonies are founded by an alate female after mating with one or more alate males in the nuptial flight. In mature colonies, the reproductive role of the foundress queen is taken over by wingless offspring (supplementary reproductives). Mature colonies are extremely polygynous, with many wingless queens reproducing through intea-colonial mating with wingless males (inbreeding), and producing both alate and wingless sexuals. The population sex ratio of wingless sexuals was found to be extremely female-biased, while the population allocation ratio of alates was almost 1:1. This result suggests that there is local mate competition among wingless sexuals. A specific model for this extraordinary life cycle predicted that the asymmetry of regression relatedness (b f/b m) will disappear during the first few generations of wingless reproductives after the foundress dies. If colonies begin to produce alates after several wingless generations, this undermines the hypotheses for intercolonial sex ratio variation based on the relatedness asymmetry. We compared the magnitude of variation in sex ratios and other characteristics between two levels (within-colony-inter-nest and between-colony). Although there was considerable within-colony variation in all the examined characteristics, between-colony variances were always larger. This means that allocation is important at the whole-colony level, not that of the nest. There was no apparent correlation between the sex ratio of alates and colony size. Furthermore, partial correlation analysis indicated that neither the number of workers nor investment in alates explained the variation in the sex ratio of alates. The only factor which was significantly correlated with the sex ratio of alates was the sex ratio of wingless sexuals (a positive correlation). We conclude that both the alate and wingless sex ratios may be influenced by a common primary sex ratio at the egg stage, the variance of which may have genetic components. In the wingless sexuals, partial correlation analysis indicated that colony size and the number of workers explained the sex allocation ratio. The number of wingless females was strongly (positively) correlated with the total investment in wingless sexuals, while the number of males showed no such correlation. There is, however, no convincing explanation for the variation in sex allocation ratio of wingless sexuals, because the estimates of investment in wingless males may have a large sampling error. Correspondence to: K. Tsuji  相似文献   

6.
In an effort to distinguish among adaptive models and to improve our understanding of behavioral mechanisms of sex ratio manipulation, this study examines sex ratio responses to other wasps in the solitary parasitoid wasp Spalangia cameroni. Relative to when alone, females produced a greater proportion of sons in the presence of conspecifics, regardless of whether the conspecifics were female or male. In addition, females produced a greater proportion of sons after a day with a conspecific male, and after a day with a conspecific female, but only if the females had been ovipositing. Relative to when alone, females did not produce a greater proportion of sons in the presence of females of the confamilial Muscidifurax raptor or in response to hosts that had already been parasitized by a conspecific. A combination of evolutionary models may explain S. cameroni’s sex ratios. An increased proportion of sons in response to conspecific females is common among parasitoid wasps and is usually explained by local mate competition (LMC) theory. However, such a response is also consistent with the perturbation model, although not with the constrained females model. The response to conspecific males is not consistent with LMC theory or the perturbation model but is consistent with the constrained females model.  相似文献   

7.
Summary Augochlorella striata was studied at the northern limit of its range. The study population contained a mixture of solitary and social nest foundresses. Eusocial foundresses produced 1 or 2 workers before switching to a male biased brood. Solitary foundresses produced males first. Cells vacated by eclosed offspring were reused late in summer. A female biased brood resulted from cell reuse in both solitary and eusocial nests. Workers were slightly smaller than their mothers and were sterile although most of them mated. In comparison to published data from a Kansas population of this species, the Nova Scotia population had i) a lower proportion of multiple foundress nests, ii) a smaller worker brood and iii) a briefer period of foraging activity but iv) comparable overall nest productivity.  相似文献   

8.
Females of many socially monogamous bird species commonly engage in extra-pair copulations. Assuming that extra-pair males are more attractive than the females’ social partners and that attractiveness has a heritable component, sex allocation theory predicts facultative overproduction of sons among extra-pair offspring (EPO) as sons benefit more than daughters from inheriting their father’s attractiveness traits. Here, we present a large-scale, three-year study on sex ratio variation in a passerine bird, the coal tit (Parus ater). Molecular sexing in combination with paternity analysis revealed no evidence for a male-bias in EPO sex ratios compared to their within-pair maternal half-siblings. Our main conclusion, therefore, is that facultative sex allocation to EPO is absent in the coal tit, in accordance with findings in several other species. Either there is no net selection for a deviation from random sex ratio variation (e.g. because extra-pair mating may serve goals different from striving for ‘attractiveness genes’) or evolutionary constraints preclude the evolution of precise maternal sex ratio adjustment. It is interesting to note that, however, we found broods without EPO as well as broods without mortality to be relatively female-biased compared to broods with EPO and mortality, respectively. We were unable to identify any environmental or parental variable to co-vary with brood sex ratios. There was no significant repeatability of sex ratios in consecutive broods of individual females that would hint at some idiosyncratic maternal sex ratio adjustment. Further research is needed to resolve the biological significance of the correlation between brood sex ratios and extra-pair paternity and mortality incidence, respectively.  相似文献   

9.
Sex ratio and maternal rank in wild spider monkeys: when daughters disperse   总被引:4,自引:0,他引:4  
Summary Data from a long-term field study of the spider monkey, Ateles paniscus, in Peru indicate that a strongly female-biased sex ratio exists from birth in this population. Of 46 infants born between July 1981 and June 1986, 12 were male, 32 were female and 2 were of undetermined sex. This effect is consistent between years as well, with more females than males born in each year of the study (Table 1). This bias is driven by the fact that low-ranking females produce daughters almost exclusively, while high-ranking females bias their investment somewhat less strongly towards sons (Table 2). The unusual pattern of female-biased maternal investment observed in this population of Ateles probably occurs for a combination of the following reasons: (1) maternal investment in individual male offspring is somewhat greater than in individual female offspring; (2) males remain with their natal groups, and the sons of high-ranking females are likely to be competitively superior to the sons of low-ranking females; (3) males compete for mates, and only the one or two most dominant males within a community are likely to achieve significant reproductive success. Two possible mechanisms of sex-ratio adjustment and the evidence for each are discussed.  相似文献   

10.
Local mate competition (LMC) has been postulated to be the primary factor of female-biased sex allocation. In animals such as aphids that exhibit seasonal alternations of clonal and sexual reproduction, there is a high possibility of intra-clonal mating and LMC. This possibility is more plausible for more fecund clones, but outbreeding is predicted for less fecund clones. We hypothesize that clones that are more fecund will gain higher fitness returns by reducing investment in males because of more intense LMC among clonal males. We tested this hypothesis by elucidating the clonal sex allocation patterns of the galling aphid Kaltenbachiella japonica, in which inbreeding and LMC appear to be common. Winged mothers that emerge from a gall, belonging to the same clone, produced males and sexual females asexually on a branch, without dispersing to other trees. The heavier the gall, the more winged mothers were produced from the gall. Individual mothers produced a constant number of males and a variable number of females. The clonal sex allocation to males was 39.8?%, on average, and decreased with increasing gall weight. This result showed that clones that were more fecund exhibited more female-biased sex allocation and thus supported our hypothesis. Furthermore, our results corroborated Stubblefield and Seger’s hypothesis for sex allocation in patch structure rather than Yamaguchi’s constant male hypothesis. We conclude that K. japonica clones are able to adjust their sex allocation patterns adaptively depending on the quality of resources in the galls.  相似文献   

11.
Females capable of adjusting the sex ratio of their offspring should be more fit than females lacking such an ability. In polygynous birds where breeding success in males is more strongly influenced by body size and/or attractiveness than in females, females might produce more sons when predicting good conditions or when mating with attractive males. Polygynous great reed warbler, Acrocephalusarundinaceus, males direct most of their feeding effort to the primary (first-hatching) nest and in these nests increase their feeding effort in relation to the brood sex ratio (proportion of sons). Therefore, with the expectation of well-nourished sons, we would predict that females which start breeding first within harems might produce more sons than those which start breeding later, and in anticipation of sons with good genes, that females mated to polygynous males might produce more sons than females mated to monogamous males. I took blood samples from hatchlings and determined the sex using DNA markers. The sex ratio of primary (monogamous and polygynous primary) broods is more male-biased (mean 0.58 males, n = 50) than that of secondary (polygynous secondary and tertiary) broods (mean 0.46, n = 25). Moreover, in the secondary broods with the largest clutch (five eggs), in which offspring are most likely to suffer food shortage, the sex ratio was distinctively female biased (mean 0.33, n = 10). In the primary broods, sex ratio was correlated to harem size. The results suggest that great reed warbler females modify the brood sex ratio to produce both well-nourished sons and sons with good genes, but the former effect is probably stronger than the latter factor. Received: 11 March 1998 / Accepted after revision: 23 May 1998  相似文献   

12.
Males of the cactophilic fruitfly, Drosophila pachea, produce relatively few but very large sperm, and partition their limited gamete numbers among successive mates. The present study found that males take 10 days longer than females, post-eclosion, to become sexually mature. The pattern of testes development suggests that the need to produce testes long enough to manufacture the giant sperm is the cause of the delayed male maturity. These findings generate the prediction that the operational sex ratio (OSR) of populations will be female-biased. The size, sex ratio, and OSR of natural populations were examined. In general, local populations tended to be small and sex ratios tended to be slightly male-biased. However, as predicted, the OSR of populations, at least in one season, tended to be female-biased, with an average of 2.3 receptive females for each sexually active male. Results of laboratory experiments to determine the relationship between female remating frequency and fitness, and between population OSR and productivity, suggest that natural populations with female-biased OSRs are sperm-limited. The origin and maintenance of sperm gigantism and the unusual sperm-partitioning behavior of males are discussed with respect to population structure.  相似文献   

13.
Facultative joint colony founding by social insects provides opportunities to analyze the roles of genetic and ecological factors in the evolution of cooperation. Although cooperative nesting is observed in range of social insect taxa, the most detailed studies of this behavior have been conducted with Hymenoptera (ants, bees, and wasps). Here, we show that foundress associations in the haplodiploid social thrips Dunatothrips aneurae (Insecta: Thysanoptera) are most often comprised of close relatives (sisters), though groups with unrelated foundresses are also found. Associations among relatives appear to be facilitated by limited female dispersal, which results in viscous population structure. In addition, we found that per capita productivity declined with increasing group size, sex ratios were female-biased, and some female offspring apparently remained in their natal domicile for some time following eclosion. D. aneurae thus exhibits a suite of similarities with eusocial Hymenoptera, providing evidence for the convergent evolution of associated social and life-history traits in Hymenoptera and Thysanoptera.  相似文献   

14.
Summary Small male milkweed beetles are less successful at obtaining mates than are larger males. Larger males usually win fights and prevent smaller males from obtaining mates and from choosing larger more fecund females as mates. When sex ratios are male-biased, smaller males are particularly likely to experience these mating disadvantages. It follows that smaller males should be especially responsive to their local competitive environment and behave so as to minimize the mating disadvantages of their smaller size. This paper tests the hypothesis that smaller males disperse from host plant patches with male-biased sex ratios and remain in patches with female-biased sex ratios more readily than larger males.Results show both larger and smaller males disperse from patches with male-biased sex ratios more frequently than from patches with femalebiased sex ratios. As predicted, however, small males are more likely to disperse from patches with male-biased sex ratios and remain in patches with female-biased sex ratios than are larger males.The data also show that smaller males dispersing from patches with male-biased sex ratios obtain more matings than non-dispersing males.For milkweed beetles, moving between patches can be viewed as an alternative mating tactic conditional on male body size and local sex ratio.  相似文献   

15.
We proposed “foundress-max” hypothesis that a bumble bee foundress chooses her nest site to maximize her energy intake rate from nectar. To examine the hypothesis, we estimated the maximum energy intake rate at each site in the study area and compared the distribution of the maximum energy intake rates with those of actual nest sites. We also calculated rank correlations of the maximum energy intake rate with the number of nest-searching foundresses at 54 sites. The nest locations supported the foundress-max hypothesis, but the number of nest-searching foundresses did not. This could be attributed to the density of food sites: many food sites may attract many foundresses. Therefore, we subsequently proposed “foundress-sum” hypothesis that a foundress chooses her nest site to maximize the sum of energy intake rates. The nest locations supported the foundress-max hypothesis more than the foundress-sum hypothesis. A profitable food site would affect foundresses’ nest site selection.  相似文献   

16.
Fisher's theoretical prediction of equal investment in each sex for a panmictic population (The genetical theory of natural selection. Clarendon, Oxford, 1930) can be altered by a number of factors. For example, the sex ratio theory predicts variation in equal investment in each sex when the maternal fitness gains from increased investment differ between sexes. Changing sex allocation because of changing payoffs may result from different ecological situations, such as foraging conditions. We investigated the impact of foraging travel cost on relative investment in sons vs daughters. Field studies were carried out with the central-place-foraging leafcutter bee Megachile rotundata (Fabricius), which has smaller males than females. Therefore, less investment is required to produce a viable son compared with a daughter. We found that with increased flight distance to resources, females produced a greater proportion of sons. Females also invested fewer resources in individual sons and daughters and produced fewer offspring with increased flight distance.  相似文献   

17.
Potential rates of reproduction (PRR) differ between the sexes of many animal species. Adult sex ratios together with PRR are expected to determine the operational sex ratio (OSR) defined as the ratio of fertilizable females to sexually active males at any given time. OSR is expected to determine the degree to which one sex competes for another—the limiting sex. We explored the potential for mate limitation in an intertidal amphipod, Corophium volutator (Pallas). Males have higher PRR than females, but males may be limiting because of extreme female-biased sex ratios observed in this species. Consistent with this idea, late season females were less likely to be ovigerous and had smaller size-specific clutches, both of which were associated with seasonal declines in availability of males of reproductive size. Seasonal changes in ovigery could not be explained by seasonal changes across sites in other factors (e.g., female body size or phenology of breeding). Smaller females were less likely to become ovigerous later in the season at three of four sites. Seasonal reductions in clutch size also occurred among small females expected to be reproducing for their first time. In complimentary laboratory experiments, reduced likelihood of ovigery and reduced fecundity occurred when the number of receptive females was increased relative to availability of a reproductively active male. Our results suggest male mate limitation can occur seasonally in this species and that male limitation is regionally widespread and may affect recruitment.  相似文献   

18.
We report a long-term study of offspring sex ratios in the cooperatively breeding superb fairy-wren Malurus cyaneus. Detailed study of this species had revealed a suite of potentially strong selection pressures on the sex ratio. First, females gain substantial fitness benefits from the presence of helpers; so females without male helpers would benefit from any strategy that increased the probability of recruiting help, such as overproduction of sons (local resource enhancement hypothesis), but large numbers of helper males compete among themselves, favouring the production of daughters (local resource competition). Second, daughters fledged early in the season have far greater chances of recruitment to the breeding population than late-fledged daughters, so mothers would benefit from production of daughters early in the breeding season (early bird hypothesis). Third, extra-group mate choice imposes strong sexual selection on males, suggesting that females mating with attractive sires could benefit from investing in sons (sexual selection hypothesis). However, the predictions from these and other sex ratio hypotheses were rejected. The only convincing evidence for manipulation of the sex ratio was a slight bias towards sons (11 sons to 10 daughters) that occurred regardless of context. This result does not support current theory.  相似文献   

19.
The operational sex ratio (OSR) may influence the intensity of competition for mates and mate choice and is therefore thought to be a major factor predicting the intensity and direction of sexual selection. We studied the opportunity for sexual selection, i.e., the variance in male reproductive success and the direction and intensity of sexual selection on male body mass in bank vole (Clethrionomys glareolus) enclosure populations with experimentally manipulated sex ratios. The opportunity for sexual selection was high among male-biased OSRs and decreased towards female-biased OSRs. Paradoxically, selection for large male body mass was strongest in female-biased OSRs and also considerable at intermediate OSRs, whereas at male-biased OSRs, only a weak relationship between male size and reproductive success was found. Litters in male-biased OSRs were more likely to be sired by multiple males than litters in female-biased OSRs. Our results suggest that the intensity and direction of sexual selection in males differs among different OSRs. Although the direction of sexual selection on male body mass was opposite than predicted, large body mass can be favored by sexual selection. Naturally varying OSRs may therefore contribute to maintain variation in male sexually selected traits.  相似文献   

20.
Summary Werren and Charnov (1978) and Seger (1983) proposed a model to explain a fairly common pattern of alternating sex ratio biases between generations in partially bivoltine insects. When first-generation males overlap and mate with females of the second generation, then females should bias sex ratios in favor of sons for the first generation and daughters for the second generation. In an intensive, 7-year study at four sites in northern Florida, pipe-organ mud-daubing wasps (Trypoxylon (Trypargilum) politum; Hymenoptera: Sphecidae) were found to have strongly male-biased sex ratios in the first or overwintering generation and 1:1 or female-biased sex ratios in the second or summer generation. These differences were not due to differences in mortality of the two sexes but rather resulted from changing female sex-allocation decisions. In some respects the mud dauber results fit Seger's model well: alternating sex ratios in partially bivoltine populations, first-generation males overlapping second-generation females and perhaps most convincingly, northern, univoltine populations do not have a male bias. Despite this qualitative fit, however, our data do not meet the quantitative predictions of the model. This could result from the fact that some assumptions of the model are not met by the life history of T. politum. Alternative explanations for alternating sex ratios include split sex ratios, seasonal differences in cost ratios, facultative maternal investment rules and facultative overwintering decisions by offspring. Despite the position that sex ratios have achieved in the modern study of evolution, it is clear that accurate, quantitative predictions on sex-allocation patterns demand the same detailed understanding of the biology of the organism that is required for the study of other adaptations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号