首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A central goal of comparative plant ecology is to understand how functional traits vary among species and to what extent this variation has adaptive value. Here we evaluate relationships between four functional traits (seed volume, specific leaf area, wood density, and adult stature) and two demographic attributes (diameter growth and tree mortality) for large trees of 240 tree species from five Neotropical forests. We evaluate how these key functional traits are related to survival and growth and whether similar relationships between traits and demography hold across different tropical forests. There was a tendency for a trade-off between growth and survival across rain forest tree species. Wood density, seed volume, and adult stature were significant predictors of growth and/or mortality. Both growth and mortality rates declined with an increase in wood density. This is consistent with greater construction costs and greater resistance to stem damage for denser wood. Growth and mortality rates also declined as seed volume increased. This is consistent with an adaptive syndrome in which species tolerant of low resource availability (in this case shade-tolerant species) have large seeds to establish successfully and low inherent growth and mortality rates. Growth increased and mortality decreased with an increase in adult stature, because taller species have a greater access to light and longer life spans. Specific leaf area was, surprisingly, only modestly informative for the performance of large trees and had ambiguous relationships with growth and survival. Single traits accounted for 9-55% of the interspecific variation in growth and mortality rates at individual sites. Significant correlations with demographic rates tended to be similar across forests and for phylogenetically independent contrasts as well as for cross-species analyses that treated each species as an independent observation. In combination, the morphological traits explained 41% of the variation in growth rate and 54% of the variation in mortality rate, with wood density being the best predictor of growth and mortality. Relationships between functional traits and demographic rates were statistically similar across a wide range of Neotropical forests. The consistency of these results strongly suggests that tropical rain forest species face similar trade-offs in different sites and converge on similar sets of solutions.  相似文献   

2.
Life history trade-offs in tropical trees and lianas   总被引:1,自引:0,他引:1  
It has been hypothesized that tropical trees partition forest light environments through a life history trade-off between juvenile growth and survival; however, the generality of this trade-off across life stages and functional groups has been questioned. We quantified trade-offs between growth and survival for trees and lianas on Barro Colorado Island (BCI), Panama using first-year seedlings of 22 liana and 31 tree species and saplings (10 mm < dbh < 39 mm) of 30 tree species. Lianas showed trade-offs similar to those of trees, with both groups exhibiting broadly overlapping ranges in survival and relative growth rates as seedlings. Life history strategies at the seedling stage were highly correlated with those at the sapling stage among tree species, with all species showing an increase in survival with size. Only one of 30 tree species demonstrated a statistically significant ontogenetic shift, having a relatively lower survival rate at the sapling stage than expected. Our results indicate that similar life history trade-offs apply across two functional groups (lianas and trees), and that life history strategies are largely conserved across seedling and sapling life-stages for most tropical tree species.  相似文献   

3.
《Ecological modelling》2007,200(1-2):20-32
Species composition in forests depends on the interaction of species traits and species availability. Yet many forest simulation models focus only on interactions of adult trees and saplings, ignoring how species become members of the community. We modify a published forest model for bottomland hardwood forests (program SWAMP [Phipps, R.L., 1979. Simulation of wetlands forest vegetation dynamics. Ecol. Modell. 7, 257–288]) to make it spatially explicit and incorporate explicit seed production and dispersal algorithms. The resulting individual-based, spatially explicit forest simulator (YAFSIM) combines mechanistic seed dispersal with growth and mortality of trees to track forest dynamics over time. We describe the structure of the model and test its validity for dynamics in small bottomland hardwood patches in the Mississippi Alluvial Valley. Dynamics of species composition and basal areas of trees predicted by Yazoo Forest Simulator (YAFSIM) were similar to those of natural second- and old-growth bottomland forests. However, diversity of simulated forest patches declined over time largely because of random dynamics acting on small, isolated populations.  相似文献   

4.
Poorter L  Bongers F 《Ecology》2006,87(7):1733-1743
We compared the leaf traits and plant performance of 53 co-occurring tree species in a semi-evergreen tropical moist forest community. The species differed in all leaf traits analyzed: leaf life span varied 11-fold among species, specific leaf area 5-fold, mass-based nitrogen 3-fold, mass-based assimilation rate 13-fold, mass-based respiration rate 15-fold, stomatal conductance 8-fold, and photosynthetic water use efficiency 4-fold. Photosynthetic traits were strongly coordinated, and specific leaf area predicted mass-based rates of assimilation and respiration; leaf life span predicted many other leaf characteristics. Leaf traits were closely associated with growth, survival, and light requirement of the species. Leaf investment strategies varied on a continuum trading off short-term carbon gain against long-term leaf persistence that, in turn, is linked to variation in whole-plant growth and survival. Leaf traits were good predictors of plant performance, both in gaps and in the forest understory. High growth in gaps is promoted by cheap, short-lived, and physiologically active leaves. High survival in the forest understory is enhanced by the formation of long-lived well protected leaves that reduce biomass loss by herbivory, mechanical disturbance, or leaf turnover. Leaf traits underlay this growth-survival trade-off; species with short-lived, physiologically active leaves have high growth but low survival. This continuum in leaf traits, through its effect on plant performance, in turn gives rise to a continuum in species' light requirements.  相似文献   

5.
Donaldson JR  Lindroth RL 《Ecology》2007,88(3):729-739
Optimal defense theories suggest that a trade-off between defense costs and benefits maintains genetic variation within plant populations. This study assessed the independent and interactive effects of genetic- and environment-based variation in aspen leaf chemistry on insect performance, preference, and defoliation. Gypsy moth larvae were released into screenhouses containing eight aspen genotypes growing with high and low levels of nutrient availability. Plant chemistry, defoliation, and larval growth rates varied in response to genotype, nutrient availability, and their interaction. Total phenolic glycoside concentrations were inversely correlated with patterns of larval preference and were the best predictor of larval performance and defoliation among genotypes. Low-nutrient trees were less heavily defoliated and afforded decreased larval growth rates compared with high-nutrient trees. Nutrient availability mediated the defense benefits of phenolic glycosides, as plant chemistry explained significantly less variation in defoliation in low- compared with high-nutrient trees (7% vs. 44% of variation explained). These results suggest that spatial and temporal variation in resource availability may influence the relative magnitude of defense benefits in plants. Environmental mediation of the defense costs and benefits likely leads to diversifying selection and may maintain genetic polymorphisms in chemical defense traits in plant populations.  相似文献   

6.
The decomposition of dead wood is a critical uncertainty in models of the global carbon cycle. Despite this, relatively few studies have focused on dead wood decomposition, with a strong bias to higher latitudes. Especially the effect of interspecific variation in species traits on differences in wood decomposition rates remains unknown. In order to fill these gaps, we applied a novel method to study long-term wood decomposition of 15 tree species in a Bolivian semi-evergreen tropical moist forest. We hypothesized that interspecific differences in species traits are important drivers of variation in wood decomposition rates. Wood decomposition rates (fractional mass loss) varied between 0.01 and 0.31 yr(-1). We measured 10 different chemical, anatomical, and morphological traits for all species. The species' average traits were useful predictors of wood decomposition rates, particularly the average diameter (dbh) of the tree species (R2 = 0.41). Lignin concentration further increased the proportion of explained inter-specific variation in wood decomposition (both negative relations, cumulative R2 = 0.55), although it did not significantly explain variation in wood decomposition rates if considered alone. When dbh values of the actual dead trees sampled for decomposition rate determination were used as a predictor variable, the final model (including dead tree dbh and lignin concentration) explained even more variation in wood decomposition rates (R2 = 0.71), underlining the importance of dbh in wood decomposition. Other traits, including wood density, wood anatomical traits, macronutrient concentrations, and the amount of phenolic extractives could not significantly explain the variation in wood decomposition rates. The surprising results of this multi-species study, in which for the first time a large set of traits is explicitly linked to wood decomposition rates, merits further testing in other forest ecosystems.  相似文献   

7.
抚育间伐对栓皮栎种群空间分布格局的影响   总被引:1,自引:0,他引:1  
抚育间伐是一种重要的改善林木生长条件的经营措施,对林分结构和动态具有重要影响。为研究抚育间伐对林木种群空间结构与格局影响的内在机制,以间伐和未间伐的栓皮栎人工林为研究对象,通过设置2个100 m×100 m样地并进行每木定位和调查,在采用径级结构代替年龄结构方法将栓皮栎种群划分为幼树(2 cm≤DBH<5 cm)、小树(5 cm≤DBH<13 cm)和大树(DBH≥13 cm)3个生长阶段的基础上,分别采用Ripley’s K函数衍生的g(r)函数和双变量g12(r)函数,对栓皮栎种群空间分布点格局及不同生长阶段栓皮栎种群之间的关联性进行了研究。结果表明,间伐和未间伐样地栓皮栎种群空间分布点格局分别在0-16 m和0-33 m距离尺度内呈聚集分布,而分别在大于16 m和33 m距离尺度内呈随机分布;间伐和未间伐样地栓皮栎幼树、小树和大树的株数比分别为8?741?699和261?1134?683,且间伐样地栓皮栎幼树、小树和大树种群分别在0-14、1-16、0-6 m距离尺度内呈现均匀或聚集分布,而在其他距离尺度上表现为随机分布;栓皮栎幼树、小树和大树之间仅在间伐样地0-6 m距离尺度内呈现一定的相关性,而在未间伐样地更大的距离尺度内有显著的关联性,如栓皮栎幼树和大树之间在6-38 m距离尺度上呈显著正相关。因此,抚育间伐一定程度上使得栓皮栎种群在更大距离尺度上呈现出随机分布状态,并弱化了不同生长阶段的林木栓皮栎种群的关联性,这调整了栓皮栎种群空间竞争关系,有利于大径级林木个体的培育。该研究可以为开展抚育间伐对林木种群的影响的研究提供理论依据,也可以为制定科学合理的抚育技术措施提供参考。  相似文献   

8.
We maintained a factorial nitrogen (N), phosphorus (P), and potassium (K) addition experiment for 11 years in a humid lowland forest growing on a relatively fertile soil in Panama to evaluate potential nutrient limitation of tree growth rates, fine-litter production, and fine-root biomass. We replicated the eight factorial treatments four times using 32 plots of 40 x 40 m each. The addition of K was associated with significant decreases in stand-level fine-root biomass and, in a companion study of seedlings, decreases in allocation to roots and increases in height growth rates. The addition of K and N together was associated with significant increases in growth rates of saplings and poles (1-10 cm in diameter at breast height) and a further marginally significant decrease in stand-level fine-root biomass. The addition of P was associated with a marginally significant (P = 0.058) increase in fine-litter production that was consistent across all litter fractions. Our experiment provides evidence that N, P, and K all limit forest plants growing on a relatively fertile soil in the lowland tropics, with the strongest evidence for limitation by K among seedlings, saplings, and poles.  相似文献   

9.
Resprouting is an important persistence strategy for woody species and represents a dominant pathway of regeneration in many plant communities, with potentially large consequences for vegetation dynamics, community composition, and species coexistence. Most of our knowledge of resprouting strategies comes from fire-prone systems, but this cannot be readily applied to other systems where disturbances are less intense. In this study we evaluated sapling responses to stem snapping for 49 moist-forest species and 36 dry-forest species from two Bolivian tropical forests. To this end we compared in a field experiment the survival and height growth of clipped and control saplings for a two-year period, and related this to the shade tolerance, carbohydrate reserves, and the morphological traits (wood density, leaf size) of the species. Nearly all saplings resprouted readily after stem damage, although dry-forest species realized, on average, a better survival and growth after stem damage compared to moist-forest species. Shade-tolerant species were better at resprouting than light-demanding species in moist forest. This resprouting ability is an important prerequisite for successful regeneration in the shaded understory, where saplings frequently suffer damage from falling debris. Survival after stem damage was, surprisingly, only modestly related to stem reserves, and much more strongly related to wood density, possibly because a high wood density enables plants to resist fungi and pathogens and to reduce stem decay. Correlations between sampling performance and functional traits were similar for the two forest types, and for phylogenetically independent contrasts and for cross-species analyses. The consistency of these results suggests that tropical forest species face similar trade-offs in different sites and converge on similar sets of solutions. A high resprouting ability, as well as investments in stem defense and storage reserves, form part of a suite of co-evolved traits that underlies the growth-survival trade-off, and contributes to light gradient partitioning and species coexistence. These links with shade tolerance are important in the moist evergreen forest, which casts a deep, more persistent shade, but tend to diminish in dry deciduous forest where light is a less limiting resource.  相似文献   

10.
Gravel D  Beaudet M  Messier C 《Ecology》2008,89(10):2879-2888
Understanding coexistence of highly shade-tolerant tree species is a longstanding challenge for forest ecologists. A conceptual model for the coexistence of sugar maple (Acer saccharum) and American beech (Fagus grandibfolia) has been proposed, based on a low-light survival/high-light growth trade-off, which interacts with soil fertility and small-scale spatiotemporal variation in the environment. In this study, we first tested whether the spatial distribution of seedlings and saplings can be predicted by the spatiotemporal variability of light availability and soil fertility, and second, the manner in which the process of environmental filtering changes with regeneration size. We evaluate the support for this hypothesis relative to the one for a neutral model, i.e., for seed rain density predicted from the distribution of adult trees. To do so, we performed intensive sampling over 86 quadrats (5 x 5 m) in a 0.24-ha plot in a mature maple-beech community in Quebec, Canada. Maple and beech abundance, soil characteristics, light availability, and growth history (used as a proxy for spatiotemporal variation in light availability) were finely measured to model variation in sapling composition across different size classes. Results indicate that the variables selected to model species distribution do effectively change with size, but not as predicted by the conceptual model. Our results show that variability in the environment is not sufficient to differentiate these species' distributions in space. Although species differ in their spatial distribution in the small size classes, they tend to correlate at the larger size class in which recruitment occurs. Overall, the results are not supportive of a model of coexistence based on small-scale variations in the environment. We propose that, at the scale of a local stand, the lack of fit of the model could result from the high similarity of species in the range of environmental conditions encountered, and we suggest that coexistence would be stable only at larger spatial scales at which variability in the environment is greater.  相似文献   

11.
Poorter L  Kitajima K 《Ecology》2007,88(4):1000-1011
In many plant communities, there is a negative interspecific correlation between relative growth rates and survival of juveniles. This negative correlation is most likely caused by a trade-off between carbon allocation to growth vs. allocation to defense and storage. Nonstructural carbohydrates (NSC) stored in stems allow plants to overcome periods of stress and should enhance survival. In order to assess how species differ in carbohydrate storage in relation to juvenile light requirements, growth, and survival, we quantified NSC concentrations and pool sizes in sapling stems of 85 woody species in moist semi-evergreen and dry deciduous tropical forests in the rainy season in Bolivia. Moist forest species averaged higher NSC concentrations than dry forest species. Carbohydrate concentrations and pool sizes decreased with the light requirements of juveniles of the species in the moist forest but not in the dry forest. Combined, these results suggest that storage is especially important for species that regenerate in persistently shady habitats, as in the understory of moist evergreen forests. For moist forest species, sapling survival rates increased with NSC concentrations and pool sizes while growth rates declined with the NSC concentrations and pool sizes. No relationships were found for dry forest species. Carbon allocation to storage contributes to the growth-survival trade-off through its positive effect on survival. And, a continuum in carbon storage strategies contributes to a continuum in light requirements among species. The link between storage and light requirements is especially strong in moist evergreen forest where species sort out along a light gradient, but disappears in dry deciduous forest where light is a less limiting resource and species sort out along drought and fire gradients.  相似文献   

12.
Sezen UU  Chazdon RL  Holsinger KE 《Ecology》2007,88(12):3065-3075
Iriartea deltoidea (Arecaceae) is an abundant canopy palm with a wide geographic distribution in Neotropical wet forests. We analyzed the genetic profile across three generations of Iriartea within a 43-ha area encompassing two areas of second-growth and adjoining old-growth forest at La Selva Biological Field Station in northeastern Costa Rica. A total of 311 reproductively mature trees, 99 large saplings, 207 small saplings, and 601 seedlings were genotyped using 141 AFLP loci. Parentage analysis revealed high dispersal distances, both for seed (over 2.3 km) and pollen (over 3.8 km), indicating a large genetic neighborhood within La Selva Biological Station. In a 20-ha area of second growth, the founding palm population was dominated by a small number of parental trees located in the adjacent old-growth forest; two old-growth trees contributed 48% of the second-growth genes. The genetic diversity of reproductively mature trees in this second-growth forest was significantly reduced compared to adjacent old-growth forest. Within 400 m of the border with old-growth forest, we observed a similar reduction of genetic diversity in saplings, and an even greater loss of genetic diversity in the second generation of seedlings. Nearly half of these seedlings were offspring of local parents. In contrast, in the distant portion of second-growth forest (400-800 m from the old-growth border), parentage analysis showed that 40% of seedlings originated from outside the study area and only 10% were offspring of local parents. These high levels of gene flow maintained genetic diversity in saplings and seedlings similar to levels observed in old-growth forest. Our findings highlight the importance of gene flow from diverse seed and pollen sources for sustaining levels of genetic diversity of tree populations in second-growth forests.  相似文献   

13.
Flinn KM 《Ecology》2007,88(12):3103-3114
Assessing the relative roles of dispersal limitation and environmental effects in population dynamics and community assembly is fundamental to understanding patterns of species distribution and diversity. In forests growing on abandoned agricultural lands, both legacies of vegetation disturbance and changes in the abiotic environment shape the diversity and composition of recovering communities. Here I specify how interactions among historical, environmental, and biological factors influence species distributions, focusing on three fern species with contrasting distributions across forests of different history in central New York, USA: Dryopteris carthusiana, Dryopteris intermedia, and Polystichum acrostichoides. Using population surveys, spore-trap and spore-bank studies, and a three-year field experiment, I compare demographic rates among species and between forest types to determine which life history stages limit colonization and which traits explain species distributions. Adult plants of all three species were larger and more likely to produce spores in post-agricultural forests than in adjacent, uncleared stands. Though lower population densities led to fewer spores in post-agricultural soils, spore availability still exceeded recruitment by four to five orders of magnitude. Sowing additional spores had relatively little effect, while microhabitat conditions had the greatest impact on establishment rates. Given similar microsites, the two forest types had equal rates of establishment, but some forest-floor features preferentially occupied by juvenile plants were less frequent in post-agricultural stands. The availability of suitable sites for establishment, created by small-scale heterogeneity on forest floors, thus limits both the growth of fern populations and the colonization of new habitats. In fact, reduced microtopographic variation in post-agricultural forests may represent a greater hindrance to plant establishment than changes in mean environmental conditions. Among the three fern species, establishment rates differed as species distributions would predict, with the strongest colonizer consistently having the highest rates and the slowest colonizer the lowest. Rather than random or trait-mediated dispersal, the different distributions of these species reflect life history traits that determine establishment rates and thus colonization ability. This case study demonstrates that ecological interactions based on the unique life histories of individual species can override dispersal in determining species distributions.  相似文献   

14.
Lemurs and the Regeneration of Dry Deciduous Forest in Madagascar   总被引:2,自引:0,他引:2  
Abstract: We sought to assess the role of lemurs for seed dispersal in the dry deciduous forest of western Madagascar and the possible consequences of the demise of lemurs for forest regeneration. Forest regeneration was studied in eight plots in two large blocks of primary forest and in seven fragments of primary forest (1 plot per fragment). In 4 of the 15 study plots, the abundance of saplings was negatively and significantly correlated ( p < 0.05) with the abundance of mature individuals of the same tree species. In another 10 study plots there were negative correlations, although these were not significant on the community level. Second-order statistics were significant with p < 0.001 and indicated that seed dispersal away from the parent trees was important for successful establishment of saplings. Apart from possibly the bush pig ( Potamochoerus larvatus ), only one vertebrate species of the dry forest, the brown lemur ( Eulemur fulvus ), ingested seeds> 11 mm long and passed them through its digestive tract unharmed. These results for lemurs were based on direct observations and fecal analyses. To evaluate the role of E. fulvus , we compared regeneration in forest plots with and without E. fulvus . In forest fragments without E. fulvus , fewer lemur-dispersed tree species regenerated than would be expected based on the presence of mature tree species that are lemur-dispersed ( p < 0.05). No such effect was seen in primary forests with E. fulvus or for trees whose seeds can also be dispersed by other vertebrates. Thus, regeneration of the dry deciduous forest of western Madagascar with the complete set of primary forest tree species seems to depend upon the presence of E. fulvus .  相似文献   

15.
Poorter L  Bongers L  Bongers F 《Ecology》2006,87(5):1289-1301
Tree architecture is an important determinant of the height extension, light capture, and mechanical stability of trees, and it allows species to exploit the vertical height gradient in the forest canopy and horizontal light gradients at the forest floor. Tropical tree species partition these gradients through variation in adult stature (Hmax) and light demand. In this study we compare 22 architectural traits for 54 Bolivian moist-forest tree species. We evaluate how architectural traits related to Hmax vary with tree size, and we present a conceptual scheme in which we combine the two axes into four different functional groups. Interspecific correlations between architecture and Hmax varied strongly from negative to positive, depending on the reference sizes used. Stem height was positively related to Hmax at larger reference diameters (14-80 cm). Species height vs. diameter curves often flattened toward their upper ends in association with reproductive maturity for species of all sizes. Thus, adult understory trees were typically shorter than similar-diameter juveniles of larger species. Crown area was negatively correlated with Hmax at small reference heights and positively correlated at larger reference heights (15-34 m). Wide crowns allow the small understory species to intercept light over a large area at the expense of a reduced height growth. Crown length was negatively correlated with Hmax at intermediate reference heights (4-14 m). A long crown enables small understory species to maximize light interception in a light-limited environment. Light-demanding species were characterized by orthotropic stems and branches, large leaves, and a monolayer leaf arrangement. They realized an efficient height growth through the formation of narrow and shallow crowns. Light demand turned out to be a much stronger predictor of tree architecture than Hmax, probably because of the relatively low, open, and semi-evergreen canopy at the research site. The existence of four functional groups (shade-tolerant, partial-shade-tolerant, and long- and short-lived pioneer) was confirmed by the principal component and discriminant analysis. Both light demand and Hmax capture the major variation in functional traits found among tropical rain forest tree species, and the two-way classification scheme provides a straightforward model to understand niche differentiation in tropical forests.  相似文献   

16.
17.
Nepstad DC  Tohver IM  Ray D  Moutinho P  Cardinot G 《Ecology》2007,88(9):2259-2269
Severe drought episodes such as those associated with El Ni?o Southern Oscillation (ENSO) events influence large areas of tropical forest and may become more frequent in the future. One of the most important forest responses to severe drought is tree mortality, which alters forest structure, composition, carbon content, and flammability, and which varies widely. This study tests the hypothesis that tree mortality increases abruptly during drought episodes when plant-available soil water (PAW) declines below a critical minimum threshold. It also examines the effect of tree size, plant life form (palm, liana, tree) and potential canopy position (understory, midcanopy, overstory) on drought-induced plant mortality. A severe, four-year drought episode was simulated by excluding 60% of incoming throughfall during each wet season using plastic panels installed in the understory of a 1-ha forest treatment plot, while a 1-ha control plot received normal rainfall. After 3.2 years, the treatment resulted in a 38% increase in mortality rates across all stems >2 cm dbh. Mortality rates increased 4.5-fold among large trees (>30 cm dbh) and twofold among medium trees (10-30 cm dbh) in response to the treatment, whereas the smallest stems were less responsive. Recruitment rates did not compensate for the elevated mortality of larger-diameter stems in the treatment plot. Overall, lianas proved more susceptible to drought-induced mortality than trees or palms, and potential overstory tree species were more vulnerable than midcanopy and understory species. Large stems contributed to 90% of the pretreatment live aboveground biomass in both plots. Large-tree mortality resulting from the treatment generated 3.4 times more dead biomass than the control plot. The dramatic mortality response suggests significant, adverse impacts on the global carbon cycle if climatic changes follow current trends.  相似文献   

18.
Baraloto C  Morneau F  Bonal D  Blanc L  Ferry B 《Ecology》2007,88(2):478-489
We investigated the relationship between habitat association and physiological performance in four congeneric species pairs exhibiting contrasting distributions between seasonally flooded and terra firme habitats in lowland tropical rain forests of French Guiana, including Virola and Iryanthera (Myristicaceae), Symphonia (Clusiaceae), and Eperua (Caesalpiniaceae). We analyzed 10-year data sets of mapped and measured saplings (stems >150 cm in height and <10 cm diameter at breast height [dbh]) and trees (stems > or =10 cm dbh) across 37.5 ha of permanent plots covering a 300-ha zone, within which seasonally flooded areas (where the water table never descends below 1 m) have been mapped. Additionally, we tested the response of growth, survival, and leaf functional traits of these species to drought and flood stress in a controlled experiment. We tested for habitat preference using a modification of the torus translation method. Strong contrasting associations of the species pairs of Iryanthera, Virola, and Symphonia were observed at the sapling stage, and these associations strengthened for the tree stage. Neither species of Eperua was significantly associated with flooded habitats at the sapling stage, but E. falcata was significantly and positively associated with flooded forests at the tree stage, and trees of E. grandiflora were found almost exclusively in nonflooded habitats. Differential performance provided limited explanatory support for the observed habitat associations, with only congeners of Iryanthera exhibiting divergent sapling survival and tree growth. Seedlings of species associated with flooded forest tended to have higher photosynthetic capacity than their congeners at field capacity. In addition, they tended to have the largest reductions in leaf gas exchange and growth rate in response to experimental drought stress and the least reductions in response to experimental inundation. The corroboration of habitat association with differences in functional traits and, to a lesser extent, measures of performance provides an explanation for the regional coexistence of these species pairs. We suggest that specialization to seasonally flooded habitats may explain patterns of adaptive radiation in many tropical tree genera and thereby provide a substantial contribution to regional tree diversity.  相似文献   

19.
Butler DW  Gleason SM  Westoby M 《Ecology》2012,93(6):1275-1282
Tissue turnover is a critical facet of plant life history variation. This study quantifies losses from setbacks to growth of terminal woody shoots 1.2m long, across 83 species and seven sites in eastern Australia. Setbacks, where the leading meristem had been removed or died and a new leader had emerged, were common (median three per shoot). Shoots had lost an average of 0.25 m of lead-stem length for 1.2 m net shoot-length gain. Insects like girdlers and borers were prominent causes of large setbacks. The sites spanned tropical to temperate and humid to semiarid climates, but variation in stem loss was much greater across species than across sites. We measured 17 plant functional traits related to growth form, mechanics, hydraulics, and economics. Only four traits were correlated with variation across species in stem losses: stem diameter, stem nitrogen content, bark thickness, and maximum photosynthetic rate. The correlations were weak. Stem specific gravity (wood density) showed no correlation with risk. Our results suggest a pattern similar to the growth risk trade-off known for herbaceous plants, where traits associated with fast growth increase tissue turnover and herbivory, but the weak correlations leave ample scope for other influences that remain to be identified.  相似文献   

20.
Rain forest fragmentation and the proliferation of successional trees   总被引:9,自引:0,他引:9  
The effects of habitat fragmentation on diverse tropical tree communities are poorly understood. Over a 20-year period we monitored the density of 52 tree species in nine predominantly successional genera (Annona, Bellucia, Cecropia, Croton, Goupia, Jacaranda, Miconia, Pourouma, Vismia) in fragmented and continuous Amazonian forests. We also evaluated the relative importance of soil, topographic, forest dynamic, and landscape variables in explaining the abundance and species composition of successional trees. Data were collected within 66 permanent 1-ha plots within a large (approximately 1000 km2) experimental landscape, with forest fragments ranging from 1 to 100 ha in area. Prior to forest fragmentation, successional trees were uncommon, typically comprising 2-3% of all trees (> or =10 cm diameter at breast height [1.3 m above the ground surface]) in each plot. Following fragmentation, the density and basal area of successional trees increased rapidly. By 13-17 years after fragmentation, successional trees had tripled in abundance in fragment and edge plots and constituted more than a quarter of all trees in some plots. Fragment age had strong, positive effects on the density and basal area of successional trees, with no indication of a plateau in these variables, suggesting that successional species could become even more abundant in fragments over time. Nonetheless, the 52 species differed greatly in their responses to fragmentation and forest edges. Some disturbance-favoring pioneers (e.g., Cecropia sciadophylla, Vismia guianensis, V. amazonica, V. bemerguii, Miconia cf. crassinervia) increased by >1000% in density on edge plots, whereas over a third (19 of 52) of all species remained constant or declined in numbers. Species responses to fragmentation were effectively predicted by their median growth rate in nearby intact forest, suggesting that faster-growing species have a strong advantage in forest fragments. An ordination analysis revealed three main gradients in successional-species composition across our study area. Species gradients were most strongly influenced by the standlevel rate of tree mortality on each plot and by the number of nearby forest edges. Species-composition also varied significantly among different cattle ranches, which differed in their surrounding matrices and disturbance histories. These same variables were also the best predictors of total successional-tree abundance and species richness. Successional-tree assemblages in fragment interior plots (>150 m from edge), which are subjected to fragment area effects but not edge effects, did not differ significantly from those in intact forest, indicating that area effects per se had little influence on successional trees. Soils and topography also had little discernable effect on these species. Collectively, our results indicate that successional-tree species proliferate rapidly in fragmented Amazonian forests, largely as a result of chronically elevated tree mortality near forest edges and possibly an increased seed rain from successional plants growing in nearby degraded habitats. The proliferation of fast-growing successional trees and correlated decline of old-growth trees will have important effects on species composition, forest dynamics, carbon storage, and nutrient cycling in fragmented forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号