首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cornell HV  Karlson RH  Hughes TP 《Ecology》2007,88(7):1707-1715
Community similarity is the proportion of species richness in a region that is shared on average among communities within that region. The slope of local richness (alpha diversity) regressed on regional richness (gamma diversity) can serve as an index of community similarity across regions with different regional richness. We examined community similarity in corals at three spatial scales (among transects at a site, sites on an island, and islands within an island group) across a 10 000-km longitudinal diversity gradient in the west-central Pacific Ocean. When alpha diversity was regressed on gamma diversity, the slopes, and thus community similarity, increased with scale (0.085, 0.261, and 0.407, respectively) because a greater proportion of gamma diversity was subsumed within alpha diversity as scale increased. Using standard randomization methods, we also examined how community similarity differed between observed and randomized assemblages and how this difference was affected by spatial separation of species within habitat types and specialization of species to three habitat types (reef flats, crests, and slopes). If spatial separation within habitat types and/or habitat specialization (i.e., underdispersion) occurs, fewer species are shared among assemblages than the random expectation. When the locations of individual coral colonies were randomized within and among habitat types, community similarity was 46-47% higher than that for observed assemblages at all three scales. We predicted that spatial separation of coral species within habitat types should increase with scale due to dispersal/extinction dynamics in this insular system, but that specialization of species to different habitat types should not change because habitat differences do not change with scale. However, neither habitat specialization nor spatial separation within habitat types differed among scales. At the two larger scales, each accounted for 22-24% of the difference in community similarity between observed and randomized assemblages. At the smallest scale (transect-site), neither spatial separation within habitat types nor habitat specialization had significant effects on community similarity, probably due to the small size of transect samples. The results suggest that coral species can disperse among islands in an island group as easily as they can among sites on an island over time scales that are relevant to their establishment and persistence on reefs.  相似文献   

2.
Feeley KJ  Terborgh JW 《Ecology》2006,87(1):144-150
Habitat fragmentation can alter herbivore abundances, potentially causing changes in the plant community that can propagate through the food web and eventually influence other important taxonomic groups such as birds. Here we test the relationship between the density of red howler monkeys (Alouatta seniculus) and bird species richness on a large set of recently isolated land-bridge islands in Lago Guri, Venezuela (n = 29 islands). Several of these islands host relict populations of howler monkeys at densities up to more than 30 times greater than those on the mainland. These "hyperabundant" herbivores previously have been shown to have a strong positive influence on aboveground plant productivity. We predicted that this should lead to a positive, indirect effect of howler monkey density on bird species richness. After accounting for passive sampling (the tendency for species richness to be positively associated with island area, regardless of differences in habitat quality) we found a significant positive correlation between howler monkey density and bird species richness. A path analysis incorporating data on tree growth rates from a subset of islands (n = 9) supported the hypothesis that the effect of howler monkeys on the resident bird communities is indirect and is mediated through changes in plant productivity and habitat quality. These results highlight the potential for disparate taxonomic groups to be related through indirect interactions and trophic cascades.  相似文献   

3.
Barber NA  Marquis RJ 《Ecology》2011,92(3):699-708
Ecological communities are structured by both deterministic, niche-based processes and stochastic processes such as dispersal. A pressing issue in ecology is to determine when and for which organisms each of these types of processes is important in community assembly. The roles of deterministic and stochastic processes have been studied for a variety of communities, but very few researchers have addressed their contribution to insect herbivore community structure. Insect herbivore niches are often described as largely shaped by the antagonistic pressures of predation and host plant defenses. However host plants are frequently discrete patches of habitat, and their spatial arrangement can affect herbivore dispersal patterns. We studied the roles of predation, host plant quality, and host spatial proximity for the assembly of a diverse insect herbivore community on Quercus alba (white oak) across two growing seasons. We examined abundances of feeding guilds to determine if ecologically similar species responded similarly to variation in niches. Most guilds responded similarly to leaf quality, preferring high-nitrogen, low-tannin host plants, particularly late in the growing season, while bird predation had little impact on herbivore abundance. The communities on the high-quality plants tended to be larger and, in some cases, have greater species richness. We analyzed community composition by correlating indices of community similarity with predator presence, leaf quality similarity, and host plant proximity. Birds did not affect community composition. Community similarity was significantly associated with distance between host plants and uncorrelated with leaf quality similarity. Thus although leaf quality significantly affected the total abundance of herbivores on a host plant, in some cases leading to increased species richness, dispersal limitation may weaken this relationship. The species composition of these communities may be driven by stochastic processes rather than variation in host plant characteristics or differential predation by insectivorous birds.  相似文献   

4.
Effects of Forest Fragmentation on a Dung Beetle Community in French Guiana   总被引:4,自引:0,他引:4  
Abstract:  Fragmentation is the most common disturbance induced by humans in tropical forests. Some insect groups are particularly suitable for studying the effects of fragmentation on animal communities because they are taxonomically and ecologically homogenous. We investigated the effects of forest fragmentation on a dung beetle species community in the forest archipelago created in 1994–1995 by the dam of Petit Saut, French Guiana. We set and baited an equal number of pitfall traps for dung beetles on three mainland sites and seven island sites. The sites ranged from 1.1 to 38 ha. In 250 trap days, we captured 50 species in 19 genera. Diversity indices were high (2.18–4.06). The lowest diversity was on the small islands and one mainland site. Species richness and abundance were positively related to fragment area but not to distance from mainland or distance to the larger island. The islands had lower species richness and population than mainland forest, but rarefied species richness was relatively invariant across sites. There was a marked change in species composition with decreasing fragment that was not caused by the presence of a common fauna of disturbed-area species on islands. Small islands differed from larger islands, which did not differ significantly from mainland sites. Partial correlation analyses suggested that species richness and abundance of dung beetle species were positively related to the number of species of nonflying mammals and the density index of howler monkeys ( Alouatta seniculus ), two parameters positively related to fragment area.  相似文献   

5.
Fragments as Islands: a Synthesis of Faunal Responses to Habitat Patchiness   总被引:7,自引:0,他引:7  
Abstract:  Scientific interest in the impact of habitat fragmentation on biodiversity is increasing, but our understanding of fragmentation is clouded by a lack of appreciation for fundamental similarities and differences across studies representing a wide range of taxa and landscape types. In an effort to synthesize data describing ecological responses of animals to fragmentation across two classes of independent variables (taxonomic group and landscape), we sampled 148 studies of five major faunal groups from the primary literature and analyzed data on 13 variables extracted from those studies. We focused our analyses on three classes of dependent variables (effects of area and isolation on species richness, z values, and nestedness and species composition). Area ranged over more orders of magnitude than isolation and tended to explain more variation in species richness than isolation. There were few matrix or taxon effects on the patterns we investigated, although we did find that sky islands tended to manifest isolation effects on both species richness and nestedness more frequently than other patch types. Sky islands may offer insight into the future of habitat patches fragmented by contemporary habitat loss, and because they show a stronger effect of isolation than other patch types, we suggest that isolation will play an increasing role in the biology of habitat fragments. We use multiple lines of evidence to suggest that our understanding of the role of isolation on community assembly in fragmented landscapes is inadequate. Finally, our observation that consistent taxonomic differences in community patterns were minimal suggests that conservation actions intended to mitigate the negative effects of extinction may have far-reaching effects across taxonomic groups.  相似文献   

6.
Megadams are among the key modern drivers of habitat and biodiversity loss in emerging economies. The Balbina Hydroelectric Dam of Central Brazilian Amazonia inundated 312,900 ha of primary forests and created approximately 3500 variable-sized islands that still harbor vertebrate populations after nearly 3 decades after isolation. We estimated the species richness, abundance, biomass, composition, and group size of medium- to large-bodied forest vertebrates in response to patch, landscape, and habitat-quality metrics across 37 islands and 3 continuous forest sites throughout the Balbina archipelago. We conducted 1168 km of diurnal censuses and had 12,420 camera-trapping days along 81 transects with 207 camera stations. We determined the number of individuals (or groups) detected per 10 km walked and the number of independent photographs per 10 camera-trapping days, respectively, for each species. We recorded 34 species, and patch area was the most significant predictor of vertebrate population relative abundance and aggregate biomass. The maximum group size of several group-living species was consistently larger on large islands and in continuous patches than on small islands. Most vertebrate populations were extirpated after inundation. Remaining populations are unlikely to survive further ecological disruptions. If all vertebrate species were once widely distributed before inundation, we estimated that approximately 75% of all individual vertebrates were lost from all 3546 islands and 7.4% of the animals in all persisting insular populations are highly likely to be extirpated. Our results demonstrate that population abundance estimates should be factored into predictions of community disassembly on small islands to robustly predict biodiversity outcomes. Given the rapidly escalating hydropower infrastructure projects in developing counties, we suggest that faunal abundance and biomass estimates be considered in environmental impact assessments and large strictly protected reserves be established to minimize detrimental effects of dams on biodiversity. Conserving large tracts of continuous forests represents the most critical conservation measure to ensure that animal populations can persist at natural densities in Amazonian forests.  相似文献   

7.
Meynard CN  Quinn JF 《Ecology》2008,89(4):981-990
Spatial structure in metacommunities and their relationships to environmental gradients have been linked to opposing theories of community assembly. In particular, while the species sorting hypothesis predicts strong environmental influences, the neutral theory, the mass effect, and the patch dynamics frameworks all predict differing degrees of spatial structure resulting from dispersal and competition limitations. Here we study the relative influence of environmental gradients and spatial structure in bird assemblages of the Chilean temperate forest. We carried out bird and vegetation surveys in South American temperate forests at 147 points located in nine different protected areas in central Chile, and collected meteorological and productivity data for these localities. Species composition dissimilarities between sites were calculated, as well as three indices of bird local diversity: observed species richness, Chao estimate of richness, and Shannon diversity. A stepwise multiple regression and partial regression analyses were used to select a small number of environmental factors that predicted bird species diversity. Although diversity indices were spatially autocorrelated, environmental factors were sufficient to account for this autocorrelation. Moreover, community dissimilarities were not significantly related to distance between sites. We then tested a multivariate hypothesis about climate, vegetation, and avian diversity interactions using a structural equation modeling (SEM) approach. The SEM showed that climate and area of fragments have important indirect effects on avian diversity, mediated through changes in vegetation structure. Given the scale of this study, the metacommunity framework provides useful insights into the mechanisms driving bird assemblages in this region. Taken together, the weak spatial structure of community composition and diversity, as well as the strong environmental effects on bird diversity, support the interpretation that species sorting has a predominant role in structuring avian assemblages in the region.  相似文献   

8.
Abstract:  On Pacific islands non-native rats and mongooses threaten many native species. In Fiji we compared visitation rates of rats and mongooses at bait stations and measured biomass of leaf-litter invertebrates to assess the relative predation pressure from these species in forest areas at different distances from the forest edge. Forest areas over 5 km from the forest edge had significantly fewer baits encountered by rats or mongooses than did natural forest areas nearer agricultural and urban habitats. Remote forest areas may function as a last refuge for island species threatened by predation from non-native rats and mongooses. The biomass of leaf-litter invertebrates in remote forest areas was higher, indicating a refuge effect for some taxa targeted by rats and mongooses. Protection of the few remaining large blocks of natural forests on Pacific islands may be the most cost-effective approach for conserving many island endemics threatened by rats and mongooses. Logging roads can compromise this refuge effect by acting as dispersal routes for rats into natural forests.  相似文献   

9.
Chiba S 《Ecology》2007,88(7):1738-1746
The relationship between species richness and environmental variables may change depending on habitat structure, dispersal ability, species mixing, and community adaptation to the environment. It is crucial to know how these factors regulate the environment-diversity relationship. The land molluscan fauna of the Ogasawara Islands in the West Pacific is an excellent model system to address this question because of the high species endemicity (> 90%), small area, and simple habitat structure of the islands. I examined relationships among indigenous species composition, richness, and habitat condition, and especially productivity and forest moisture on the island of Anijima. Two major communities of snails could be distinguished by detrended correspondence analysis (DCA): one group dominated in a moist habitat with high productivity, and the other group dominated in a dry habitat with low productivity. However, species richness became highest at the intermediate condition between the habitats in which the two snail communities were dominant, so that species richness showed a hump-shaped relationship with moisture and productivity. In contrast, the species richness of the snail community in the moist habitat showed a monotonically positive correlation, and that in the dry habitat showed a monotonically negative correlation with moisture and productivity. Thus, the greater species richness in intermediate moisture and productivity resulted from the ecotone effect or community overlap at the transitional areas, where faunas with different ecologies can meet in a single site. These findings suggest that hump-shaped productivity-diversity relationships in land Mollusca would reflect the ecotone effect as a result of the mixing of species adapted to either fertile habitats or sterile habitats.  相似文献   

10.
Genetic variation in the mangrove periwinkle Littorina angulifera   总被引:2,自引:0,他引:2  
Twenty populatios of Littorina angulifera, inhabiting islands composed of the mangrove tree Rhizophora mangle, were assayed at an esterase locus to determine whether genetic differentiation was associated with distance between populations. It was predicted, on the basis of larval dispersal in this species, that genetic differentiation between populations on islands separated by long distances should be greater than those on islands located near each other. A chi0square test of homogeneity revealed significant differences in esterase gene frequencies among the 20 island populations. However, there was no association of distance between islands and genetic heterogeneity. In addition, a cline in gene frequency was found to be assiciated with latitude. Factors responsible for the observed pattern of heterogeneity at the esterase locus are discussed.  相似文献   

11.
Mutualistic networks are critical to biological diversity maintenance; however, their structures and functionality may be threatened by a swiftly changing world. In the Amazon, the increasing number of dams poses a large threat to biological diversity because they greatly alter and fragment the surrounding landscape. Tight coevolutionary interactions typical of tropical forests, such as the ant–myrmecophyte mutualism, where the myrmecophyte plants provide domatia nesting space to their symbiotic ants, may be jeopardized by the landscape changes caused by dams. We analyzed 31 ant–myrmecophyte mutualistic networks in undisturbed and disturbed sites surrounding Balbina, the largest Central Amazonian dam. We tested how ant–myrmecophyte networks differ among dam‐induced islands, lake edges, and undisturbed forests in terms of species richness, composition, structure, and robustness (number of species remaining in the network after partner extinctions). We also tested how landscape configuration in terms of area, isolation, shape, and neighborhood alters the structure of the ant–myrmecophyte networks on islands. Ant–myrmecophytic networks were highly compartmentalized in undisturbed forests, and the compartments had few strongly connected mutualistic partners. In contrast, networks at lake edges and on islands were not compartmentalized and were negatively affected by island area and isolation in terms of species richness, density, and composition. Habitat loss and fragmentation led to coextinction cascades that contributed to the elimination of entire ant–plant compartments. Furthermore, many myrmecophytic plants in disturbed sites lost their mutualistic ant partners or were colonized by opportunistic, nonspecialized ants. Robustness of ant–myrmecophyte networks on islands was lower than robustness near lake edges and in undisturbed forest and was particularly susceptible to the extinction of plants. Beyond the immediate habitat loss caused by the building of large dams in Amazonia, persistent edge effects and habitat fragmentation associated with dams had large negative effects on animal–plant mutualistic networks. Efectos de la Fragmentación del Paisaje Inducida por Presas sobre Redes Mutualistas Hormiga‐Planta Amazónicas  相似文献   

12.
Abstract: We analyzed the structure and composition of a bird assemblage in a fragmented relict temperate forest located in northcentral Chile ( Fray Jorge National Park). In terms of species composition, the bird assemblage we found in Fray Jorge was more similar to southern temperate forest sites, located more than 1200 km south of Fray Jorge, than to localities found in nearby scrub habitats. The relict character and long-term isolation of the Fray Jorge forest provides a natural experiment with which to establish the potential long-term effects of fragmentation and isolation on southern Chilean temperate forests. Between May 1996 and March 1997, we conducted seasonal surveys of birds in six forest fragments, ranging in size from 0.5 to 22.5 ha, at Fray Jorge. The number of bird species at each forest fragment was positively correlated with fragment area during all seasons. The relict forest system had a steeper species-area slope than that reported for similar temperate-forest bird assemblages in forest fragments within Chiloé Island and for islands across the Chiloé Archipelago in southern Chile. In this regard, this bird fauna resembled a depauperate oceanic archipelago. This difference in area effects is likely a consequence of the minimization of rescue effects because of the absence of large source forest areas nearby and the long-term isolation of the system. In addition, the distribution of species among forest fragments in Fray Jorge was not random, showing a nested subset pattern. Thus, some species occur across all fragments, regardless of their area, and therefore are less affected by habitat fragmentation and less prone to local extinction. These results suggest that, for south-temperate forest birds, large fragments (or reserves) should afford better protection against extinction than small forest patches.  相似文献   

13.
Poulsen JR  Clark CJ  Bolker BM 《Ecology》2012,93(3):500-510
The loss of animals in tropical forests may alter seed dispersal patterns and reduce seedling recruitment of tree species, but direct experimental evidence is scarce. We manipulated dispersal patterns of Manilkara mabokeensis, a monkey-dispersed tree, to assess the extent to which spatial distributions of seeds drive seedling recruitment. Based on the natural seed shadow, we created seed distributions with seeds deposited under the canopy ("no dispersal"), with declining density from the tree ("natural dispersal"), and at uniform densities ("good dispersal"). These distributions mimicked dispersal patterns that could occur with the extirpation of monkeys, low levels of hunting, and high rates of seed dispersal. We monitored seedling emergence and survival for 18 months and recorded the number of leaves and damage to leaves. "Good dispersal" increased seedling survival by 26%, and "no dispersal" decreased survival by 78%, relative to "natural dispersal." Using a mixed-effects survival model, we decoupled the distance and density components of the seed shadow: seedling survival depended on the seed density, but not on the distance from the tree. Although community seedling diversity tended to decrease with longer dispersal distances, we found no conclusive evidence that patterns of seed dispersal influence the diversity of the seedling community. Local seed dispersal does affect seedling recruitment and survival, with better dispersal resulting in higher seedling recruitment; hence the loss of dispersal services that comes with the reduction or extirpation of seed dispersers will decrease regeneration of some tree species.  相似文献   

14.
Abstract:  Hunting of hornbills by tribal communities is widespread in logged foothill forests of the Indian Eastern Himalaya. We investigated whether the decline of hornbills has affected the dispersal and recruitment of 3 large-seeded tree species. We hypothesized that 2 low-fecundity tree species , Chisocheton paniculatus and Dysoxylum binectariferum (Meliaceae) bearing arillate fruits, are more dispersal limited than a prolifically fruiting drupaceous tree Polyalthia simiarum (Annonaceae), which has potential dispersers other than hornbills. We estimated the abundance of large avian frugivores during the fruiting season along transects in 2 protected and 2 disturbed forests. We compared recruitment of the tree species near (<10 m) and far (10–40 m) from parent trees at protected and disturbed sites. Median abundance of Great ( Buceros bicornis ), Wreathed ( Aceros undulatus ), and Oriental Pied Hornbills ( Anthracoceros albirostris ) were significantly lower in disturbed forests, but sites did not differ in abundances of the Mountain Imperial Pigeon ( Ducula badia ). Overall, tree species showed more severely depressed recruitment of seedlings (77% fewer) and juveniles (69% fewer) in disturbed than in protected forests. In disturbed forests, 93% fewer seedlings of C. paniculatus were beyond parental crowns, and a high number of all seedlings (42%) accumulated directly under reproductive adults. In contrast , D. binectariferum and P. simiarum were recruitment rather than dispersal limited, with fewer dispersed seedlings surviving in disturbed than in protected forests. Results are consistent with the idea that disturbance disrupts mutualisms between hornbills and some large-seeded food plants, with the caveat that role redundancy within even small and specialized disperser assemblages renders other tree species less vulnerable to loss of regular dispersal agents.  相似文献   

15.
Abstract: We investigated the persistence of three medium-sized (2–9 kg), rare forest mammals in the fragmented mist-belt Podocarpus forests of the midlands of KwaZulu-Natal Province, South Africa. We recorded patch occupancy of blue duiker (   Philantomba monticola ), tree hyrax (   Dendrohyrax arboreus ), and samango monkey ( Cercopithecus mitis labiatus ) in 199 forest patches. Their rarity is ascribed to the fragmentation and destruction of their forest habitat. Incidence functions, derived from presence and absence data, were formulated as generalized linear models, and environmental effects were included in the fitted logistic models. The small and mostly solitary hyrax and duiker persisted in smaller patches than the large and social monkey. Although this result follows expectations based on relative home-range sizes of each species, the incidence probability of the samango monkey was invariant with increasing isolation, whereas a gradual decrease with increasing isolation was observed for the hyrax and duiker. Group dynamics may inhibit dispersal and increase the isolation effect in social species such as samango monkeys. A mainland-island metapopulation model adequately describes patterns of patch occupancy by the hyrax and duiker, but the monkeys' poor dispersal ability and obvious area-dependent extirpation suggest that they exist in transient, nonequilibrium (declining) metapopulations. Through identification of large forest patches for careful protection and management, the survival of all three species—especially the monkey—could be prolonged. Because no functional metapopulation may exist for the monkey, however, this is an emergency measure. For the duiker and hyrax, larger patches should form part of a network of smaller and closer patches in a natural matrix.  相似文献   

16.
Abstract:  Seminatural grasslands in Europe are susceptible to habitat destruction and fragmentation that result in negative effects on biodiversity because of increased isolation and area effects on extinction rate. However, even small habitat patches of seminatural grasslands might be of value for conservation and restoration of species richness in a landscape with a long history of management, which has been argued to lead to high species richness. We tested whether ant communities have been negatively affected by habitat loss and increased isolation of seminatural grasslands during the twentieth century. We examined species richness and community composition in seminatural grasslands of different size in a mosaic landscape in Central Sweden. Grasslands managed continuously over centuries harbored species-rich and ecologically diverse ant communities. Grassland remnant size had no effect on ant species richness. Small grassland remnants did not harbor a nested subset of the ant species of larger habitats. Community composition of ants was mainly affected by habitat conditions. Our results suggest that the abandonment of traditional land use and the encroachment of trees, rather than the effects of fragmentation, are important for species composition in seminatural grasslands. Our results highlight the importance of considering land-use continuity and dispersal ability of the focal organisms when examining the effects of habitat loss and fragmentation on biodiversity. Landscape history should be considered in conservation programs focusing on effects of land-use change.  相似文献   

17.
There are concerns that Reduced Emissions from Deforestation and forest Degradation (REDD+) may fail to deliver potential biodiversity cobenefits if it is focused on high carbon areas. We explored the spatial overlaps between carbon stocks, biodiversity, projected deforestation threats, and the location of REDD+ projects in Indonesia, a tropical country at the forefront of REDD+ development. For biodiversity, we assembled data on the distribution of terrestrial vertebrates (ranges of amphibians, mammals, birds, reptiles) and plants (species distribution models for 8 families). We then investigated congruence between different measures of biodiversity richness and carbon stocks at the national and subnational scales. Finally, we mapped active REDD+ projects and investigated the carbon density and potential biodiversity richness and modeled deforestation pressures within these forests relative to protected areas and unprotected forests. There was little internal overlap among the different hotspots (richest 10% of cells) of species richness. There was also no consistent spatial congruence between carbon stocks and the biodiversity measures: a weak negative correlation at the national scale masked highly variable and nonlinear relationships island by island. Current REDD+ projects were preferentially located in areas with higher total species richness and threatened species richness but lower carbon densities than protected areas and unprotected forests. Although a quarter of the total area of these REDD+ projects is under relatively high deforestation pressure, the majority of the REDD+ area is not. In Indonesia at least, first‐generation REDD+ projects are located where they are likely to deliver biodiversity benefits. However, if REDD+ is to deliver additional gains for climate and biodiversity, projects will need to focus on forests with the highest threat to deforestation, which will have cost implications for future REDD+ implementation.  相似文献   

18.
With growing interest in the effects of biodiversity on disease, there is a critical need for studies that empirically identify the mechanisms underlying the diversity-disease relationship. Here, we combined wetland surveys of host community structure with mechanistic experiments involving a multi-host parasite to evaluate competing explanations for the dilution effect. Sampling of 320 wetlands in California indicated that snail host communities were strongly nested, with competent hosts for the trematode Ribeiroia ondatrae predominating in low-richness assemblages and unsuitable hosts increasingly present in more diverse communities. Moreover, competent host density was negatively associated with increases in snail species richness. These patterns in host community assembly support a key prerequisite underlying the dilution effect. Results of multigenerational mesocosm experiments designed to mimic field-observed community assemblages allowed us to evaluate the relative importance of host density and diversity in influencing parasite infection success. Increases in snail species richness (from one to four species) had sharply negative effects on the density of infected hosts (-90% reduction). However, this effect was indirect; competition associated with non-host species led to a 95% reduction in host density (susceptible host regulation), owing primarily to a reduction in host reproduction. Among susceptible hosts, there were no differences in infection prevalence as a function of community structure, indicating a lack of support for a direct effect of diversity on infection (encounter reduction). In monospecific conditions, higher initial host densities increased infection among adult hosts; however, compensatory reproduction in the low-density treatments equalized the final number of infected hosts by the next generation, underscoring the relevance of multigenerational studies in understanding the dilution effect. These findings highlight the role of interspecific competition in mediating the relationship between species richness and parasite infection and emphasize the importance of field-informed experimental research in understanding mechanisms underlying the diversity-disease relationship.  相似文献   

19.
There is a lack of quantitative information on the effectiveness of selective‐logging practices in ameliorating effects of logging on faunal communities. We conducted a large‐scale replicated field study in 3 selectively logged moist semideciduous forests in West Africa at varying times after timber extraction to assess post logging effects on amphibian assemblages. Specifically, we assessed whether the diversity, abundance, and assemblage composition of amphibians changed over time for forest‐dependent species and those tolerant of forest disturbance. In 2009, we sampled amphibians in 3 forests (total of 48 study plots, each 2 ha) in southwestern Ghana. In each forest, we established plots in undisturbed forest, recently logged forest, and forest logged 10 and 20 years previously. Logging intensity was constant across sites with 3 trees/ha removed. Recently logged forests supported substantially more species than unlogged forests. This was due to an influx of disturbance‐tolerant species after logging. Simultaneously Simpson's index decreased, with increased in dominance of a few species. As time since logging increased richness of disturbance‐tolerant species decreased until 10 years after logging when their composition was indistinguishable from unlogged forests. Simpson's index increased with time since logging and was indistinguishable from unlogged forest 20 years after logging. Forest specialists decreased after logging and recovered slowly. However, after 20 years amphibian assemblages had returned to a state indistinguishable from that of undisturbed forest in both abundance and composition. These results demonstrate that even with low‐intensity logging (≤3 trees/ha) a minimum 20‐year rotation of logging is required for effective conservation of amphibian assemblages in moist semideciduous forests. Furthermore, remnant patches of intact forests retained in the landscape and the presence of permanent brooks may aid in the effective recovery of amphibian assemblages. Recuperación de Ensambles de Anfibios en Dos Etapas Después de la Tala Selectiva de Bosques Tropicales  相似文献   

20.
Abstract: Epiphytes are diverse and important elements of tropical forests, but as canopy‐dwelling organisms, they are highly vulnerable to deforestation. To assess the effect of deforestation on epiphyte diversity and the potential for epiphyte conservation in anthropogenically transformed habitats, we surveyed the epiphytic vegetation of an Ecuadorian cloud forest reserve and its surroundings. Our study was located on the western slopes of the Andes, a global center of biodiversity. We sampled vascular epiphytes of 110 study plots in a continuous primary forest; 14 primary forest fragments; isolated remnant trees in young, middle‐aged, and old pastures; and young and old secondary forests. It is the first study to include all relevant types of habitat transformation at a single study site and to compare epiphyte diversity at different temporal stages of fragmentation. Epiphyte diversity was highest in continuous primary forest, followed by forest fragments and isolated remnant trees, and lowest in young secondary forests. Spatial parameters of habitat transformation, such as fragment area, distance to the continuous primary forest, or distance to the forest edge from inside the forest, had no significant effect on epiphyte diversity. Hence, the influence of dispersal limitations appeared to be negligible or appeared to operate only over very short distances, whereas microclimatic edge effects acted only in the case of completely isolated trees, but not in larger forest fragments. Epiphyte diversity increased considerably with age of secondary forests, but species assemblages on isolated remnant trees were impoverished distinctly with time since isolation. Thus, isolated trees may serve for recolonization of secondary forests, but only for a relatively short time. We therefore suggest that the conservation of even small patches of primary forest within agricultural landscape matrices is essential for the long‐term maintenance of the high epiphyte diversity in tropical cloud forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号