共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ambio》2004,33(7):1 p following 479
2.
Projected shifts in climate forcing variables such as temperature and precipitation are of great relevance to arctic freshwater ecosystems and biota. These will result in many direct and indirect effects upon the ecosystems and fish present therein. Shifts projected for fish populations will range from positive to negative in overall effect, differ among species and also among populations within species depending upon their biology and tolerances, and will be integrated by the fish within their local aquascapes. This results in a wide range of future possibilities for arctic freshwater and diadromous fishes. Owing to a dearth of basic knowledge regarding fish biology and habitat interactions in the north, complicated by scaling issues and uncertainty in future climate projections, only qualitative scenarios can be developed in most cases. This limits preparedness to meet challenges of climate change in the Arctic with respect to fish and fisheries. 相似文献
3.
This paper presents a review on the implications of climate change on the monitoring, modelling and regulation of persistent organic pollutants (POPs). Current research gaps are also identified and discussed.Long-term data sets are essential to identify relationships between climate fluctuations and changes in chemical species distribution. Reconstructing the influence of climatic changes on POPs environmental behaviour is very challenging in some local studies, and some insights can be obtained by the few available dated sediment cores or by studying POPs response to inter-annual climate fluctuations. Knowledge gaps and future projections can be studied by developing and applying various modelling tools, identifying compounds susceptibility to climate change, local and global effects, orienting international policies.Long-term monitoring strategies and modelling exercises taking into account climate change should be considered when devising new regulatory plans in chemicals management. 相似文献
4.
Climate change has considerably dominated science-policy dialogue, public debate, and subsequently environmental policies since the three “Rio Conventions” were born. This has led to practically independent courses of action of climate change mitigation and biodiversity conservation actions, neglecting potential conflicts among outcomes and with missed opportunities for synergistic measures. Transformative governance principles have been proposed to overcome these limitations. Using a transformative governance lens, we use the case of the Norwegian "Climate Cure 2030" for the Land Use, Land-Use Change and Forestry (LULUCF) sector to, first, illustrate the mechanisms that have led to the choice of climate mitigation measures; second, to analyze the potential consequences of these measures on biodiversity and greenhouse gas (GHG) emissions; and, third, to evaluate alternative measures with potential positive outcomes for biodiversity and GHG emissions/removals. We point to some mechanisms that could support the implementation of these positive actions. Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01679-8. 相似文献
5.
Long-term measurements of ecological effects of warming are often not statistically significant because of annual variability or signal noise. These are reduced in indicators that filter or reduce the noise around the signal and allow effects of climate warming to emerge. In this way, certain indicators act as medium pass filters integrating the signal over years-to-decades. In the Alaskan Arctic, the 25-year record of warming of air temperature revealed no significant trend, yet environmental and ecological changes prove that warming is affecting the ecosystem. The useful indicators are deep permafrost temperatures, vegetation and shrub biomass, satellite measures of canopy reflectance (NDVI), and chemical measures of soil weathering. In contrast, the 18-year record in the Greenland Arctic revealed an extremely high summer air-warming of 1.3 °C/decade; the cover of some plant species increased while the cover of others decreased. Useful indicators of change are NDVI and the active layer thickness. 相似文献
6.
Environmental Science and Pollution Research - Development of bioenergy will be a key component for meeting increasing energy demands while mitigating global warming. With the intent of identifying... 相似文献
7.
We investigated the effects of a warmer climate, and seasonal trends, on the fate of oil spilled in the Arctic. Three well blowout scenarios, two shipping accidents and a pipeline rupture were considered. We used ensembles of numerical simulations, using the OSCAR oil spill model, with environmental data for the periods 2009–2012 and 2050–2053 (representing a warmer future) as inputs to the model. Future atmospheric forcing was based on the IPCC’s A1B scenario, with the ocean data generated by the hydrodynamic model SINMOD. We found differences in “typical” outcome of a spill in a warmer future compared to the present, mainly due to a longer season of open water. We have demonstrated that ice cover is extremely important for predicting the fate of an Arctic oil spill, and find that oil spills in a warming climate will in some cases result in greater areal coverage and shoreline exposure. 相似文献
8.
Many air pollutants and greenhouse gases have common sources, contribute to radiative balance, interact in the atmosphere, and affect ecosystems. The impacts on forest ecosystems have been traditionally treated separately for air pollution and climate change. However, the combined effects may significantly differ from a sum of separate effects. We review the links between air pollution and climate change and their interactive effects on northern hemisphere forests. A simultaneous addressing of the air pollution and climate change effects on forests may result in more effective research, management and monitoring as well as better integration of local, national and global environmental policies. 相似文献
9.
Human activities over the past few centuries have profoundly changed the functioning of the earth system as a whole. These changes are particularly evident in the high latitudes of the Northern Hemisphere, where environmental change has been pronounced and rapid. Such changes have implications beyond the region, as they can lead to two important feedback processes: the ice-albedo feedback and the terrestrial carbon cycle-climate feedback. These processes play an exceptionally important role in earth system functioning, particularly because they may switch this century from damping the effects of anthropogenic climate change to accelerating them. Rapid environmental change in the high latitudes also has consequences for issues of direct importance to humans, particularly water resources. 相似文献
10.
Climate change alters species distributions by shifting their fundamental niche in space through time. Such effects may be exacerbated by increased inter-specific competition if climate alters species dominance where competitor ranges overlap. This study used census data, telemetry and stable isotopes to examine the population and foraging ecology of a pair of Arctic and temperate congeners across an extensive zone of sympatry in Iceland, where sea temperatures varied substantially. The abundance of Arctic Brünnich’s guillemot Uria lomvia declined with sea temperature. Accessibility of refugia in cold water currents or fjords helped support higher numbers and reduce rates of population decline. Competition with temperate Common guillemots Uria aalge did not affect abundance, but similarities in foraging ecology were sufficient to cause competition when resources are limiting. Continued warming is likely to lead to further declines of Brünnich’s guillemot, with implications for conservation status and ecosystem services. Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01650-7. 相似文献
11.
A literature review and a survey of professionals whose work deals with climate change indicate that more is known and considered certain by the natural science community concerning responses of natural systems to climate change. There is less of a consensus among social scientists that social systems are directly responding to climate change. The emphasis in the literature on policy and mitigation is corroborated by the survey results, which revealed only social variables that are tightly linked to climate or natural systems. Identifying variables of both natural and social systems that respond to climate change is imperative for a better understanding of the implications of climate change. 相似文献
12.
In this paper an analysis is provided on: what we know, what we need to know, and what we need to do, to further our understanding of the relationships between tropospheric ozone (O(3)), global climate change and forest responses. The relationships between global geographic distributions of forest ecosystems and potential geographic regions of high photochemical smog by the year 2025 AD are described. While the emphasis is on the effects of tropospheric O(3) on forest ecosystems, discussion is presented to understand such effects in the context of global climate change. One particular strong point of this paper is the audit of published surface O(3) data by photochemical smog region that reveals important forest/woodland geographic regions where little or no O(3) data exist even though the potential threat to forests in those regions appears to be large. The concepts and considerations relevant to the examination of ecosystem responses as a whole, rather than simply tree stands alone are reviewed. A brief argument is provided to stimulate the modification of the concept of simple cause and effect relationships in viewing total ecosystems. Our knowledge of O(3) exposure and its effects on the energy, nutrient and hydrological flow within the ecosystem are described. Modeling strategies for such systems are reviewed. A discussion of responses of forests to potential multiple climatic changes is provided. An important concept in this paper is that changes in water exchange processes throughout the hydrological cycle can be used as early warning indicators of forest responses to O(3). Another strength of this paper is the integration of information on structural and functional processes of ecosystems and their responses to O(3). An admitted weakness of this analysis is that the information on integrated ecosystem responses is based overwhelmingly on the San Bernardino Forest ecosystem research program of the 1970s because of a lack of similar studies. In the final analysis, it is recommended that systems ecology be applied in examining the joint effects of O(3), carbon dioxide and ultraviolet-B radiation on forest ecosystems. 相似文献
13.
Historical changes of anthropogenic Pb pollution were reconstructed based on Pb concentrations and isotope ratios in lake and peat sediment profiles from Ny-?lesund of Arctic. The calculated excess Pb isotope ratios showed that Pb pollution largely came from west Europe and Russia. The peat profile clearly reflected the historical changes of atmospheric deposition of anthropogenic Pb into Ny-?lesund, and the result showed that anthropogenic Pb peaked at 1960s-1970s, and thereafter a significant recovery was observed by a rapid increase of (206)Pb/(207)Pb ratios and a remarkable decrease in anthropogenic Pb contents. In contrast to the peat record, the longer lake record showed relatively high anthropogenic Pb contents and a persistent decrease of (206)Pb/(207)Pb ratios within the uppermost samples, suggesting that climate-sensitive processes such as catchment erosion and meltwater runoff might have influenced the recent change of Pb pollution record in the High Arctic lake sediments. 相似文献
14.
The changing climate scenarios harshen the biotic stresses including boosting up the population of insect/pest and disease, uplifting weed growth, declining soil beneficial microbes, threaten pollinator, and boosting up abiotic stresses including harsh drought/waterlogging, extremisms in temperature, salinity/alkalinity, abrupt rainfall pattern)) and ulitamtely affect the plant in multiple ways. This nexus review paper will cover four significant points viz (1) the possible impacts of climate change; as the world already facing the problem of food security, in such crucial period, climatic change severely affects all four dimensions of food security (from production to consumption) and will lead to malnutrition/malnourishment faced by low-income peoples. (2) How some major crops (wheat, cotton, rice, maize, and sugarcane) are affected by stress and their consequent loss. (3) How to develop a strategic work to limit crucial factors, like their significant role in climate-smart breeding, developing resilience to stresses, and idiotypic breeding. Additionally, there is an essence of improving food security, as much of our food is wasted before consumption for instance post-harvest losses. (4) Role of biotechnology and genetic engineering in adaptive introgression of the gene or developing plant transgenic against pests. As millions of dollars are invested in innovation and research to cope with future climate change stresses on a plant, hence community base adaptation of innovation is also considered an important factor in crop improvements. Because of such crucial predictions about the future impacts of climate change on agriculture, we must adopt measures to evolve crop. 相似文献
15.
Novel communities will be formed as species with a variety of dispersal abilities and environmental tolerances respond individually to climate change. Thus, models projecting future species distributions must account for species interactions and differential dispersal abilities. We developed a species distribution model for Arctic char Salvelinus alpinus, a freshwater fish that is sensitive both to warm temperatures and to species interactions. A logistic regression model using lake area, mean annual air temperature (1961-1990), pike Esox lucius and brown trout Salmo trutta occurrence correctly classified 95?% of 467 Swedish lakes. We predicted that Arctic char will lose 73?% of its range in Sweden by 2100. Predicted extinctions could be attributed both to simulated temperature increases and to projected pike invasions. The Swedish mountains will continue to provide refugia for Arctic char in the future and should be the focus of conservation efforts for this highly valued fish. 相似文献
16.
The permafrost regions occupy about 25% of the Northern Hemisphere's terrestrial surface, and more than 60% of that of Russia. Warming, thawing, and degradation of permafrost have been observed in many locations in recent decades and are likely to accelerate in the future as a result of climatic change. Changes of permafrost have important implications for natural systems, humans, and the economy of the northern lands. Results from mathematical modeling indicate that by the mid-21st century, near-surface permafrost in the Northern Hemisphere may shrink by 15%-30%, leading to complete thawing of the frozen ground in the upper few meters, while elsewhere the depth of seasonal thawing may increase on average by 15%-25%, and by 50% or more in the northernmost locations. Such changes may shift the balance between the uptake and release of carbon in tundra and facilitate emission of greenhouse gases from the carbon-rich Arctic wetlands. Serious public concerns are associated with the effects that thawing permafrost may have on the infrastructure constructed on it. Climate-induced changes of permafrost properties are potentially detrimental to almost all structures in northern lands, and may render many of them unusable. Degradation of permafrost and ground settlement due to thermokarst may lead to dramatic distortions of terrain and to changes in hydrology and vegetation, and may lead ultimately to transformation of existing landforms. Recent studies indicate that nonclimatic factors, such as changes in vegetation and hydrology, may largely govern the response of permafrost to global warming. More studies are needed to better understand and quantify the effects of multiple factors in the changing northern environment. 相似文献
17.
With the 'International Trading of Emission Allowances' (ITEA) model, we have analysed the flexibility mechanisms provided for in the Kyoto Protocol. Three main mechanisms of flexibility are analysed differentiation of initial commitments, multiple sources, and locational flexibility (trading). A differentiation of commitments could help the evolution of commitments, especially with a trading regime, which could create some income. Multiple sources give a large pool of cheaper abatement options from the non-CO 2 gases, and costs are reduced substantially. Finally, a trading regime would make available even more cheap abatement options, mainly in the economies in transition (EITs). This regime would provide income support for the EITs, helping them to speed up their transition. The combined mechanisms reduce dramatically the costs for the compliance with the protocol for the whole of Annex I; they fall to zero in some cases. Two other main findings deal with the EU and the EITs. Internal trading would ease the debate on the internal distribution of commitments within the EU under the bubble provision, reducing costs significantly. The allocations in the protocol for the EITs probably create a huge excess - 'hot air' - which could seriously harm the agreement if it is not dealt with. Excluding the hot air will increase costs for the quota importers, and it will also slightly reduce income for the relevant EITs, but this is offset by a rising price, which also benefits other EITs. 相似文献
18.
The System of Environmental-Economic Accounting Ecosystem Accounting (SEEA-EA) is widely promoted in environmental and economic policy and management. Unfortunately, the SEEA-EA has not substantively addressed the aspects of accounting that may be of interest to, or used by, Indigenous peoples. We investigate an Indigenous perspective on the potential of the SEEA-EA to support cultural and environmental management through collaborative workshops with managers of Nyamba Buru Yawuru, the Prescribed Body Corporate representing the Yawuru Traditional Owners in Western Australia. Our discussions highlight that while the SEEA-EA may be a valuable tool for empowering Indigenous people and supporting the management of their lands and seas, there are areas where the SEEA-EA needs to be broadened to better reflect cultural values, and the services to ecosystems provided by Indigenous peoples. Embedding Indigenous perspectives into the SEEA-EA would mean that it is of greater use to Indigenous peoples and their representative organisations and ensure that these values are better recognised in the policymaking of government. 相似文献
19.
Population growth and the pressures spawned by increasing demands for energy and resource-intensive goods, foods, and services are driving unsustainable growth in greenhouse gas (GHG) emissions. Recent GHG emission trends are consistent with worst-case scenarios of the previous decade. Dramatic and near-term emission reductions likely will be needed to ameliorate the potential deleterious impacts of climate change. To achieve such reductions, fundamental changes are required in the way that energy is generated and used. New technologies must be developed and deployed at a rapid rate. Advances in carbon capture and storage, renewable, nuclear, and transportation technologies are particularly important; however, global research and development efforts related to these technologies currently appear to fall short relative to needs. Even with a proactive and international mitigation effort, humanity will need to adapt to climate change, but the adaptation needs and damages will be far greater if mitigation activities are not pursued in earnest. In this review, research is highlighted that indicates increasing global and regional temperatures and ties climate changes to increasing GHG emissions. GHG mitigation targets necessary for limiting future global temperature increases are discussed, including how factors such as population growth and the growing energy intensity of the developing world will make these reduction targets more challenging. Potential technological pathways for meeting emission reduction targets are examined, barriers are discussed, and global and U.S. modeling results are presented that suggest that the necessary pathways will require radically transformed electric and mobile sectors. While geoengineering options have been proposed to allow more time for serious emission reductions, these measures are at the conceptual stage with many unanswered cost, environmental, and political issues.Implications:? This paper lays out the case that mitigating the potential for catastrophic climate change will be a monumental challenge, requiring the global community to transform its energy system in an aggressive, coordinated, and timely manner. If this challenge is to be met, new technologies will have to be developed and deployed at a rapid rate. Advances in carbon capture and storage, renewable, nuclear, and transportation technologies are particularly important. Even with an aggressive international mitigation effort, humanity will still need to adapt to significant climate change. 相似文献
|