共查询到10条相似文献,搜索用时 62 毫秒
1.
通过研究硫酸盐还原菌(SRB)污泥固定化小球还原硫酸盐过程硫酸盐浓度的变化规律,建立了反应动力学方程,确定了pH值和球液配比量对反应速率常数的影响,计算了相应的反应表观活化能.结果表明: SRB还原硫酸盐的反应为一级反应,反应动力学方程为:V=-dC/dt=0.080 56C.pH值为6-7时,SRB还原硫酸盐的反应速率常数相差不大,pH<4和pH>10时,反应速率常数逐渐减小.球液配比量减少,反应速率常数也随之减小,反应表观活化能增大.在实验条件下,SRB还原硫酸盐属化学控制.并由此确定了SRB污泥固定化小球还原硫酸盐的最佳工艺条件为温度35 ℃、pH值6-7、球液配比量1∶10(g/mL). 相似文献
2.
3.
用聚乙烯醇(PVA)-硼酸包埋法对硫酸盐还原菌(SRB)进行固定, 考察加入PVA、SRB污泥、碾磨颗粒活性炭的量对其吸附乳酸钠的影响, 从而确定平衡参数, 进行吸附平衡分析.同时还考察Cd2 浓度、温度等因子对其处理Cd2 的影响.结果表明: 添加15%PVA, 6%碾磨颗粒活性炭, 40%SRB污泥后, 固定化小球的平衡时间为3.5 h, 平衡吸附量为6.1 mg/g,该吸附过程属于物理吸附;当Cd2 ≤900 mg/L时,其去除率均超过90%;且在100mg/L Cd2 ,pH 7.0,温度30 ℃时,Cd2 处理率更高达98.5%;而固定化SRB受初始pH和转速的影响不显著,受温度的影响稍显著. 相似文献
4.
5.
以原油为唯一碳源,从长期被石油污染土壤的浸泡液中分离、筛选出2株降解原油的优良菌SY4和SY6,初步鉴定为: SY4和 SY6为芽孢杆菌属.通过降解性能实验的研究得出:2株菌对原油都有较强的降解能力,在摇床实验中,单一菌株在5 d后的原油降解率都高于60%,且2菌对原油的生物降解反应符合一级反应动力学特征.摇床实验和静态曝气实验都得出:SY6的降解能力比SY4强.通过本实验研究,为其实际应用提供一定的生物基础. 相似文献
6.
以桂林市上窑污水处理厂污泥脱水车间剩余污泥、上窑堆肥厂的堆肥堆料和桂林雁山镇森林土壤为菌源进行驯化,分离纯化并筛选得到2株能分别以壬基酚(NP)和双酚A(BPA)为唯一碳源和能源生长的降解菌株N-1和B-1。通过对菌株的16S r DNA序列同源性分析,初步鉴定N-1和B-1菌分别为Cupriavidus(贪铜菌属)、Acinetobacter(不动杆菌属)。通过两菌株分别降解NP和BPA的单因素实验,确定了降解动力学以及时间、温度、p H值对降解过程的影响。研究结果表明,细菌N-1,B-1的最佳初始目标污染物质量浓度为5~10 mg/L,降解40 h,N-1去除率可达49.63%,B-1去除率可达62.34%。细菌N-1对NP的去除半衰期t1/2为41.44~48.02 h;B-1对BPA的去除半衰期t1/2为35.23~37.33 h。细菌N-1,B-1的最佳降解温度均为30℃,最佳p H值均在6.5~7.5之间,即两种细菌在中温、中性条件下对NP和BPA降解效果最佳。 相似文献
7.
以某污水厂的氧化沟污泥和剩余污泥为培养对象,经厌氧驯化成以硫酸盐还原菌(SRB)占优的污泥.在pH值为6.0-7.0,最佳温度为35℃,硫酸盐质量浓度为4 g/L,剩余污泥固定化小球在反应时间为24 h,Zn(Ⅱ)的进水质量浓度为400 mg/L时,Zn(Ⅱ)的去除率达到了100%,而氧化沟污泥固定化小球Zn(Ⅱ)的去除率只有90%左右;剩余污泥固定化小球在反应时间为8 h,Cd(Ⅱ)的进水质量浓度为500 mg/L时,Cd(Ⅱ)的去除率就达到了95%左右,而氧化沟污泥固定化小球Cd(Ⅱ)的去除率不到80%.实验结果表明剩余污泥是硫酸盐还原菌污泥固定化技术的最佳污泥. 相似文献
8.
9.
研究Fenton和UV-Fenton两种工艺对苯酚的降解效率。分批研究优化p H值、温度、H2O2浓度和Fe2+浓度。在最优条件下,比较了两种工艺降解苯酚的效果。结果表明,UV-Fenton工艺比传统的Fenton工艺增加了降解和矿化效率,最大的矿化效率分别是98%和40%。在Fenton工艺中,苯酚的最终产物是羧酸如醋酸和草酸,而在UV-Fenton工艺中,这些离子在苯酚降解的早期阶段形成,在120 min的反应时间内几乎完全氧化。在UV-Fenton工艺中Fe2+浓度为0.4 mmol/L,而Fenton工艺中Fe2+浓度为0.8 mmol/L。 相似文献
10.
以正十六烷无机盐培养基为选择培养基,从武汉石化输油管附近土壤中筛选出1株高效降解长链烷烃的菌株,命名C3,对其进行生理生化、16S r DNA鉴定,C3为不动杆菌属。在正十六烷浓度为1 000 mg/L的无机盐培养基中接入4%的种子液,放入35℃、125 r/min摇床中震荡60 h,C3对正十六烷的降解率可达100%,其降解动力学拟合结果符合Monod模型。将C3应用到柴蜡的降解,96 h后,1 000 mg/L的柴蜡混合溶液的降解率能达到91%。C3产生的生物表面活性剂经鉴定为磷脂类活性剂,排油圈直径为80 mm,CMC约为35 mg/L,能将水的表面张力降低到20.79 m N/m。该菌株对长链烷烃的降解提供了良好的菌源。 相似文献