首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Observations on the spawning behaviour of the commercially important muricid snail Concholepas concholepas are reported. The sequence of events relating to external transportation, molding and hardening, and attachment of the egg capsules to a substratum were timed and divided into 6 major events. The snails studied in the laboratory spawned between April and Septemer. These results and data from the literature reveal an all-year-round spawning activity for the species. The frequency, size and time of spawning were studied over 1 year. Spawning activity always began at night, suggesting that the species retains its spawning rhythm in the laboratory. These was a direct relationship between length of the snail and size of the capsules spawned. No nutritive eggs were found; the number per capsule varied between 668 and 14,250 according to capsule size. Hatching time varied between 69 and 128 days at 13.5° to 14.5°C.  相似文献   

2.
This study reports the vertical distribution of fish larvae during the 1999 summer upwelling season in the Canaries-African Coastal Transition Zone (the Canaries-ACTZ). The transition between the African coastal upwelling and the typical subtropical offshore conditions is a region of intense mesoscale activity that supports a larval fish population dominated by African neritic species. During the study, the thermal stratification extended almost to the surface everywhere, and the surface mixed layer was typically shallow or non-existent. Upwelling occurred on the African shelf in a limited coastal sub-area of our sampling. The vertical distributions of the entire larval fish population, as well as of individual species, were independent of the seasonal thermocline. Fish larvae and mesozooplankton were concentrated at intermediate depths regardless of the thermocline position, probably because of its weak signature and spatial and temporal variability. Day/night vertical distributions suggest that some species did not perform diel vertical migration (DVM), whereas others showed either type I DVM or type II DVM. The opposing DVM patterns of different species compensate for each other resulting in no net DVM for the larval fish population as a whole.  相似文献   

3.
J. M. Leis 《Marine Biology》1991,108(1):157-166
To investigate the natural defenses of Antarctic marine organisms against exposure to ultraviolet (UV) radiation (280 to 320 nm), 57 species (1 fish, 48 invertebrates, and 8 algae) were collected during austral spring 1988 in the vicinity of Palmer Station (Anvers Island, Antarctic Peninsula) and were analyzed for the presence of mycosporine-like amino acids (MAAs), compounds that absorb UV radiation and may provide shielding from these biologically hazardous wavelengths. Nearly 90% of the 57 species examined contained MAAs, and eight specific MAA compounds were identified. Seven of these (palythine, porphyra-334, shinorine, mycosporineglycine, palythene, asterina-330, and palythinol) have been observed previously in marine organisms from temperate and tropical latitudes. A new MAA, mycosporineglycine: valine, was found in the Antarctic fish and in 38 of the invertebrate species examined. This study confirms widespread occurrence of MAAs in Antarctic marine organisms and suggests that these species have some degree of natural biochemical protection from UV exposure.Contribution No. 502 from the Australian Institute of Marine Science  相似文献   

4.
The vertical distribution of the eggs and larvae of the European anchovy (Engraulis encrasicolus) in the western Mediterranean Sea in June 1984 and Agust 1985 was analyzed based on multiple plankton tows carried out at varying depths and using nets equipped with opening and closing mechanisms. Hydrographic parameters such as temperature, salinity, and chlorophylla were recorded simultaneously. Maximum abundance of anchovy eggs and larvae always occurred above the thermocline, even when maximum chlorophylla concentrations were located below the thermocline. Larval distribution appeared to be associated with the availability of suitable food organisms. As in other clupeoid species, the anchovy larvae carried out vertical migrations related to the photoperiod.  相似文献   

5.
Previous time-series studies of meroplankton abundances in the LEO-15 research area off Tuckerton, New Jersey, USA (39°28′N, 74°15′W) indicated short-lived (6–12 h) pulses in larval surfclam (Spisula solidissima Dillwyn) concentration often associated with the initiation of downwelling. To examine possible larval surfclam (and other bivalve) concentrating mechanisms during upwelling and downwelling, six sets of adaptive mobile zooplankton pump samples were taken in July 1998 at different depths at five to six stations along a 25-km transect perpendicular to the coastline and crossing Beach Haven Ridge at LEO-15. Sampling was guided by near real-time, satellite imagery of sea surface temperature overlain by sea surface currents from a shore-based ocean surface current radar (OSCR) unit. A Seabird CTD on the mobile pump frame near the intake provided information on thermocline depth, and sampling depths were adjusted according to the temperature profiles. Near shore, the thermocline was tilted down during downwelling, and up during upwelling. The highest concentrations of surfclam larvae occurred near the bottom at a station near Beach Haven Ridge during downwelling, and just above the thermocline 3 km further offshore during well-developed upwelling. For other bivalve taxa, the larvae were concentrated near the thermocline (Anomia simplex Orbigny and Pholadidae spp.) or concentrated upslope near the bottom (Mytilidae spp.) during upwelling, and the larvae were concentrated near the bottom or were moved downslope during downwelling. Donax fossor Say larvae were found near the surface or above the thermocline during upwelling and downwelling. The general patterns of larval bivalve distribution appear to be influenced by water mass movement during upwelling and downwelling. The larval concentration patterns of individual species are likely a consequence of advection due to upwelling and downwelling circulation, vertical shear in the front region, species-specific larval behaviors, and larval sources.  相似文献   

6.
The habitat, density and growth rate for an intertidal population of Concholepas concholepas (Bruguière, 1789) were studied at Las Cruces, Chile (Lat. 33°30′S; Long. 71°38′W) during 1977–1978. The growth rate (3.67 mm month-1) was determined in a newly settled group, whose average length was 11.3 mm, and whose age was estimated at 3 months. The densities found ranged between 1.1 and 107.3 “locos” m-2. Based on these results, the time of settlement of C. concholepas was calculated; capsule deposition, maximum maturity and recruitment reported by other authors for different localities are discussed.  相似文献   

7.
J. M. Leis 《Marine Biology》1986,90(4):505-516
Consistent patterns of horizontal distribution of fish larvae from plankton tows were found in shallow waters around Lizard Island, Great Barrier Reef during 1979 and 1980. Few types of larvae were most abundant in Lizard Lagoon, and none of these were old larvae. Forty percent of the 57 types of larvae studied differed in abundance between windward and downwind sides of the island. More types of old larvae were found in greatest abundance off the windward side of the island than the downwind side. Most types of larvae preferred deeper water (>3 m) during the day and moved upward at night, although a few types preferred upper (<3 m) or middle portions of the water column. These latter were more likely to descend at night or to maintain their day-time distribution than to move upward. Windward larvae [those more abundant off the windward (SE) side of the island] were more shallow-living than were downwind larvae, and were more likely to maintain their day-time distribution at night. The current patterns around Lizard Island were favourable for retention of larvae in both Lizard Lagoon and off the windward side of the island, if combined with certain vertical distributions of the larvae. However, while there was evidence for retention on the windward side of the island, there was no evidence for retention in Lizard Lagoon. Currents on the downwind side of the island were not favourable for retention of larvae and there was little evidence that larvae were retained there. Retention may be an accidental result of interaction between currents and larval behaviour, or the result of a strategy of retention by the larvae. These could not be distinguished in the present study.  相似文献   

8.
9.
The effects of food limitation on growth rates and survival of marine invertebrate larvae have been studied for many years. Far less is known about how food limitation during the larval stage influences length of larval life or postmetamorphic performance. This paper documents the effects of food limitation during larval development (1) on how long the larvae ofCrepidula fornicata (L.) can delay metamorphosis in the laboratory after they have become competent to metamorphose and (2) on postmetamorphic growth rate. To assess the magnitude of nutritional stress imposed by different food concentrations, we measured growth rates (as changes in shell length and ash-free dry weight) for larvae reared in either 0.45-m filtered seawater or at phytoplankton concentrations (Isoehrysis galbana, clone T-ISO) of 1 × l03, 1 × 104, or 1.8 × 105 cells ml–1. Larvae increased both shell length and biomass at 1 × 104 cells ml–1, although significantly more slowly than at the highest food concentration. Larvae did not significantly increase (p > 0.10) mean shell length in filtered seawater or at a phytoplankton concentration of only 1 × 103 cells ml–1, and in fact lost weight under these conditions. To assess the influence of food limitation on the ability of competent individuals to postpone metamorphosis, larvae were first reared to metamorphic competence on a high food concentration ofI. galbana (1.8 × 105 cells ml–1). When at least 80% of subsampled larvae were competent to metamorphose, as assessed by the numbers of indlviduals metamorphosing in response to elevated K+ concentration in seawater, remaining larvae were transferred either to 0.45-m filtered seawater or to suspensions of reduced phytoplankton concentration (1 × 103, 1 × 104, or 5 × 104 cells ml–1), or were maintained at 1.8 × 105 cells ml–1. All larvae were monitored daily for metamorphosis. Individuals that metamorphosed in each food treatment were transferred to high ration conditions (1.8 × 105 tells ml–1) for four additional days to monitor postmetamorphic growth. Competent larvae responded to all food-limiting conditions by metamorphosing precociously, typically 1 wk or more before larvae metamorphosed when maintained at the highest food ration. Surprisingly, juveniles reared at full ration grew more slowly if they had spent 2 or 3 d under food-limiting conditions as competent larvae. The data show that a rapid decline in phytoplankton concentration during the larval development ofC. fornicata stimulates metamorphosis, foreshortening the larval dispersal period, and may also reduce the ability of postmetamorphic individuals to grow rapidly even when food concentrations increase.  相似文献   

10.
Vertical distributions of the larval stages of Euphausia nana Brinton and E. similis G. O. Sars in Sagami Bay and Suruga Bay, Central Japan were studied. Most of the metanauplius larvae of E. nana occurred between 25 and 80 m depth, and they were found at greater depths than the eggs and calyptopis larvae. The nauplii and metanauplii of e. similis were mainly found between 50 and 100 m depth, and they also occurred deeper than the eggs and calyptopes. The larvae of the two species from calyptopis I demonstrate diurnal vertical migration. However, this phenomenon was not clear in the season (March) when a seasonal thermocline was absent. Calyptopes and fruciliae of E. similis occurred deeper and migrated over greater vertical distances than those of E. nana. The distance of migration of furcilia I larvae of E. similis was estimated to be about 200 m.  相似文献   

11.
Microzooplankton was sampled during two cruises (Galápagos Vents, March 1985; Tongue of the Ocean and western edge of the Sargasso Sea, October/November 1985) by various collection methods (Niskin bottles, plankton nets, divers) to determine the vertical distribution and abundance of Acantharia. The larger size classes of Protozoa are dominated by the sarcodines, and Acantharia are frequently the most abundant of these in mesotrophic and oligotrophic oceans. The absolute densities of Acantharia have been consistently underestimated in many previous studies for two reasons: their skeletons dissolve in preserved samples, and they are undersampled by fine-meshed plankton nets. The previously identified dissolution problem may be less severe for concentrated samples because the dissolution of a portion of the Acantharia will raise the dissolved strontium concentration in the sample. Twenty five and 160 m-mesh plankton nets consistently underestimate the abundance of net plankton by one to two orders of magnitude. Possible reasons for this significant error are discussed. In the Equatorial Pacific Ocean, Acantharia were found at densities as high as 30 liter-1 and integrated abundances of 1.58 to 5.34x105 Acantharia m-2. Up to 90% were concentrated near the surface; their abundance declined sharply below 20 m. At two stations in the Atlantic, peak densities reached 6.4 liter-1. Wind-mixing may spread individuals more evenly through the euphotic zone, but they reestablish their surface maximum during period of calm. Acantharia generally have relatively few, but large symbionts. Small individuals average about 6 symbionts per host, larger hosts average 40 symbionts, and some individuals may have thousands of algal cells. Acantharia symbionts made up less than 1% of the chlorophyll in the water column, even at their host's peak abundances of 30 liter-1. However, production estimates, using published sarcodine-symbiont production-rates, suggest that Acantharia could occasionally account for up to 20% or more of the carbon fixation in the upper euphotic zone of oligotrophic oceans.  相似文献   

12.
This study investigated the occurrence and ontogenetic changes of halogenated secondary metabolites in planktotrophic and lecithotrophic larvae and adults of two common, infaunal polychaetes, Streblospio benedicti (Spionidae) and Capitella sp. I (Capitellidae), with different life-history traits. S. benedicti contains at least 11 chlorinated and brominated hydrocarbons (alkyl halides) while Capitella sp. I contains 3 brominated aromatic compounds. These halogenated metabolites are potential defense compounds benefiting both larvae and adults. We hypothesized that: (1) planktotrophic larvae contain halogenated metabolites because they are not protected by adult defenses, (2) quantitative and qualitative variation of planktotrophic larval halogenated metabolites parallels that of adults, and (3) brooded lecithotrophic larvae initiate the production of halogenated metabolites only after metamorphosis. To address these hypotheses, volatile halogenated compounds from polychaete extracts were separated using capillary gas chromatography and identified and quantified using mass spectrometry with selected ion monitoring. All four life stages (pre- and post-release larvae, new recruits, adults) of both S. benedicti and Capitella sp. I contained the halogenated metabolites previously identified from adults. This is the first report of halocompounds identified and quantified in polychaete larvae. Allocation of potential defense compounds to offspring varied as a function of species, feeding type and developmental stage. Pre-release larvae of S. benedicti with planktotrophic development contained the lowest concentration of total halogenated metabolites (1.75 ± 0.65 ng mm−3), post-release and new recruits contained intermediate concentrations (8.29 ± 1.72 and 4.73 ± 2.63 ng mm−3, respectively), and planktotrophic adults contained significantly greater amounts (28.9 ± 9.7 ng mm−3). This pattern of increasing concentrations with increasing stage of development suggests synthesis of metabolites during development. Lecithotrophic S. benedicti post-release larvae contained the greatest concentrations of halometabolites (71.1 ± 10.6 ng mm−3) of all S. benedicti life stages and developmental types examined, while the amount was significantly lower in new recruits (34.0 ± 15.4 ng mm−3). This pattern is consistent with a previously proposed hypothesis suggesting a strategy of reducing potential autotoxicity during developmental transitions. Pre-release lecithotrophic larvae of Capitella sp. I contained the highest concentration of total halogenated metabolites (1150 ± 681 ng mm−3), whereas the adults contained significantly lower total amounts (126 ± 68 ng mm−3). All concentrations of these haloaromatics are above those known to deter predation in previously conducted laboratory and field trials. As a means of conferring higher larval survivorship, lecithotrophic females of both species examined may be expending more energy on chemical defenses than their planktotrophic counterparts by supplying their lecithotrophic embryos with more of these compounds, their precursors, or with energy for their synthesis. This strategy appears common among marine lecithotrophic larval forms. Received: 14 July 1999 / Accepted: 20 January 2000  相似文献   

13.
Escape speeds of marine fish larvae during early development and starvation   总被引:1,自引:0,他引:1  
Response rates to tactile stimulation and subsequent escape speeds were measured using a video-recording system during early development and starvation of fish larvae. The species studied included the yolk-sac larvae of Clyde and Baltic herring (Clupea harengus L.), cod (Gadus morhua L.), flounder (Platichthys flesus L.) and older larvae of Clyde herring. The proportion of larvae responding (response rate) was initially about 20 to 25% in herring and 35 to 40% in cod and flounder using a probe, but about 70 to 80% using the sucking action of a pipette in all species except flounder. Both response rates and escape speeds (mean and maximum) tended to peak 1 to 2 d before the PNR (point-of-no-return, when 50% of larvae are too weak to feed), then decreased slowly during further starvation. An inter-species comparison showed that the highest recorded mean escape speeds (measured over a period of 200 ms) and highest maximum escape speeds (over 20 ms) ranged from 5.7 to 8.6 BL/s (body lengths/s) and 12.1 to 16.1 BL/s, respectively. The larvae made directional responses away from the stimulus only when they developed and reached the feeding stage.  相似文献   

14.
三江平原泥炭地微量元素垂直分布特征   总被引:2,自引:0,他引:2  
采用冬季采样,现场分层的方法,系统地研究了三江平原河床-河漫滩型泥炭地和谷底洼地型泥炭地微量营养元素和有益元素的垂直分布特征。结果表明,微量营养元素Cu、Zn、Fe、Mn、B和有益元素Ni、Sr、Ti、V、Co均有在G层急剧积累的趋势,Fe、Mn、B、Zn、Ti、Sr质量分数在Ase层明显高于泥炭层,某些微量元素间具有显著的相关性。  相似文献   

15.
Fishes and zooplankton were obtained (March–April 1979 and partly in August 1974) from 45 hauls taken during the day and at night in the central equatorial Atlantic between Latitude 3°N and 2°S from the surface to 1250-m depth, using the RMT 1+8, a combined opening-closing plankton and micronekton trawl. The vertical distribution of 30 myctophid species is described. All species migrate in a diel pattern, Ceratoscopelus warmingii and Lampanyctus photonotus down to at least 1250 m. During daytime most species aggregated at 400-to 700-m depth, therefore only partly occupying the depth of the Deep Scattering Layer (400 to 500 m at 15 kHz). The feeding patterns of seven of the most abundant species were compared, with a total of 1 905 stomach contents being analysed. All seven species are regarded as opportunistic predators, which feed predominantly during the night on calanoid copepods. A total of 66 species of calanoid copepods were identified among the prey items, with smaller species definitely being in the minority. Stomachs of C. warmingii (700 to 1 250 m depth) and Lepidophanes guentheri (500 to 900 m depth) from daytime samples contained copepod species restricted to the upper 150 m of the water column, including Undinula vulgaris, Nannocalanus minor, and Euchaeta marina, thereby confirming an extended vertical migration of predators. Differences in diet and preferences between species in their total food spectrum are described.  相似文献   

16.
Meiofauna was sampled using SCUBA along 4 transects from 5 to 30 m depth in Algoa Bay, South Africa. Substrates were well-sorted medium to fine sands with traces of sewage pollution in some areas. Meiofauna numbers recorded in the upper 10 cm of sediment were 55 to 584 10 cm-2, but total numbers, including deeper-living animals, were 680 to 2090 10 cm-2 at 6 stations. Longer cores showed meiofauna to be abundant down to at least 35 cm, and samples of interstitial water taken from this depth in the sediment were 7% saturated with oxygen. This is the first detailed record of meiofauna penetration into sub-littoral sand and stresses the need for long cores for quantitative work. Nematode numbers were found to be significantly related to nitrogen in the sand while interstitial harpacticoid numbers were related to median particle diameters, which determine pore space. Effects of sewage were slight and only one station showed notable enrichment, increased meiofaunal numbers and extreme dominance by nematodes.  相似文献   

17.
In southern Taiwan, brooded larvae of Pocillopora damicornis and Seriatopora caliendrum are released year-round in synchrony with new moons, and each larval release occurs over multiple days. Using P. damicornis and S. caliendrum as a model system, we describe within-brood variation in larval phenotypes and test for release-day effects that influence larval performance in the pelagic phase. Research was conducted in 2010 using larvae from corals collected in June and July from Nanwan Bay (21°56.179??N, 120°44.85??E). In June, larval phenotypes of both species were characterized immediately following release, and their competency to settle assessed. In July, larvae of P. damicornis were collected on 3?days over the peak release period and incubated for 7?C11?days at 28.0?°C and 320???mol?quanta?m?2?s?1; their phenotypes and settlement competency were measured every 2?days. P. damicornis larvae released close to peak release were 1.6 times larger in size, contained twice the number of Symbiodinium larva?1, and were 44?% more likely to settle in the first 24?h than larvae released early in the brood. In addition, peak-release larvae respired at a lower rate than larvae released late in the brood. Similarly, S. caliendrum larvae released close to peak release were 1.4 times larger in size and were 33?% more likely to settle in the first 5?h than larvae released early in the brood. In July, P. damicornis larvae differed between early (2?days prior to peak), peak, and late (2?days after peak) release. Protein content of early-release larvae was lower than peak- and late-release larvae, and this difference persisted throughout the development. Further, release day affected the way larval respiration varied throughout development. By showing that brooded coral larvae differ between release days and display maternal effects influencing performance in the swimming phase, our results suggest that pocilloporid corals utilize bet-hedging to increase reproductive success.  相似文献   

18.
Vertical distribution of both the concentration and composition of polycyclic aromatic hydrocarbons (PAHs) in ten profiles in Beijing has been investigated. The results showed that PAH concentrations and compositions in topsoil from different sampling sites were different. PAH concentrations were much higher in topsoil of the investigated urban area, industrial region, and paddy field with wastewater irrigation than in other areas. Moreover, PAH concentrations in topsoil were much higher than those at greater depth, where the concentrations were relatively consistent in most soil profiles. The fingerprints of PAHs in the samples from topsoil (0–30 cm) in the same profiles were similar and were obviously different from those at greater depth, suggesting that PAH sources were consistent in topsoil samples and were discriminating between topsoil and deeper soils. PAHs in topsoil mainly arose from mixed sources of combustion of liquid fuel, coal, and/or wood, as well as wastewater irrigation, while those at greater depth were derived from soil genesis and the process of soil formation.  相似文献   

19.
Eggs of Thrissocles species are found in surface plankton in the Ernakulam Channel (Cochin Harbour)during February to May 1967. The eggs hatch within 24 h. Empty egg shells have characteristic apertures, through which the embryos have emerged; yolk is resorbed 36 h after hatching.Larvae (36 to 72 h groups) assemble at the lighted region of the aquaria during day-time and scatter to different levels at night. Larvae older than 72 h show no inclination to assemble as before. All larvae died between 96 and 110 h after hatching. Many batches of eggs were reared in the same medium, and all of them behaved as described. The results indicate that the right type of food was available in the aquaria for larvae up to a period of 72 h. The volume of water also appears to have a bearing upon the survival rate and longevity of the larvae since, in small aquaria, more larvae died at an early stage.  相似文献   

20.
Vertical distribution of mesoplankton in the open area of the Black Sea   总被引:2,自引:0,他引:2  
In April–May 1984 mesoplankton vertical distribution in the Black Sea was studied by sampling with a 150-l waterbottle, vertical plankton nets with mesh-sizes of 180 and 500 mkm and by direct counting of the jelly-fish Aurelia aurita, the ctenophore Pleurobrachia pileus, Calanus helgolandicus and the chaetognath Sagitta setosa from the manned submersible Argus. During daytime throughout the whole deep-water body of the sea near the lower oxycline boundary, plankton forms a layer of high concentration (from 2.5 to 38 g m-3); its thickness varies from 5 to 10–20 m and it has an unchangeable vertical structure; its upper portion is formed by the ctenophore P. pileus, its middle portion by V–VI copepodites of C. helgolandicus, and its lower portion by the population of S. setosa. The lower boundary of this layer coincides with 0.4 to 0.5 ml O2 l-1 isooxygen surface, and the depth of its location varies in different areas of the sea from 150 to 50 m, depending on the depth location of 0.5 ml O2 l-1 isooxygen surface. By night the animals, which form this layer, migrate towards the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号