首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
生物修复剂在清除海滩石油污染中的应用   总被引:5,自引:0,他引:5  
介绍了生物修复石油污染海滩时常用的修复剂类型及其特点.当实验室环境条件能较好控制时,生物强化剂一般是有效的;然而污染现场得出的证据不能表明其对生物降解有促进作用.实验室和现场的研究均表明营养型生物促进剂能有效促进石油的生物降解.水溶性营养易被波浪和潮汐冲刷掉;缓释型营养盐面临的主要挑战是如何控制其释放速率,以保证孔隙水中能较长时间维持理想的营养浓度;亲油型肥料中含有有机碳,有可能在微生物降解石油之前被优先降解.建议根据污染环境的特点选用适合的生物促进剂.  相似文献   

2.
复合酶生物促进剂强化生物处理模拟PVA废水研究   总被引:1,自引:0,他引:1  
采用连续流活性污泥系统(以下简称系统)处理模拟聚乙烯醇(PVA)废水,对比了投加复合酶生物促进剂的加药系统与对照系统对PVA降解效果的差异,讨论了复合酶生物促进剂强化作用的原因,并通过动力学角度深入分析了PVA降解过程.结果表明,投加复合酶生物促进剂可以有效提高PVA的去除率.加药系统平均PVA去除率为94.4%,平均COD去除率为92.8%,较对照系统分别提高了2.1%和2.6%.模拟PVA废水在系统内的降解过程符合Monod模型,胞外聚合物降解PVA模拟废水遵循一级反应动力学.加药系统PVA半饱和常数和最大比降解速率为112.4 mg/L和0.589 h-1,对照系统PVA半饱和常数和最大比降解速率分别为142.6 mg/L和0.509 h-1.投加复合酶生物促进剂可以减少胞外聚合物糖类含量,强化PVA降解酶等胞外蛋白质的分泌.胞外聚合物构成的改变是复合酶生物促进剂强化生物降解模拟废水中PVA的根本原因.  相似文献   

3.
含滑石粉的环保型聚乙烯包装材料的可环境消纳性能研究   总被引:5,自引:0,他引:5  
借助人工加速老化、自然土壤填埋等实验方法,采用力学性能测试、扫描电镜(SEM)、热重—红外联用仪(TG—IR)等测试方法,对所研制的含滑石粉的环保型聚乙烯(PE)塑料包装材料的可环境消纳性能进行探讨。实验结果表明,以PE为主材料,添加不易分解的滑石粉、生物活性剂、FeSt3-MnSt2复合光敏剂,研制出的高填充可降解的PE塑料薄膜,具有良好的光—生物降解性能,且可适用于焚烧处理。  相似文献   

4.
石油污染土壤生物修复菌Z1a-B的分离鉴定与调控效应研究   总被引:4,自引:2,他引:2  
从山东东营胜利油田附近的石油污染土壤中分离筛选得到一株高效石油降解菌Z1a-B,通过菌落形态及显微镜个体形态观察对其初步鉴定到属,并采用气相色谱/质谱(GC/MS)法分析了Z1a-B的石油降解性能,采用投加石油降解菌、调节土壤N、P含量和优化环境因素等措施,进行了为期60d的石油污染土壤室外自然堆制生物修复实验。结果表明,Z1a-B为链霉菌属白孢类群,其摇瓶培养的石油降解率为66.4%;Z1a-B有着很宽的烷烃降解谱;N、P最佳的添加量组合为KNO32.50g/kg、K2HPO40.35g/kg,即N/P(质量比)为5.57:1.00,此时的石油降解率达63.5%,土壤脱氢酶活性达最高值,为2.99μL/g;石油降解的最佳环境条件为:将石油质量分数为3.3%的100g土样调节pH至8.5后,装入容积为300mL的锥形瓶中灭菌,再接种孢子密度为2.7×108个/mL的菌剂5.5mL,于28℃下进行生物降解,在此条件下的石油降解率可达76.5%;土壤脱氢酶活性的测定结果可以作为检验石油污染土壤生物修复效果的重要指示指标之一;室外自然堆制生物修复实验中,添加菌剂、锯末、秸秆以及N、P后,石油降解率可达69.9%,总体来说,室外自然堆制生物修复是一种投资少、见效快、治理效果较好的石油污染土壤治理方法。  相似文献   

5.
借助人工加速老化、自然土壤填埋等实验方法 ,采用力学性能测试、扫描电镜 (SEM)、热重 -红外联用仪 (TG IR)等测试方法 ,对所研制的含滑石粉的环保型聚乙烯 (PE)塑料包装材料的可环境消纳性能进行探讨。实验结果表明 ,以PE为主材料 ,添加不易分解的滑石粉、生物活性剂、FeSt3 MnSt2 复合光敏剂 ,研制出的高填充可降解的PE塑料薄膜 ,具有良好的光 -生物降解性能 ,且可适用于焚烧处理。  相似文献   

6.
本文主要研究在生长有成熟生物膜的填料上强化LAS生物降解作用,提高生物接触氧化系统的LAS降解能力。试验结果表明,经强化LAS降解作用的二段生物接触氧化系统LAS去除率可由65%提高到80%以上。其中第二段接触氧化的LAS去除率高于第一段接触氧化。  相似文献   

7.
以微生物增殖动力学的基本方程-莫诺方程为出发点,通过氮同位素分析比较了具有同源性微生物的生物陶粒滤床和生物活性炭床的有机物生物降解规律,建立了生物活性炭床的有机物生物降解动力学方程,提出在污水再生利用过程中生物活性炭床符合高基质有机物降解动力学模型,即有机物降解呈一级反应动力学方程。以此方程为基础,分析计算了生物活性炭床沿炭床深度的吸附性能,结果表明,在生物活性炭床中,随生物功能的减弱,生物活性炭床对有机物的吸附能力逐渐加强。  相似文献   

8.
采用离子液体辅助水热法制备锡酸锌,考察了离子液体添加量对锡酸锌晶相、形貌及光催化性能的影响。通过XRD、TEM分别对锡酸锌的晶相和形貌进行研究。通过在紫外光照射下光催化降解亚甲基蓝溶液对锡酸锌的光催化性能进行表征。当[Emim]BF_4添加量为0.5 mmol时,制得的八面体锡酸锌结晶度高且对染料亚甲基蓝有较高光催化降解能力。自由基捕获实验证明羟基自由基是光催化反应的主要活性物种。  相似文献   

9.
探索多种菌种降解石油过程中菌种和脂肽生物表面活性剂的作用,筛选石油降解的主要因素及最佳合,并为石油污染物的降解机理研究和石油污染修复提供指导。基于正交实验筛选主要影响因素,采用Box-Behnken实验探讨各因素最佳水平。正交实验中脂肽生物表面活性剂是多菌种降解石油过程中最主要的影响因素,在Box-Behnken实验中,其能显著地影响石油降解率。菌种降解能力是石油饱和烃组分生物降解的最主要影响因素,但脂肽生物表面活性剂是芳烃、胶质和沥青质组分降解的最主要的影响因素。研究所用菌种中,解淀粉芽孢杆菌(Bacillus amyloliquefaciens)和假单胞菌(Pseudomonas aeruginosa)在石油降解过程最重要,是本实验的石油降解最优菌。菌种和脂肽生物表面活性剂的添加浓度配比对于石油降解具有重要的影响。解淀粉芽孢杆菌和假单胞菌添加量5%,脂肽生物表面活性剂粗品添加量200 mg·L~(-1)的降解效果最优,理论上,最高降解率可达63.78%,验证降解率达到了53.89%,相对于多菌种正交实验最高降解率提高了5.54%。利用正交实验和Box-Behnken实验筛选最优降解菌和最优菌种组合的方法,具有分析因素多、实验量少等优点,具有较好的应用前景。  相似文献   

10.
鼠李糖脂对不同菌株降解柴油污染物的影响   总被引:1,自引:0,他引:1  
李玉瑛  李冰 《环境工程学报》2010,4(9):2088-2092
通过一系列实验分析了鼠李糖脂对柴油污染物生物降解的影响。单菌株柴油降解实验结果表明,在添加生物表面活性剂鼠李糖脂后,各菌株细胞表面疏水性均发生不同程度的增加,并且对柴油的降解率均有所提高。在混合菌的柴油污染物降解实验中,发现当向土壤中添加了200 mg/L鼠李糖脂时,对柴油的降解才有较大的提高;而当添加100 mg/L的鼠李糖脂到水体中时,对柴油的降解就有较大的提高,而当鼠李糖脂浓度提高为200 mg/L时,柴油的降解率却没有进一步明显的提高。这说明鼠李糖脂对柴油降解的影响程度不仅与环境介质有关,还与添加的鼠李糖脂浓度有关。进一步分析表明,添加适当浓度的鼠李糖脂不仅可以提高对柴油的降解率,而且可加速其降解速度,缩短生物修复所需时间。  相似文献   

11.
利用纳米ZnO与聚苯乙烯(PS)高速共混法制备了一种在紫外光下具有自降解性能的复合薄膜.分析表明,经过KH570处理的纳米ZnO与PS通过化学键的方式桥联在一起.TG分析表明,复合薄膜的耐热性较PS有所提高;SEM图像显示0.5 wt% ZnO在PS薄膜表面分布均匀,经过UV照射后薄膜表面出现光腐蚀现象.复合薄膜紫外光自降解实验表明:0.5 wt% ZnO/PS薄膜在15W的紫外灯照射下,15d的自降解率为3.715%.  相似文献   

12.
Abstract

Synthetic polymers reach municipal landfills as components of products such as waste household paints, packaging films, storage containers, carpet fibers, and absorbent sanitary products. Some polymers in consumer products that reach landfills are designed to photodegrade or biodegrade. This article examines the significance of degradable polymers in management of solid waste in municipal landfills. Most landfills are not designed to photodegrade or biodegrade solid waste. Landfill disposal of stable polymers such as polyacrylics and polyethylenes is not associated with significant polymer degradation or mobility. Stability to photodegradation and biodegradation is an advantage when municipal landfills are used for disposal of polymer products as solid waste. Use of landfill disposal can be a responsible means to manage polymer waste and can be part of an overall waste management plan which includes source reduction, recycling, reuse, composting, and waste-to-energy incineration.  相似文献   

13.
Individuals are exposed to particulate matter from both indoor and outdoor sources. The aim of this study was to compare the relative contributions of three sources of personal exposure to fine particles (PM2.5) by using chemical tracers. The study design incorporated repeated 24-hr personal exposure measurements of air pollution from 28 cardiac-compromised residents of Toronto, Ontario, Canada. Each study participant wore the Rupprecht & Patashnick ChemPass Personal Sampling System 1 day a week for a maximum of 10 weeks. During their individual exposure measurement days the subjects reported to have spent an average of 89% of their time indoors. Particle phase elemental carbon, sulfate, and calcium personal exposure data were used in a mixed-effects model as tracers for outdoor PM2.5 from traffic-related combustion, regional, and local crustal materials, respectively. These three sources were found to contribute 13% +/- 10%, 17% +/- 16%, and 7% +/- 6% of PM2.5 exposures. The remaining fraction of the personal PM2.5 is hypothesized to be predominantly related to indoor sources. For comparison, central site outdoor PM2.5 measurements for the same dates as personal measurements were used to construct a receptor model using the same three tracers. In this case, traffic-related combustion, regional, and local crustal materials were found to contribute 19% +/- 17%, 52% +/- 22%, and 10% +/- 7%, respectively. Our results indicate that the three outdoor PM2.5 sources considered are statistically significant contributors to personal exposure to PM2.5. Our results also suggest that among the Toronto subjects, who spent a considerable amount of time indoors, exposure to outdoor PM2.5 includes a greater relative contribution from combustion sources compared with outdoor PM2.5 measurements where regional sources are the dominant contributor.  相似文献   

14.
The aim of the work was to study the biodegradation process of biocomposites prepared from renewable resources and the ecotoxicological assessment of their biodegradation products. Biocomposites from modified starch reinforced with various cellulose fibers were prepared by the extrusion process. Biodegradation studies were carried out according to the ISO respirometic method. Ecotoxicity of biodegradation products was assessed by the luminescent bacteria test. It was found that biodegradation of biocomposites was above 60% within 24 days according to the results of respirometric test. Increase in the amount of natural fiber reinforcement, as well as smaller fiber size increased the biodegradability of biocomposites. On the basis of the preliminary results of the ecotoxicological test using luminescent bacteria it seems that the biodegradation products of the biocomposites studied are ecologically safe.  相似文献   

15.
合成硬脂酸铁(FeSt3)、硬脂酸铈(CeSt4)和硬脂酸锰(MnSt2),用母粒法制备了可光降解LDPE薄膜。采用傅立叶红外变换光谱仪、万能材料试验机和乌氏粘度计测定羰基指数、断裂伸长率、拉伸强度和分子量,研究了这3种光敏剂及其用量对LDPE降解程度的影响。结果表明,3种光敏剂的光敏活性FeSt3〉CeSt4〉MnSt2;LDPE的光降解程度并非随着光敏剂含量的增加而增大,在控制用量的情况下。MnSt2更适合用作稳定剂;光降解使链结构发生了变化。分子量降低。  相似文献   

16.
Studies on the primary biodegradation of linear dodecylbenzene sulfonate, linear dodecyltoluene sulfonate, linear C(10-14) benzene sulfonate, linear C(10-14) toluene sulfonate, commercial samples of linear C(10-14) benzene sulfonate and branched dodecylbenzene sulfonate (DDBS) were carried out using a microbial culture developed from garden soil. Results show that linear alkyl toluene (LAT) is as degradable as linear alkylbenzene (LAB) in 7 days. However, a slower rate of degradation was noted with LAT. Various distributions of the positional isomers of the phenyl ring in the alkane chain of C(10-14) LAB showed no change in the pattern of primary biodegradation.  相似文献   

17.
Microcosm wetland systems (5 L containers) planted with Salvinia molesta, Lemna minor, Ceratophyllum demersum, and Elodea canadensis were investigated for the removal of diclofenac, triclosan, naproxen, ibuprofen, caffeine, clofibric acid and MCPA. After 38 days of incubation, 40-99% of triclosan, diclofenac, and naproxen were removed from the planted and unplanted reactors. In covered control reactors no removal was observed. Caffeine and ibuprofen were removed from 40% to 80% in planted reactors whereas removals in control reactors were much lower (2-30%). Removal of clofibric acid and MCPA were negligible in both planted and unplanted reactors. The findings suggested that triclosan, diclofenac, and naproxen were removed predominantly by photodegradation, whereas caffeine and naproxen were removed by biodegradation and/or plant uptake. Pseudo-first-order removal rate constants estimated from nonlinear regressions of time series concentration data were used to describe the contaminant removals. Removal rate constants ranged from 0.003 to 0.299 d(-1), with half-lives from 2 to 248 days. The formation of two major degradation products from ibuprofen, carboxy-ibuprofen and hydroxy-ibuprofen, and a photodegradation product from diclofenac, 1-(8-Chlorocarbazolyl)acetic acid, were followed as a function of time. This study emphasizes that plants contribute to the elimination capacity of microcontaminants in wetlands systems through biodegradation and uptake processes.  相似文献   

18.
Laboratory batch experiments have been performed with sediment and groundwater obtained from two sites in Denmark to study the aerobic biodegradation of vinyl chloride (VC) and cis-1,2-dichloroethylene (c-1,2-DCE) to assess the natural aerobic biodegradation potential at two sites. The experiments revealed that VC was degraded to below the detection limit within 204 and 57 days at the two sites. c-1,2-DCE was also degraded in the experiments but not completely. At the two sites 50% and 35% was removed by the end of the experimental period of 204 and 274 days. The removal of c-1,2-DCE seems to occur concomitantly with VC indicating that the biodegradation of c-1,2-DCE may depend on the biodegradation of VC. However, in both cases natural groundwater was mixed with sediment and consequently there may be other compounds (e.g. ammonium, natural organic compound etc.) that serves as primary substrates for the co-metabolic biodegradation of c-1,2-DCE. At one of the sites methane was supplied to try to enhance the biodegradation of VC and c-1,2-DCE. That was successful since the time for complete biodegradation of VC decreased from 204 days in the absence of methane to 84 days in the presence of methane. For c-1,2-DCE the amount that was biodegraded after 204 days increased from 50% to 90% as a result of the addition of methane. It seems like a potential for natural biodegradation exists at least for VC at these two sites and also to some degree for c-1,2-DCE.  相似文献   

19.
BACKGROUND: Each year millions of liters of fire-retardant chemicals are applied to wildfires across the nation. Recent laboratory studies with long-term fire-retardant chemicals indicate a significant photoenhanced toxicity of products containing sodium ferrocyanide corrosion inhibitors. Our objective of this study was to determine the toxicity of fire-retardant chemicals to fathead minnows during exposure in experimental outdoor streams. METHODS: Stream tests were conducted to determine the potential toxicity of a pulse of exposure as might occur when fire retardant chemical is rinsed from the watershed by rainfall. Two artificial 55-meter experimental streams were dosed with different concentrations of Fire-Trol GTS-R, or uncontaminated for a control. Replicate groups of fathead minnows were added to screened containers (10 fish per container) and exposed to retardant chemicals in the recirculating flow of the stream for up to 6 hours. RESULTS AND DISCUSSION: Under field conditions toxicity of GTS-R only occurred in the presence of sunlight. When GTS-R was tested on sunny days, 100% mortality occurred. However, when tested during heavily overcast conditions, no mortality occurred. CONCLUSIONS: Lethal concentrations of cyanide were measured when GTS-R with YPS exposures were conducted under sunny conditions, but not under cloudy conditions, indicating that a minimum UV level is necessary to induce toxicity as well as the release of cyanide from YPS. The toxicity observed with GTS-R was likely associated with lethal concentrations of cyanide. Rainwater runoff following applications of this fire-retardant at the recommended rate could result in lethal concentrations in small ponds and streams receiving limited water flow under sunny conditions. RECOMMENDATIONS AND OUTLOOK: In addition to avoiding application to aquatic habitats, it is important to consider characteristics of the treated site including soil binding affinity and erosive properties.  相似文献   

20.
The potential for aerobic biodegradation of MTBE in a fractured chalk aquifer is assessed in microcosm experiments over 450 days, under in situ conditions for a groundwater temperature of 10 °C, MTBE concentration between 0.1 and 1.0 mg/L and dissolved O2 concentration between 2 and 10 mg/L. Following a lag period of up to 120 days, MTBE was biodegraded in uncontaminated aquifer microcosms at concentrations up to 1.2 mg/L, demonstrating that the aquifer has an intrinsic potential to biodegrade MTBE aerobically. The MTBE biodegradation rate increased three-fold from a mean of 6.6 ± 1.6 μg/L/day in uncontaminated aquifer microcosms for subsequent additions of MTBE, suggesting an increasing biodegradation capability, due to microbial cell growth and increased biomass after repeated exposure to MTBE. In contaminated aquifer microcosms which also contained TAME, MTBE biodegradation occurred after a shorter lag of 15 or 33 days and MTBE biodegradation rates were higher (max. 27.5 μg/L/day), probably resulting from an acclimated microbial population due to previous exposure to MTBE in situ. The initial MTBE concentration did not affect the lag period but the biodegradation rate increased with the initial MTBE concentration, indicating that there was no inhibition of MTBE biodegradation related to MTBE concentration up to 1.2 mg/L. No minimum substrate concentration for MTBE biodegradation was observed, indicating that in the presence of dissolved O2 (and absence of inhibitory factors) MTBE biodegradation would occur in the aquifer at MTBE concentrations (ca. 0.1 mg/L) found at the front of the ether oxygenate plume. MTBE biodegradation occurred with concomitant O2 consumption but no other electron acceptor utilisation, indicating biodegradation by aerobic processes only. However, O2 consumption was less than the stoichiometric requirement for complete MTBE mineralization, suggesting that only partial biodegradation of MTBE to intermediate organic metabolites occurred. The availability of dissolved O2 did not affect MTBE biodegradation significantly, with similar MTBE biodegradation behaviour and rates down to ca. 0.7 mg/L dissolved O2 concentration. The results indicate that aerobic MTBE biodegradation could be significant in the plume fringe, during mixing of the contaminant plume and uncontaminated groundwater and that, relative to the plume migration, aerobic biodegradation is important for MTBE attenuation. Moreover, should the groundwater dissolved O2 concentration fall to zero such that MTBE biodegradation was inhibited, an engineered approach to enhance in situ bioremediation could supply O2 at relatively low levels (e.g. 2–3 mg/L) to effectively stimulate MTBE biodegradation, which has significant practical advantages. The study shows that aerobic MTBE biodegradation can occur at environmentally significant rates in this aquifer, and that long-term microcosm experiments (100s days) may be necessary to correctly interpret contaminant biodegradation potential in aquifers to support site management decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号