首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
微塑料吸附有机污染物会加剧其对水环境的污染.该研究以四环素(TC)为目标污染物,通过过硫酸老化聚乳酸(PLA)、聚对苯二甲酸乙二醇酯(PET)和聚丙烯(PP)3种微塑料,研究其对TC的吸附行为的影响.结果表明:①过硫酸盐老化使3种微塑料表面出现大量褶皱、碎片和沟壑,比表面积增大及含氧官能团含量显著提高.②原始PET和PP吸附TC的动力学过程符合准一级动力学模型,而PLA以及老化PET和PP均符合准二级动力学模型,属于化学吸附;PLA和PET对TC的吸附符合Langmuir等温吸附模型,以单分子层吸附反应为主,而老化PP则更符合Freundlich等温吸附模型;拟合参数中,老化PLA与PET最大表观吸附量分别可达2.293和3.617 mg/g.③pH对微塑料的吸附能力有较大的影响,且pH为7时对老化PP影响最大,其对TC的吸附值为1.214 mg/g.研究显示,微塑料作为TC的有效载体,其老化会加重对水体的迁移毒性作用.   相似文献   

2.
3种四环素类抗生素在褐土上的吸附和解吸   总被引:15,自引:2,他引:15       下载免费PDF全文
以OECD Guideline 106为基础,采用批量平衡方法研究3种四环素类抗生素在褐土上的吸附和解吸作用.结果表明,3种四环素类抗生素的吸附和解吸不同程度地偏离线性模型,其中Freundlich模型可以对吸附和解吸数据进行良好的非线性拟合,平均拟合相关系数为0.991;其中金霉素的吸附等温线呈“S型”,土霉素的吸附等温线呈“L型”,而四环素的吸附等温线呈线性.在2种褐土中,金霉素吸附容量(lgKf) (4.307和4.003)高于四环素,而四环素lgKf (3.252和3.198)高于土霉素lgKf (2.932和2.724).对于同一种抗生素,在2种褐土中的吸附容量和吸附强度并无显著差异性.此类抗生素在褐土中的吸附均以物理性吸附为主.土霉素在褐土中的滞后系数显著高于四环素和金霉素(P<0.01),而四环素和金霉素的解吸滞后系数之间无显著差异.  相似文献   

3.
为探索高效利用生物质资源制备生物炭去除水体中的抗生素,以常见的米糠和麦麸为原料,在600℃限氧裂解制备成生物炭。通过各种影响因素的单因素实验和常用的表征方法,探讨其吸附四环素的效果和机理。结果显示2种生物炭均有分层分布的微孔结构和较大的比表面积,并含有羟基、酯、醚和芳香官能团。2种生物炭的吸附最优条件为:生物炭剂量均为4 g/L,四环素初始质量浓度为5 mg/L,溶液pH在5~9之间,环境温度25℃,吸附时间32 h,此时2种生物炭对四环素的去除率分别达到95.07%和90.4%。2种生物炭的等温吸附更符合Langmuir等温吸附方程,它们的吸附动力学更符合伪二阶动力学模型。吸附过程主要受控于化学吸附,是吸热反应。  相似文献   

4.
采用脱硫废水中的重金属污染物原位交联使海藻酸钠形成水凝胶,再将该水凝胶在800℃的条件下制备为海藻酸钠基多孔碳气凝胶,利用场发射扫描电子显微镜(SEM)、比表面积分析仪、X射线衍射(XRD)和傅里叶红外光谱(FTIR)对该气凝胶进行了表征分析,并考察了该气凝胶对溶液中四环素的吸附行为。结果表明,该碳气凝胶具有丰富的孔隙结构,比表面积可以达到52.37 m2/g。随着溶液初始pH值的增大,碳气凝胶对四环素的吸附量逐渐降低。碳气凝胶对四环素的吸附行为更符合准二级动力学方程(R2=0.825 7),最大吸附量可以达到112 mg/g,等温吸附过程对Freundlich等温吸附模型比对Langmuir等温吸附模型拟合度更高,说明利用处理脱硫废水的凝胶废弃物制备的海藻酸钠基多孔碳气凝胶在去除水环境中的抗生素方面有较好的应用前景,实现了脱硫废水凝胶废弃物的资源化利用。  相似文献   

5.
3种四环素类抗生素在石油污染土壤上的吸附解吸   总被引:4,自引:0,他引:4       下载免费PDF全文
以OECD Guideline 106为基础,采用批量平衡方法研究了3种四环素类抗生素在不同石油污染程度土壤上的吸附和解吸作用,并探讨了土壤中此类抗生素与石油污染物形成的复合污染环境行为.结果表明,3种四环素类抗生素在高石油污染和低石油污染土壤上的吸附和解吸均不同程度地偏离线性模型,其中Freundlich模型对吸附和解吸数据具有良好的非线性拟合性(P四环素>金霉素,差异达到极显著水平(P<0.01).对于同一种四环素类抗生素,石油污染土壤的不同程度并未对抗生素的吸附容量、吸附强度、吸附等温线形状、吸附机理以及解吸滞后性产生显著影响.因此四环素类抗生素进入石油污染土壤将加重土壤污染的程度和复杂性.  相似文献   

6.
改性多孔生物炭的制备及其对水中四环素的吸附性能研究   总被引:4,自引:0,他引:4  
杨奇亮  吴平霄 《环境科学学报》2019,39(12):3973-3984
以常见的农业废弃物玉米秸秆为原料,以NaHCO_3和三聚氰胺为活化剂,一步碳化活化制备得到了一种改性多孔生物炭,研究了其对模拟四环素(TC)废水的吸附行为,同时采用SEM、XRD、Raman、FTIR、BET和元素分析对材料进行表征分析.探究了热解温度、三聚氰胺添加量、吸附剂投加量、反应时间、初始浓度、环境温度和pH对改性多孔生物炭去除水溶液中TC的影响.相比于原始生物炭(C800),改性后的秸秆生物炭(MPC800-10)对TC拥有更优异的吸附能力,能在短时间内快速高效地去除TC.由表征结果可知,同时添加NaHCO_3和三聚氰胺得到的改性多孔生物炭(MPC800-10)相对于原始生物炭(C800)比表面积更大,孔结构更丰富,芳香性增强,且亲水性和极性也有所增大,表面官能团更丰富,含氧官能团增加.MPC800-10对TC的吸附更符合Pseudo-second-order动力学模型和Freundlich等温吸附模型,且最大吸附量达到347 mg·g~(-1).热力学分析表明MPC800-10对TC的吸附是一个自发、吸热的过程.在酸性和中性条件下MPC800-10对TC都有较好的吸附能力,且具有一定的抗离子干扰能力和良好的再生性能.本研究将为农田废弃物的资源化利用及废水中抗生素的污染治理奠定坚实的基础.  相似文献   

7.
微塑料对水中铜离子和四环素的吸附行为   总被引:2,自引:9,他引:2  
微塑料作为载体可与水中重金属、抗生素结合进而形成复合污染,这改变了污染物原有的环境行为与危害性.微塑料与重金属及抗生素间的作用途径与机制是评价其环境风险及毒理学机制的前提.目前有关微塑料与重金属及抗生素间的相互作用机制尚不清晰.以高密度聚乙烯(HDPE)和通用级聚苯乙烯(GPPS)颗粒作为代表,研究了微塑料在单一体系和复合体系中对Cu2+和四环素的吸附行为,并就相关机制进行了探讨.结果表明,单一体系中,GPPS和HDPE分别对TC和Cu2+表现出更大的平衡吸附量;复合体系中,GPPS对Cu2+和TC的平衡吸附量均大于HDPE,且2种微塑料的吸附能力均较单一体系有所提高.准二级动力学模型对微塑料吸附过程的描述更为合理,吸附过程可划分为表面吸附和孔内扩散2个阶段.Langmuir等温吸附模型较Freundlich等温吸附模型更符合实验情形.单一体系中,GPPS和HDPE对Cu2+和TC的饱和吸附量分别为0.178、 0.257、 0.334和0.194μmol·g-1,而在复合体系...  相似文献   

8.
纳米氧化铝改性凝胶球对四环素吸附性能分析   总被引:1,自引:1,他引:0       下载免费PDF全文
采用溶胶-凝胶法制备纳米氧化铝改性聚乙烯醇-海藻酸钙凝胶球(SA-PVA-AlNPs),用于吸附去除水溶液中的四环素。考察了纳米氧化铝负载量、初始溶液pH、离子强度对凝胶球吸附性能的影响。结果表明:复合纳米氧化铝有利于提高凝胶球的吸附性能; SA-PVA-ALNPs吸附四环素最佳pH值条件为pH=3; NaCl浓度的提高并未显著影响凝胶球对于四环素的吸附能力。准二级动力学可以较好地拟合SA-PVA-ALNPs对四环素吸附的动力学数据; Langmuir模型能更好地拟合等温吸附数据,最大吸附容量为75.90 mg/g。SA-PVA-ALNPs吸附四环素主要依靠阳离子架桥作用、n-π电子供体-受体相互作用以及氢键作用。  相似文献   

9.
以中药废渣为原料,四环素为目标污染物,采用限氧热解法在热解温度分别为300℃、500℃和700℃的条件下制备了不同中药渣生物炭(Biochar, BC),并采用比表面积分析仪(BET)、扫描电子显微镜(SEM)、傅里叶红外光谱分析仪(FTIR)、X射线光电子能谱仪(XPS)、X射线衍射仪(XRD)等手段对不同中药渣生物炭的物理化学性质进行了表征;通过中药渣生物炭对水中四环素(Tetracycline, TC)的吸附试验,研究了不同中药渣生物炭对水中四环素的吸附特性,考察了溶液初始浓度、吸附时间对溶液中四环素去除效果的影响,并结合吸附动力学、吸附等温线拟合结果探究了中药渣生物炭对水中四环素的吸附机制。结果表明:随着热解温度的升高,中药渣生物炭中有机物分解,含氧官能团种类及其相对含量发生变化,其中含氧官能团C—C的相对含量升高、C—H的相对含量降低,中药渣生物炭的芳香化程度增加,且700℃制备的中药渣生物炭对水中四环素的吸附性能更优;中药渣生物炭对水中四环素的吸附量依次为BC700(93.46 mg/g)>BC500(76.32 mg/g)>BC300(32.92 mg/g),...  相似文献   

10.
以小麦秸秆为原料,在873K温度下炭化6h制备了小麦秸秆生物炭(WBC),再用KOH浸渍法制备了3种碱炭比(质量比为1:1,2:1和3:1)的改性秸秆生物炭(WBCK1、WBCK2和WBCK3).通过扫描电镜、比表面及孔径分析仪和傅里叶红外光谱对3种WBCK结构特征和表面性质进行表征.通过批量吸附实验,探讨了3种WBCK对溶液中四环素的吸附动力学和热力学特征.相比于WBC,WBCK有更丰富的孔径结构和更大的比表面积,且对四环素的吸附容量显著增加.3种WBCK对四环素的吸附动力学过程均符合准二级动力学模型,吸附速率常数大小顺序为k2(WBCK2) > k2(WBCK3)> k2(WBCK1).WBCK对四环素的吸附量随温度升高而增大,吸附过程同时存在物理吸附和化学吸附作用.Langmuir、Freundlich和Temkin模型均能较好地拟合吸附等温线,吸附机理较复杂.3种WBCK对四环素的吸附均为自发、吸热、熵增加过程.当溶液pH值范围为4.0~8.0时,3种WBCK对四环素的吸附性能较高.3种改性WBCK均可重复使用,其中WBCK2重复使用5次后吸附去除效率仅下降13.9%.  相似文献   

11.
邹震  许路  乔伟  唐茂森  金鹏康 《环境科学》2024,45(2):885-897
以椰壳和硼酸为原料,通过简单的一步热解法制备出新型硼掺杂椰壳介孔炭材料(B-CSC)用于水中四环素类污染物的高效吸附去除.系统研究了关键制备条件热解温度和硼碳质量比对其吸附性能的影响,使用比表面积及孔径分析仪(BET)、场发射扫描电镜(SEM)、X射线光子能谱仪(XPS)、拉曼光谱仪(Raman)以及Zeta电位仪(Zeta)对其微观结构及物化性质进行了表征分析.系统考察了初始pH值、不同金属阳离子以及不同背景水质条件对其吸附效果的影响.结合材料表征与相关分析等对其强化吸附机制进行了深入讨论与分析.结果表明,一步热解能够将硼掺入椰壳炭的表面及晶格,导致其拥有更大的比表面积和孔体积,引入硼的形态主要是H3BO3、B2O3、B和B4C.B-CSC对四环素的吸附量达到297.65 mg·g-1,是原始椰壳介孔炭(CSC)的8.9倍.同时,B-CSC对于水环境中常见污染物罗丹明B(RhB)、双酚A(BPA)和亚甲基蓝(MB)的吸附量分别高达372.65、255.24和147.82 mg·g-1.B-CSC对四环素的吸附过程是物理化学作用共同主导的,主要涉及液膜扩散、表面吸附、介孔与微孔内扩散和活性位点吸附,H3BO3是其主要吸附位点.吸附强化机制主要是硼掺杂降低了其碳网络的化学惰性,增强了其与四环素分子的π—π相互作用和氢键作用.  相似文献   

12.
负载型纳米铁吸附剂去除饮用水中As(Ⅴ)的研究   总被引:5,自引:2,他引:5  
朱慧杰  贾永锋  姚淑华  吴星  王淑莹 《环境科学》2009,30(12):3562-3567
以活性炭为载体制备了一种负载型纳米铁吸附剂.纳米铁在活性炭孔内为针状,其直径为30~500 nm,长度为1 000~3 000 nm,载入量[m(Fe)/m(炭)]为82.1 mg/g.用1.5 g/L该吸附剂对pH 6.5、 (25±2)℃、 2 mg/L的As(Ⅴ)进行吸附其去除率为99.5%,在平衡浓度1.0 mg/L时,该吸附剂对As(Ⅴ)的吸附容量为15.4 mg/g;吸附速度较快,12 h可达91.4%,72 h达到吸附平衡.吸附过程可由孔内扩散模型较好地说明.除PO_4~(3-)、SiO_4~(2-)外其它常见阴阳离子均对As(Ⅴ)的去除影响不大.吸附剂可以用0.1 mol/L NaOH溶液再生,再生效率较高.实验室初步实验数据表明,该吸附剂对饮用水砷去除具有较好的应用前景.  相似文献   

13.
茶渣生物炭制备及其对溶液中四环素的去除特性   总被引:3,自引:6,他引:3  
以茶渣(tea waste)为对象,在300、 500和700℃限氧条件下热解制备成生物炭(TWBC300、 TWBC500和TWBC700),研究其对溶液中四环素(tetracycline,TC)的去除特性.采用元素分析、比表面积分析仪、傅里叶红外光谱(FTIR)和X射线光电子能谱(XPS)对TWBC300、 TWBC500及TWBC700进行表征;考察生物炭添加量、溶液初始pH、离子类型及强度等因素对四环素去除效果的影响;结合吸附动力学、吸附等温线和仪器表征结果探究生物炭对溶液中四环素的作用机制.结果表明,适合的生物炭投加量为4.0g·L-1.溶液初始pH对生物炭去除四环素的影响较小.溶液中阳离子类型对生物炭吸附四环素的抑制作用依次是Mg2+>Ca2+>K+>Na+.NH+4能略微促进生物炭对四环素的吸附,而铜离子却显著抑制生物炭对四环素的去除.环境温度增加能提升生物炭对四环素的去除效果.拟二级动力学方程和Lan...  相似文献   

14.
KOH活化小麦秸秆生物炭对废水中四环素的高效去除   总被引:1,自引:0,他引:1  
活化是提高生物炭吸附性能的重要手段.以小麦秸秆为研究对象,KOH为活化剂,制备KOH活化生物炭(K-BC),同时制备原状生物炭(BC)作为对照.对生物炭进行比表面积和孔径、元素分析、XPS、FTIR、Raman、XRD和pHpzc等表征,考察KOH活化对生物炭理化性质的影响,并探究生物炭对水体中四环素的吸附性能和机制.结果表明,KOH活化之后生物炭的比表面积和孔体积可达996.4 m2·g-1和0.45 cm3·g-1.KOH活化会制造更多的碳结构缺陷,影响生物炭的官能团和表面电性.拟二级动力学和Langmuir模型可以较好地拟合生物炭吸附四环素的过程.环境温度升高能提高生物炭对四环素的吸附量.K-BC吸附四环素是自发、吸热和无序度增加的过程.K-BC对四环素的最大吸附量理论可达到491.19 mg·g-1(实验温度为45℃).结合吸附后生物炭的Raman、FTIR和XPS表征,发现孔隙填充和π-π作用是K-BC吸附四环素的主要机制,氢键和络合作用也发挥重要作用.此外,K-BC还具有良好的循环使用性能.综上所述,KOH活化小麦秸秆生物炭是有效和可行的,可用于废水中四环素的去除.  相似文献   

15.
为了更深入了解水环境中颗粒物对抗生素的吸附规律,选用典型抗生素——四环素(TC)和悬浮态的高岭土模拟天然水体中颗粒物对四环素的吸附过程,探究颗粒物对TC的吸附规律及不同颗粒物投加量、pH、温度和阳离子对颗粒物吸附TC的影响.结果表明颗粒物对TC在混合4 h之前快速吸附,之后单位吸附量随时间较小波动,在12 h后基本达到吸附平衡.在溶液中颗粒物对TC的单位吸附量随着颗粒物投加量的增大而减小;颗粒物对TC抗生素的吸附更符合Langmuir等温吸附规律;颗粒物对TC的吸附在pH=4.5附近达到最大值,强酸(pH<4)或强碱(pH>9)环境均抑制颗粒物对TC的吸附;低价态的阳离子如Na+、Ca2+(浓度在0.0001~0.1 mol·L-1范围)等对颗粒物吸附TC均产生抑制作用,且随着离子浓度的增加,抑制作用增强,但三价阳离子的作用却非常特别,如低浓度的Al3+(0.0001 mol·L-1)会促进吸附作用,随着Al3+浓度增加,促进作用减弱,直到Al3+达到较高浓度(0.01 mol·L-1),又会抑制颗粒物对TC的吸附.综合本实验获得的颗粒物吸附TC的基本特征和规律,可以初步推断:在实际水环境中由于颗粒物对TC的快速吸附和低浓度Al3+的促进作用,TC在水环境和饮用水处理工艺中更易随颗粒物的运动发生同步迁移,颗粒物的归宿主要决定了TC的归宿,如进入天然水体沉积物中或饮用水处理工艺的污泥中,这也进一步揭示了天然水体中沉积物往往易被检出较高含量TC的根本原因.  相似文献   

16.
窄孔径含磷棉秆生物质炭的制备及对四环素的吸附机制   总被引:1,自引:0,他引:1  
曾少毅  李坤权 《环境科学》2023,44(3):1519-1527
以棉秆为生物质原料,磷酸为改性剂,一步碳化制备了兼具高比表面积(1 916 m2·g-1)和孔体积(1.398 2 mL·g-1)的窄孔径含磷棉秆生物质炭(CSP),并研究了其对四环素(TC)的吸附行为.结果表明,磷酸改性制备的窄孔径含磷棉秆生物质炭对TC吸附量高达669mg·g-1,是未改性棉秆炭的43.6倍;红外光谱(FTIR)、 X射线(XPS)和等温吸附研究表明,CSP对TC的高吸附量是表面络合、氢键、孔隙填充和π-π色散等多种吸附力共同作用的结果,其中磷酸改性赋予的高活性磷酸酯类基团(P—O—C)与TC分子间的化学络合作用强且贡献度高,是吸附量显著提升的最关键因素.静态等温吸附与热力学研究结果进一步证实TC在含磷棉秆炭吸附过程中化学吸附起主要作用,吸附过程属于自发的吸热过程.研究结果可为利用棉秆资源定向制备高效吸附TC的高活性磷掺杂生物质炭提供了一种潜在的简便高效途径.  相似文献   

17.
生物活性炭降解2,4-二氯酚的特性   总被引:6,自引:5,他引:6  
以普通活性污泥法和石英载体生物膜法为对照,研究生物活性炭对2,4-二氯酚(2,4-DCP)的吸附特征和生物吸附动力学,探讨生物活性炭去除2,4-DCP的作用机制.结果表明:使用粉末活性炭吸附2,4-DCP可行且具有较强的抗冲击负荷能力,生物活性炭比活性污泥法、石英生物膜法的降解速率快,抗冲击负荷能力强,适合长期高浓度运行使用.且在生物活性炭系统中,除了活性炭吸附和生物降解作用外,活性炭对2,4-DCP还有氧化降解作用.  相似文献   

18.
活性污泥对四环素的吸附性能研究   总被引:1,自引:2,他引:1  
通过批量平衡法研究了四环素在活性污泥上的吸附行为.结果表明,污泥混合液浓度和四环素初始浓度对吸附平衡时间、污泥吸附量和污泥吸附率均有较大影响.伪二级反应动力学模型较伪一级反应动力学模型更符合本吸附实验.在10、25℃条件下,四环素在活性污泥上的吸附行为较符合Langmuir模型,最大吸附量分别是31.14、70.95 mg.g-1;在40℃下,符合Henry模型.应用D-R模型判定吸附类型,10℃(平均吸附能为9.13 kJ.mol-1)下,化学吸附占主导;40℃(平均吸附能为7.07 kJ.mol-1)下,物理吸附占主导.温度升高,污泥对四环素的吸附能力增大.离子交换是四环素在活性污泥上吸附的一种机制.四环素的初始浓度为5、10、20 mg.L-1,钠离子浓度由0 mol.L-1增加到0.1 mol.L-1时,吸附量分别下降15.32%、15.00%、20.12%.当pH在5~10之间时,pH为6的条件下污泥对四环素的吸附量最大.  相似文献   

19.
采用蒸气吹脱解吸法回收吸附在废活性炭中的醋酸丁酯,并对剩余废活性炭采用热空气加热再生法使其再生并用于污水处理,实验结果表明该技术在工业回收中有很好的前景,而且经济上可行.  相似文献   

20.
微波解吸载乙醇活性炭的试验研究   总被引:8,自引:0,他引:8  
针对酒精工业中产生的淡酒液用活性炭吸附 -微波解吸方法回收其中可利用的酒精。设计了固定床吸附器提纯淡酒液的流程 ,制定了活性炭吸附微波解吸的试验方案。结果表明 ,微波加热温度均匀 ,活性炭不会被过分加热分解 ,解吸速度快 ,能实现对被蒸发物质的选择加热 ,对要回收的物质可以浓缩回收  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号