首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 82 毫秒
1.
于2017年7—8月对中国长江口及其邻近海域表层及重要断面不同深度海水中二甲基硫(DMS)、二甲基巯基丙酸内盐(DMSP)和二甲亚砜(DMSO)的浓度进行了测定,探讨了长江冲淡水对其分布的影响,并估算了DMS的海-气通量.结果表明,表层海水中DMS、溶解态DMSP(DMSPd)、颗粒态DMSP(DMSPp)、溶解态DMSO(DMSOd)和颗粒态DMSO(DMSOp)的浓度平均值分别为(5.69±5.20)、(6.67±4.90)、(19.46±9.26)、(24.67±20.52)和(24.97±20.85) nmol·L~(-1).DMS和DMSP大体呈现出一致的分布规律,高值区出现在冲淡水与海水的混合区域,在长江口口门附近出现低值.相关性分析结果表明,DMSPp与DMSOp存在相关性,这可能与二者有相似的来源和细胞功能有关.DMSPd、DMSOd均与DMS存在相关性,这是因为DMSPd降解是表层海水中DMS的主要来源,而DMS的光氧化和微生物氧化可能是夏季表层海水中DMSOd的重要来源途径.沉积物间隙水中DMSPd浓度高于底层海水,表明沉积物释放也是底层DMSPd的一个来源.此外,夏季长江口及邻近海域DMS的海-气通量介于0.29~34.63μmol·m~(-2)·d~(-1)之间,平均值为(8.37±11.79)μmol·m~(-2)·d~(-1).  相似文献   

2.
于2012年10月对中国东海表层海水中二甲基硫(DMS)及其前体物质二甲巯基丙酸内盐(DMSP)、溶解自由态蛋氨酸(DF Met)的浓度分布及影响因素进行了研究。分析结果表明,秋季东海表层海水中硅酸盐(SiO3-Si)、溶解无机氮(DIN)、磷酸盐(PO4-P)浓度变化范围分别为0.11~1.76、0.08~0.56和0.013~0.054 mg/L,平均值为0.50±0.36、0.19±0.11和0.024±0.0098 mg/L,且东海西南部上升流区出现营养盐浓度的高值区。表层海水中DMS、DMSP和DF Met的浓度分别在0.47~6.46、9.44~55.57和3.48~14.42 nmol/L之间,平均值分别为3.10±1.93、28.05±14.17和6.19±2.30 nmol/L。DMS、DMSP的水平分布与叶绿素a(Chl a)分布基本一致,呈现出近岸向远海降低的趋势。所调查海域的DMS/Chl a和DMSP/Chl a比值变化范围分别为2.59~27.66和27.37~103.34 mmol/g,平均值分别为11.46±5.02和65.08±23.41 mmol/g,与该海域硅藻为浮游植物优势种的调查结果相一致。此外,秋季东海表层海水DMS的海-气通量介于0.89~105.50 μmol/(m2·d)之间,平均值为35.65 ±31.53 μmol/(m2·d)。  相似文献   

3.
对2012年6月东海表层海水中二甲基硫(DMS)、二甲巯基丙酸内盐(DMSP)和二甲亚砜(DMSO)的浓度分布特征及其影响因素进行了研究,并估算了DMS的海-气通量及其对大气气溶胶中非海盐硫酸盐(nss-SO42-)的贡献率.结果表明,DMS、溶解态DMSP(DMSPd)、颗粒态DMSP(DMSPp)、溶解态DMSO(DMSOd)和颗粒态DMSO(DMSOp)的浓度平均值±标准偏差为(5.71±5.23),(5.94±3.68),(23.84±14.15),(9.14±10.52)和(11.01±5.81)nmol/L.DMS、DMSP和DMSOp浓度均在28oN~29oN,122°E~123.5°E海域呈现高值中心,沿中心向外扩散降低,并且与叶绿素a(Chl-a)的分布趋势基本一致.除DMSOd外,3种二甲基硫化物与Chl-a表现出显著的相关性,表明浮游植物生物量是影响东海生源有机硫化物生产分布的关键因素.此外,夏季东海DMS海-气通量介于(0.93~101.02)μmol/(m2·d),平均值±标准偏差为(18.13±21.42)μmol/(m2·d).夏季东海生源硫释放对nss-SO42-的贡献率仅为2.2%,表明人为排放是东海大气气溶胶中nss-SO42-的主要来源.  相似文献   

4.
冬季东海、南黄海中DMS和DMSP浓度分布及影响因素研究   总被引:3,自引:0,他引:3  
宋以柱  张洪海  杨桂朋 《环境科学》2014,35(6):2067-2074
于2011年12月~2012年1月现场测定了东海、南黄海表层海水中二甲基硫(DMS)及其前体物质二甲巯基丙酸内盐(DMSP分为溶解态DMSPd和颗粒态DMSPp)的含量,研究了它们的浓度分布规律及其影响因素,并对DMSPp的粒级分布和DMS的海-气通量进行了探讨.结果表明,表层海水中DMS、DMSPd和DMSPp的浓度分别在0.58~4.14、0.37~7.86和4.29~25.76 nmol·L-1之间,平均值分别为(2.20±0.82)、(2.12±1.66)和(11.98±6.23)nmol·L-1.DMS、DMSPp与叶绿素a(Chl-a)呈现明显的正相关关系,并且它们的周日变化趋势基本一致,说明浮游植物生物量是影响研究海域内DMS和DMSP生产分布的关键因素.另外,DMSPd浓度和总细菌丰度表现出一定的负相关,这可能是在细菌释放的DMSP裂解酶的作用下DMSPd会发生裂解生成DMS.研究发现,5~20μm的微型浮游植物是海区内Chl-a和DMSPp的主要贡献者.此外,冬季东海、南黄海表层海水DMS的海-气通量在0.61~25.52μmol·(m2·d)-1之间,平均值为(8.30±5.92)μmol·(m2·d)-1.  相似文献   

5.
王鑫  张洪海  杨桂朋 《环境科学研究》2014,27(10):1119-1125
于2011年12月—2012年1月对我国东海、黄海表层及不同深度海水中c(DMSOd)(DMSOd为溶解态二甲亚砜)和c(DMSOp)(DMSOp为颗粒态二甲亚砜)的分布进行了研究,并探讨了其来源及影响因素. 结果表明:表层海水中c(DMSOd)和c(DMSOp)分别为(10.10±7.54)和(8.72±7.80) nmol/L,其水平分布明显受调查海域中浮游植物组成和丰度的影响;垂直分布上,c(DMSOd)和c(DMSOp)的最大值均出现在浅水层(3~20 m). 相关分析表明,c(DMSOd)与c(DMS)(DMS为二甲基硫)之间没有相关性,但与c(DMSOp)显著相关(R=0.442, n=41, P<0.006),说明冬季表层海水中DMSOd主要来源于浮游植物细胞内DMSO的释放,而不是DMS的氧化(光化学氧化和微生物氧化). 另外,c(DMSOp)/ρ(Chla)与盐度呈正相关(R=0.532, n=46, P<0.004),说明盐度的改变会影响浮游植物组成的变化,进而影响c(DMSOp).   相似文献   

6.
挥发性有机硫化物(volatile organic sulfur compounds,简称VSCs)是硫循环的主要参与者,在全球气候变化和大气化学中发挥重要作用.于2017年9月运用冷阱捕集气相色谱和气-质联用法对东海海水与大气中3种重要的VSCs即羰基硫(COS)、二甲基硫(DMS)、二硫化碳(CS2)的浓度进行了测定,并计算了它们的海-气通量.研究结果表明,秋季东海表层海水中COS、DMS和CS2的浓度平均值分别为(0.14±0.08)、(3.58±2.81)和(0.06±0.06)nmol·L-1.大气中COS、DMS和CS2的平均浓度分别为(414.9±107.4)×10-12、(39.7±29.9)×10-12和(92.9±55.6)×10-12,COS是大气中含量最丰富的VSCs.相关性分析表明,海水中DMS与CS2存在相关性,推测两者具有相似的来源途径.大气中COS和CS2的浓度相关性较为显著,显示大气中CS2是COS的主要源.此外,海水中COS、DMS和CS2都呈过饱和状态,海-气通量平均值分别为(0.45±0.58)、(13.15±12.66)和(0.20±0.22)μmol·m-2·d-1,表明秋季东海是大气中3种VSCs的源.  相似文献   

7.
为深入研究河口近岸海域DMS(二甲基硫)的生物地球化学过程,于2014年2月(枯水季)和7月(丰水季)对长江口及附近海域表层海水中DMS及其前体物质DMSP(二甲巯基丙酸内盐)的浓度分布及影响因素进行了研究,测定了DMSPd(溶解态DMSP)的降解速率和DMS的生物生产与微生物消费速率,并估算了DMS的海-气通量.结果表明:①枯水季和丰水季c(DMS)、c(DMSPd)、c(DMSPp)(DMSPp为颗粒态DMSP)的平均值±标准偏差分别为(0.54±0.28)(2.04±1.32)(6.65±5.07)和(3.99±3.70)(5.57±4.72)(14.26±9.17)nmol/L,长江口海域丰水季生源硫化物的浓度明显高于枯水季.②枯水季和丰水季c(DMSPd)与ρ(Chla)均呈弱相关,说明浮游植物在控制长江口海域DMSP的生产分布中发挥重要作用.③枯水季和丰水季c(DMS)/ρ(Chla)的平均值±标准偏差分别为(2.62±3.28)和(4.60±7.49)mmol/g,表明丰水季DMS的高产藻种(甲藻)在浮游植物生物量中所占比例高于枯水季.④枯水季表层海水中DMSPd的降解速率和DMS的生物生产速率分别介于(2.84~30.53)和(0.52~2.19)nmol/(L·d)之间,平均值分别为14.55和1.30 nmol/(L·d),表明DMS并不是DMSPd的主要降解产物.⑤枯水季和丰水季DMS的海-气通量平均值±标准偏差分别为(0.36±0.32)和(2.17±2.98)μmol/(m2·d),而且丰水季的硫排放量明显高于枯水季,这主要与夏季较高的c(DMS)有关.研究显示,长江口海域生源硫化物的浓度变化及分布特征呈明显的季节性差异,河口近岸海域是海洋有机硫排放的重要区域.   相似文献   

8.
于2017年12月~2018年1月现场测定了黄、渤海表层海水中二甲基硫(DMS)、二甲巯基丙酸内盐(DMSP)以及溶解甲烷(CH4)的含量,对DMS、DMSP及CH4的浓度分布和相互关系进行了研究.通过培养实验探究了DMSP降解对DMS和CH4生成的影响,并估算了DMS及CH4的海-气通量.结果表明,表层海水中DMS、DMSPd、DMSPp及CH4的平均浓度分别为(1.39±1.21),(2.87±1.54),(5.59±4.64),(6.91±2.77)nmol/L.DMS、DMSP与Chl-a水平分布基本一致,均呈现近岸高、远海低的趋势.垂直分布上,DMS、DMSP浓度最大值均出现在浅水层,而CH4浓度则随深度的增加而增大,至底层达到最大值.相关性分析表明,DMS、DMSPp与Chl-a存在显著的正相关关系,CH4与DMSPd、DMSPp浓度均存在一定的正相关性(P<0.05).培养实验结果表明,海水中本底DMSPd的浓度越高,DMS的生产速率越大.冬季黄、渤海DMS和CH4海-气通量的平均值分别为(2.73±3.18),(8.14±7.68)μmol/(m2·d),表明冬季黄、渤海是大气中DMS、CH4重要的源.  相似文献   

9.
收集分析近10a东海近岸海水和沉积物中全氟烷基物(PFASs)、多氯联苯(PCBs)、多溴联苯醚(PBDEs)、有机氯农药(OCPs)、邻苯二甲酸酯(PAEs)和多环芳烃(PAHs)等六种典型持久性有机污染物(POPs)的分布及其影响因素的研究数据.结果表明,基于半数效应浓度(EC50)或海洋沉积物质量标准对海水和沉积物中POPs的生态风险评估,表明东海近岸大部分海域的PCBs、PBDEs和OCPs生态风险较低,但在杭州湾附近海域处于轻微至中等生态风险水平.PAHs整体上处于中等偏低及以下风险,PAEs处于中等偏高风险.PFASs处于中等及以下风险,但其中的全氟辛烷磺酸(PFOS)在长江口附近的生态风险较高.来自陆源输入的POPs在东海近岸海水和沉积物中的分布主要受到长江冲淡水、大气干湿沉降、沿岸流和潮汐作用的影响,呈现出绝大多数污染物含量在长江口和杭州湾附近较高,且向外海和南部沿岸总体降低的趋势.在浙闽沿岸泥质区、东海陆架泥质区,沉积物中部分污染物含量明显较高,与泥质区细颗粒泥沙对POPs的结合能力较强密切相关.长江冲淡水与东海海水交汇过程中温盐差异形成的“大陆边缘过滤器”效应,使得...  相似文献   

10.
挥发性硫化物(volatile sulfur compounds,VSCs)是大气中一类重要的痕量活性气体,对全球硫循环和气候变化有着重要的影响.于2018年6—7月运用冷阱捕集气相色谱和气-质联用法测定了东海海水与大气中3种重要的VSCs即羰基硫(carbonyl sulfide,COS)、二甲基硫(dimethyl sulfide,DMS)、二硫化碳(carbon disulfide,CS2)的浓度,分析了其与相关环境因子的相关性,并估算了它们的海-气通量.研究结果表明,夏季东海表层海水中COS、DMS和CS2的浓度平均值分别为(0.47±0.33)、(4.46±4.52)和(0.13±0.07) nmol·L-1,海水中COS和CS2的高值区出现在长江口附近海域,DMS在东海南部海域的浓度远低于北部海域.大气中COS、DMS和CS2的浓度平均值分别为(564.0±37.5)×10-12、(70.7±83.5)×10-12和(177.6±232.3)×10-12(以体积分数计),COS分布均匀,CS2的分布呈现近岸高远海低的特点,而DMS的分布受海-气扩散的影响.相关性分析表明,夏季东海海水中COS和CS2与海水中的营养盐存在正相关关系,这可能是因为营养盐能促进浮游植物生长,而浮游植物生长过程中能释放COS和CS2的前体进入水体,从而促进COS和CS2的生产.此外,夏季东海中COS、DMS和CS2的海-气通量平均值为(1.05±1.13)、(9.21±9.49)和(0.24±0.22)μmol·m-2·d-1,表明夏季东海是大气中3种VSCs的源.  相似文献   

11.
黄海和东海海域溶解氧的分布特征   总被引:12,自引:2,他引:12  
根据黄河和东海海区四个季度的调查资料,描述了溶解氧的时空分布和变化规律。黄、东海溶解氧分布的基本特征是北高南低,西高东低,随着水温的变化,不同季节这一差别有所不同。黄、东海溶解氧平均值分别为495.4和420.3μmol/L,测定范围分别为90.2-681.9和133-9-692.8μmol/L。以长江口以东H断面为例,描述了夏季溶解氧的断面分布特征,在20-30m水层出现一氧跃层,30m以下垂直分布比较均匀。文中还深入研究了东海陆架区黑潮水溶解氧的分布特征和变化规律。  相似文献   

12.
春季黄东海颗粒有机碳的时空分布特征   总被引:2,自引:1,他引:2  
根据2009年4~5月对黄东海大面积调查的资料,分析研究了黄东海颗粒有机碳(particulate organic carbon,POC)的浓度和时空分布特征,并结合叶绿素(Chlorophyll a,Chl-a)和C/N摩尔比值探讨了POC的主要来源.结果表明,春季黄东海POC的浓度范围是24.33~2 817.29...  相似文献   

13.
结合大面调查,典型断面剖析及关键站位连续观测结果,研究了黄海和东海海域溶解铋的含量水平,时空分布特征及与生态环境的耦合关系,探讨其主要来源和影响因素.结果表明,表层海水溶解铋含量在0~0.029μg·L-1之间,平均值为0.008μg·L-1;底层海水浓度稍高,介于0.001~0.189μg·L-1之间,平均值为0.016μg·L-1.水平方向上,溶解铋低值分布与盐度所示长江冲淡水双支扩散特征吻合,表明其可示踪长江冲淡水路径;高值出现在黄海暖流和苏北沿岸流途经之处及长江冲淡水与沿浙闽沿岸水交汇之处,表明其分布受控于海流系统循环.垂直方向上,水体对流和涡动混合使近岸海水均匀混合,陆架区强潮混合锋面将近岸垂向混合区和离岸层化海水区分隔,阻挡了溶解铋向外输运,使锋区内溶解铋含量明显高于外海.周日内,溶解铋变化主要与潮汐、再悬浮作用和温盐跃层等海域特定水动力条件密切相关,与温度,盐度等环境因素波动尚未呈现明显关系.溶解铋与悬浮颗粒物显著正相关,表明其易从固相释放至水体,并确定由颗粒态转化为溶解态的最佳温度(22~27℃)、盐度(28~31)和pH(7.9~8.1).  相似文献   

14.
根据2008年春(5月)、夏(8月)、秋(11月)、冬(2009年2月)4个季节东海(26°00’~33°00’N,127°00’E以西)桁杆拖虾网所获得的口足类调查资料,以渔获率作为口足类分布的数量指标,分析了调查海域的口足类种类组成、数量分布及时空变化趋势。结果表明:调查海域四季共捕获口足类20 种,隶属于4 科,11 属,其中优势种为口虾蛄(Oratosquillaoratoria)和黑斑口虾蛄(Oratosquilla kempi);在各季节出现的口足类种类数中,春季出现最多,其余三季变化不大;各季节口足类渔获量及渔获率变化明显,冬季渔获量及渔获率最高,以下依次为夏季、春季和秋季;从区域分布看,东海南部海域在口足类种类数和生物量两项指标均高于北部和中部两个海域;口足类以及优势种口虾蛄在4 个季节的调查中具有相对较为集中的生物量高发区,但聚集特征不明显;黑斑口虾蛄的分布则表现出了十分明显的地域特征。  相似文献   

15.
春季东、黄海溶解甲烷的分布和海气交换通量   总被引:2,自引:1,他引:1  
于2011年3月17日~4月6日对东、黄海海域进行了大面调查,采集了45个站位不同深度的海水样品,对溶解甲烷(CH4)浓度进行了测定,并估算了其海-气交换通量.结果表明,东、黄海表层海水中溶解甲烷的浓度变化范围是2.39~29.67nmol.L-1,底层海水中甲烷浓度范围是2.63~30.63 nmol.L-1,底层浓度略高于表层,表明底层水体或沉积物中存在甲烷的源.春季东、黄海海域表、底层溶解甲烷的分布特征基本一致,即从近岸向远海逐渐降低,主要受长江冲淡水输入和黑潮水入侵的影响.春季东、黄海海域表层海水中CH4饱和度为93%~1 038%.利用Liss and Merlivat公式(LM86)、Wanninkhof公式(W92)和现场测定的风速估算出春季东、黄海海域CH4的海-气交换通量分别为(2.85±5.11)μmol.(m2.d)-1和(5.18±9.99)μmol.(m2.d)-1,根据本研究结果和文献数据初步估算出东海和黄海年释放甲烷量分别为7.05×10-2~12.0×10-2Tg.a-1和1.17×10-2~2.20×10-2Tg.a-1.春季东、黄海海域表层海水中CH4均呈过饱和状态,是大气中CH4的净源.  相似文献   

16.
基于已发表的2005~2015年的文献数据,讨论了黄、东海表层二甲基硫(DMS)和叶绿素a (Chl-a)浓度的时空变化.结果表明:夏季DMS和Chl-a浓度高于冬季;由南至北,年均DMS和Chl-a浓度逐渐升高,且四季间的差异变大.黄、东海表层海水DMS和Chl-a、温度的统计分析表明,春、夏季Chl-a和DMS浓度存在指数关系,而冬季Chl-a和DMS浓度则存在线性关系;不同Chl-a水平下,温度对DMS浓度的影响存在差异.黄、东海表层DMS浓度与Chl-a浓度及温度的多元统计模型结果显示:DMS浓度随着Chl-a浓度增加而增加;在中心温度为21.31℃的温度区间内,DMS浓度较高,且Chl-a浓度越高,这个温度区间越窄.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号