首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dimensionless Henry's law constant was determined for methyl tert-butyl ether (MTBE) at six temperatures (3, 5, 10, 15, 20 and 25 degrees C) by using a thermostatted flask (430 ml) containing an aqueous MTBE solution. The ratio between the gas phase and the water phase in the flask was approximately 1.7:1. The aim of this study was to acquire data needed to model the behaviour of MTBE at groundwater conditions. The dimensionless Henry's law constant at 10 degrees C is approximately 0.01 but is 0.03 at 25 degrees C. This is important for modelling MTBE because the variation of vaporization cannot be disregarded at groundwater temperatures. In a second experiment the water solubility of MTBE was determined to be 62.1 g/l at 5 degrees C and 35.5 g/l at 20 degrees C). The high solubility at low temperatures could cause MTBE plumes from spills (fuel accidents etc.) to spread rapidly.  相似文献   

2.
Warneck P 《Chemosphere》2007,69(3):347-361
Experimentally determined Henry's law coefficients of 18 chlorinated C(1) and C(2) hydrocarbons reported in the literature as a function of temperature and at the single temperatures 20 and 25 degrees C were compiled and converted to common units of concentration and pressure: K(H) (moldm(-3)atm(-1)). The individual values are plotted in the ln(K(H)) versus reciprocal absolute temperature coordinate frame, data not in harmony with others were deleted, and the resulting data sets treated by linear regression analysis to derive averaged parameters in the general equation ln(K(H))=A+B/T. The quality of the evaluation was further checked by comparison of values calculated from the resulting parameter values with averages obtained from the direct measurements at 20 degrees C. Good agreement was observed for 15 compounds, larger discrepancies arise only for chloroethane, 1,2-dichloroethane and hexachloroethane. In all three cases the data base is poor and needs to be improved. The results are used to derive heats of solution for the C(1) and C(2) chlorinated hydrocarbons in water, Gibbs energies of solution and standard Henry's law coefficients at 298.15K. Henry's law coefficients calculated from the ratio of solubility of the compound in water and the saturation vapor pressure of the pure compound reported by Sangster [Sangster, J.M., 2003. Henry's law constants for compounds stable in water. In: Fogg, P.G.T., Sangster, J.M. (Eds.), Chemicals in the Atmosphere - Solubility, Sources and Reactivity. Wiley, Chichester, West Sussex, England, pp. 255-397] provide good agreement with the experimental data in eight out of eleven cases treated.  相似文献   

3.
Reza J  Trejo A 《Chemosphere》2004,56(6):537-547
The water solubility of 9,10-dihydroanthracene was experimentally determined between 278.12 and 313.17 K. Determinations were carried out by an experimental procedure developed in our laboratory, which is a modification of the dynamic coupled column liquid chromatographic technique. The uncertainty of the experimental determinations ranged from +/- 0.50% to +/- 3.10%. These data, as well as the water solubility data of other five polycyclic aromatic hydrocarbons (PAHs) previously studied, were used to calculate the temperature dependence of the infinite dilution activity coefficient of 9,10-dihydroanthracene, anthracene, pyrene, 9,10-dihydrophenanthrene, m-terphenyl, and guaiazulene in water. Molar excess enthalpies and entropies at infinite dilution, at 298.15 K, were also derived. The temperature dependence of the infinite dilution activity coefficients was used, together with literature values of the vapor pressures of supercooled liquid PAHs (p(B)(sc)), to estimate their Henry's law constants (HLC). Only HLC for anthracene, pyrene, and 9,10-dihydrophenanthrene were calculated, since no p(B)(sc) data were available in the literature for 9,10-dihydroanthracene, m-terphenyl, and guaiazulene. From the observed temperature dependence of the Henry's law constants the enthalpy and entropy of the phase change from the dissolved phase to the gas phase were also derived for anthracene, pyrene, and 9,10-dihydrophenanthrene.  相似文献   

4.
Ladaa TI  Lee CM  Coates JT  Falta RW 《Chemosphere》2001,44(5):1137-1143
The effects of selected cosolvents ethyl alcohol (EtOH), isopropyl alcohol (IPA), and tertbutyl alcohol (TBA) on the Henry's law constant (H) of tetrachloroethylene (PCE) in aqueous solutions were investigated using the static headspace method. Alcohols in solution at a concentration around 20% and above acted as cosolvents increasing the aqueous solubility of PCE, which resulted in lower H values for PCE as compared to the value of H in deionized water. TBA, the most hydrophobic of the three alcohols, exhibited the strongest cosolvent effects, while EtOH had the weakest effects. A ln-linear relationship was observed between H and the volumetric fraction of alcohol added. Investigation of the solubilization of PCE in alcohol solutions confirmed the cosolvent trend observed for the three alcohols. A ln-ln relationship was observed between H and the enhanced solubility of PCE at a particular alcohol concentration. It was also observed that the value of H is a function of the enhanced solubility regardless of the type of cosolvent used. The results from this research further define the behavior of PCE in alcohol flooding solutions used in the remediation of PCE contaminated media.  相似文献   

5.
The original-type UNIFAC model was used to predict the environmentally important physico-chemical properties of PCDDs/DFs, such as aqueous solubility, Henry's law constant, and 1-octanol/water partition coefficient, through the UNIFAC-derived infinite dilution activity coefficient. In this application, we suggest an alternative approximation that the aromatic ether group AC-O in PCDD/DF molecules is replaced with the aliphatic ether group CH-O, because the AC-O group is not available in the conventional UNIFAC model. With this approximation, the ability of the UNIFAC model to predict those properties was examined by comparing with experimental data. The UNIFAC model provided comparatively good estimation results. From these results, it is shown that the alternative approximation is useful for the UNIFAC estimation of physico-chemical properties for PCDDs/DFs. Furthermore, the predicted solubilities of 2,3,7,8-T4CDD and O8CDD in organic solvents and the co-solvency effect on solubility of PCDDs in methanol/water mixture indicate that the UNIFAC calculation presented here could well predict the physico-chemical properties of PCDDs/DFs in various solution conditions.  相似文献   

6.
Foliar emission rates of plant-generated volatile monoterpenes depend on monoterpene partitioning between air, aqueous and lipid-phases in the leaves. While Henry's law constants (H pc, equilibrium gas/water partition coefficient) and octanol/water partition coefficients (K OW) for pure water have been previously used to simulate monoterpene emissions from the leaves, aqueous phase in plants is a complex solution of electrolytes and neutral osmotica. We studied the effects of dissociated compounds KCl and glycine and sugars glucose, sorbitol and sucrose with concentrations between 0 and 1M on H pc and K OW values for limonene and linalool. Linalool with ca. 1500-fold lower H(pc) (2.62 Pa m(3)mol(-1) for pure water at 30 degrees C) and ca. 30-fold lower K OW (955 mol mol(-1) for pure water at 25 degrees C) is the more hydrophilic compound of the two monoterpenes. H pc of both monoterpenes increased with increasing concentration of both ionic compounds and sorbitol, but decreased with increasing glucose and sucrose concentrations. The salting-out coefficients for H pc (kH) were ca. an order of magnitude larger for more hydrophilic compound linalool than for more hydrophobic limonene. For linalool, co-solutes modified H pc by 30-50% at the highest concentration (1M) tested. The effect of temperature on the salting-out coefficient of KCl was minor. As with H pc, K OW increased with increasing the concentration of KCl, glycine and sorbitol, and decreased with increasing glucose and sucrose concentrations. For limonene, co-solutes modified K OW by 20-50% at the highest concentration used. For linalool, the corresponding range was 10-35%. Salting-out coefficients for H pc and K OW were correlated, but the lipid-solubility was more strongly affected than aqueous solubility in the case of limonene. Overall, these data demonstrate physiologically important effects of co-solutes on H pc and K OW for hydrophilic monoterpenes and on K OW for hydrophobic monoterpenes that should be included in current emission models.  相似文献   

7.
Effect of substrate Henry's constant on biofilter performance   总被引:4,自引:0,他引:4  
Butanol, ether, toluene, and hexane, which have Henry's constants ranging from 0.0005 to 53, were used to investigate the effects of substrate solubility or availability on the removal of volatile organic compounds (VOCs) in trickle-bed biofilters. Results from this study suggest that, although removal of a VOC generally increases with a decrease in its Henry's constant, an optimal Henry's constant range for biofiltration may exist. For the treatment of VOCs with high Henry's constant values, such as hexane and toluene, the transfer of VOCs between the vapor and liquid phases or between the vapor phase and the biofilm is a rate-determining step. However, oxygen (O2) transfer may become a rate-limiting step in treating VOCs with low Henry's constants, such as butanol, especially at high organic loadings. The results demonstrated that in a gas-phase aerobic biofilter, nitrate can serve both as a growth-controlling nutrient and as an electron acceptor in a biofilm for the respiration of VOCs with low Henry's constants. Microbial communities within the biofilters were examined using denaturing gradient gel electrophoresis to provide a more complete picture of the effect of O2 limitation and denitrification on biofilter performance.  相似文献   

8.
9.
Henry's law constants (H) are needed to model human exposure to Volatile Organic Compounds (VOCs) in indoor air resulting from the use of tap water. This paper presents an experimental method to determine Hs for several common tap water pollutants at concentrations and temperatures used in household water. For 5 VOCs Henry's law constants were obtained simultaneously over the 25 degrees C to 45 degrees C temperature range, providing data on H beyond the currently available data (up to 35 degrees C). Henry's law constants were obtained as the ratio of equilibrium concentrations of VOCs in air and water, using simultaneous sampling from sealed bottles kept at constant temperatures. Air and water samples were concentrated by a purge-and-trap method, thermally desorbed from a Tenax trap, and analyzed with a gas chromatograph with an electron capture detector (GC-ECD). Experimental results agreed well with available literature data.  相似文献   

10.
New data on the aqueous solubility of n-octane, 1-chlorooctane and 1-bromooctane are reported between 1 degree C and 45 degrees C. Henry's law constants, K(H), and air/water partition coefficients, K(AW), were calculated by associating the measured solubility values to vapor pressures taken from literature. The mole fraction aqueous solubility varies between (1.13-1.60)x10(-7) for n-octane with a minimum at approximately 23 degrees C, (3.99-5.07)x10(-7) for 1-chlorooctane increasing monotonically with temperature and (1.60-3.44)x10(-7) for 1-bromooctane with a minimum near 18 degrees C. The calculated air-water partition coefficients increase with temperature and are two orders of magnitude lower for the halogenated derivatives compared to octane. The precision of the results, taken as the average absolute deviations of the aqueous solubility, the Henry's law constants, or the air/water partition coefficients, from appropriate smoothing equations as a function of temperature is of 3% for n-octane and of 2% and 4% for 1-chlorooctane and 1-bromooctane, respectively. A new apparatus based on the dynamic saturation column method was used for the solubility measurements. Test measurements with n-octane indicated the capability of measuring solubilities between 10(-6) and 10(-10) in mole fraction, with an estimated accuracy better than +/-10%. A thorough thermodynamic analysis of converting measured data to air/water partition coefficients is presented.  相似文献   

11.
Concentrations of nonylphenol isomers (NP), tertiary octylphenol (t-OP) and nonylphenol monoethoxylate isomers (NP1EO) have been simultaneously determined in the sea water and atmosphere of the North Sea. A decreasing concentration profile appeared following the distance increasing from the coast to the central part of the North Sea. Air-sea exchanges of t-OP and NP were estimated using the two-film resistance model based upon relative air-water concentrations and experimentally derived Henry's law constant. The average of air-sea exchange fluxes was -12+/-6 ng m(-2)day(-1) for t-OP and -39+/-19 ng m(-2)day(-1) for NP, which indicates a net deposition is occurring. These results suggest that the air-sea vapour exchange is an important process that intervenes in the mass balance of alkylphenols in the North Sea.  相似文献   

12.
Cyclodextrins: a new efficient absorbent to treat waste gas streams   总被引:1,自引:0,他引:1  
Volatile Organic Compounds (VOCs) in the air provoke health and environmental concerns. This paper focuses on the absorption method to treat industrial polluted air loaded with VOCs. The key variable of this treatment being the choice of a suitable liquid absorbent, the aim of this research work is to investigate the effectiveness and the regeneration of a new potential family of absorbent: cyclodextrins (CDs). All CDs derivatives tested are able to decrease the Henry's law constant of toluene: a reduction of volatility up to 95% may be obtained, depending on CD nature and concentration. Moreover, absorption experiments show that beta-CD, which presents the highest absorption ability, is 250 time more efficient than water. The absorption efficiency is not totally correlated with static experiments, suggesting that, in addition to Henry's law constants and inclusion compounds stability, toluene diffusion into such solutions has to be taken into account. It is also to be noted that salt and pH variations seem to have little influence on the absorption capacity of CDs, which may be of great interest for industrial applications. Finally, since production of solid compounds was not observed during these experiments and since temperature decreases the capture ability in a drastic way, regeneration of the washing solution can be achieved by heating the solution in combination with air stripping.  相似文献   

13.
A laboratory study was conducted to examine cosolvent-enhanced in-situ chemical oxidation (ISCO) of perchloroethylene (PCE) using potassium permanganate (KMnO4). The conceptual basis for this new technique is to enhance permanganate oxidation of dense non-aqueous phase liquids (DNAPLs) with the addition of a cosolvent, thereby increasing DNAPL solubility while avoiding mobilization. Among 17 cosolvent candidates screened, tertiary butyl alcohol (TBA) and acetone were the most stable in the presence of KMnO4, both of which increased PCE aqueous solubility significantly, and therefore are suitable to be used as cosolvent in this study. Batch experiments indicated that the second-order rate constant for PCE oxidation by potassium permanganate was 0.043+/-0.002 M(-1) s(-1) in the purely aqueous (no cosolvent) solution. In the presence of 20% cosolvent (volume fraction=fc=0.2), the rate constant decreased to 0.036+/-0.003 M(-1) s(-1) with TBA and to 0.031+/-0.002 M(-1) s(-1) with acetone. However, in the presence of free-phase PCE, chloride ion concentration from PCE oxidation in acetone/water solutions (fc=0.2) was about twice that in aqueous solutions, indicating that the increase in PCE solubility more than compensated for the decrease in reaction rate constant, such that the oxidation efficiency of PCE was increased with cosolvent. A complete chlorine mass balance was observed in the aqueous system, whereas approximately 70% was obtained in TBA/water or acetone/water (fc=0.2). In soil columns containing residual DNAPL and subjected to isocratic flushing with step-wise increases in f(c) cosolvent, TBA at fc=0.2 resulted in PCE mobilization, whereas acetone at fc相似文献   

14.
Monoterpenes are C10H(n)O(n') compounds of natural origin and are potentially environmentally safe substitutes for traditional pesticides. Still, an assessment of their environmental behaviour is required. As a first step in a theoretical study focussing on monoterpenes applied as pesticides to terrestrial environments, soil fate model input-parameters were determined for 20 monoterpenes with widely different structural characteristics. Input-parameters are the water solubility (S(W)), vapour pressure (P), n-octanol-water partition coefficient (K(OW)), atmospheric air and bulk water diffusion coefficients (D(A)air and D(W)water), first order biodegradation rate constants (k), and their temperature dependence. Values for these parameters were estimated or taken from previous experimental work. The quality of the estimations was discussed by focussing on their statistics and by comparison with available experimental data. From these properties, the air-water partition coefficient (K(AW), Henry's Law constant), the interface-water partition coefficient (K(IW)) and the organic matter-water partition coefficient (K(OM)) could be estimated with varying levels of accuracy. In general, little experimental data turned out to be available on biodegradation rate constants and on the temperature dependence of physico-chemical parameters.  相似文献   

15.
Following a modelling investigation of the role of the ambient aerosol in the cycling—that is the transport, transformation and deposition—of mercury in the atmosphere, the precise part played by the sea salt component of the marine aerosol in the remote marine boundary layer has been studied using a combination of models to describe the photolytic, gas phase and aqueous phase and heterogeneous chemistry of the marine boundary layer, in conjunction with inter phase mass transport and mercury chemistry. The role of the ocean in the emission of elemental mercury is, as yet, not entirely understood, but certainly the speciation of mercury deposited to the ocean surface is important as regards its re-emission. Models of mercury chemistry to date have tended to focus on cloud chemistry, and with good reason, as precipitation accounts for a large part of the global mercury deposition pattern; however, the composition of the marine aerosol is entirely different from that of cloud or fog droplets and the modelling studies here show that it plays a more local role being partially responsible for the gas phase speciation of mercury. The role of photochemical processes is investigated and particular attention is paid to halogen chemistry, as the chloride ion has been shown previously to have a notable effect on the concentration of oxidised mercury associated with particles, or better, solution droplets. The role of the sea salt component of the marine aerosol in the production of gas phase oxidised mercury species is described qualitatively and quantitatively.  相似文献   

16.
This paper presents accurate predictions of ecologically important properties of nitroaromatic compounds and their derivatives, including vapor pressure, Henry's law constants, water solubility, octanol/water partition coefficients, heats of formation and ionization potentials. The proposed technique of calculations was based on quantum-chemical methods. The relationship between the chemical structure and mentioned physico-chemical parameters of such widespread military produced contaminants as trinitrotoluene and its derivatives was considered. We revealed that the DFT level of theory combined with the COSMO-RS technique is able to predict the studied parameters with an accuracy that results in error bars of less then one logarithmic unit.  相似文献   

17.
Guo XX  Brimblecombe P 《Chemosphere》2007,68(3):436-444
Phenols are widely present in the atmosphere and nitration probably in the aerosol phase leads to nitrophenols. Nitration by nitric acid in sulfuric acid can be rapid, but little is known of the process under atmospheric conditions. The Henry's law constants K(H)(dagger) of phenol and 2-, 3- and 4-nitrophenol were all measured by a bubble stripping method as: 2820mol kg(-1) atm(-1) (at 298K), 147mol kg(-1) atm(-1) (at 298K), 1.6x10(4)mol kg(-1)atm(-1) (at 308K) and 2.1x10(4)mol kg(-1) atm(-1) (at 308K), respectively. The Henry's law constant of phenol in sulfuric acid systems is lower by more than a factor of two at 1020mol kg(-1) atm(-1) (at 298K) in 40wt% sulfuric acid, which is in line with salting-out of oxygen-containing aromatic compounds in water-sulfuric acid systems. The Henry's law constants of 2- and 4-nitrophenol behave differently and are almost independent of sulfuric acid concentration. The variation of K(H)(dagger) with temperature (T) described in terms of -dln(K(H)(dagger))/d(1/T) does not to vary with sulfuric acid concentration, suggesting enthalpy of dissolution for phenol is independent of sulfuric acid. The series of Henry's law constants measured here can describe the equilibrium situation for phenols in careful determinations of phase partitioning in the atmosphere.  相似文献   

18.
Wang X  Tang S  Liu S  Cui S  Wang L 《Chemosphere》2003,51(7):617-632
Polychlorinated biphenyls (PCBs) congeners with various degrees of chlorination and substitution patterns are among the most widespread and persistent man-made organic pollutants. They are toxic, lipophilic and tend to be bioaccumulated. The knowledge of the physico-chemical properties is very useful to explain the environmental behavior of PCBs and to perform an exposure assessment. In this paper, we have used a new molecular representation, the molecular hologram, to generate quantitative structure-property relationship models to predict the physico-chemical properties of biphenyl and all of its chlorinated congeners. The investigated properties include 1-octanol/water partition coefficient (logK(ow)), aqueous solubility (-logS(w)), aqueous activity coefficient (-logY(w)), Total molecular surface area, Henry's law constant (logH). The results show that this new quantitative structure-activity relationship approach presents highly predictive models for important physico-chemical properties of PCBs.  相似文献   

19.
Thomas JE  Ou LT  Allen LH  Vu JC  Dickson DW 《Chemosphere》2006,62(6):980-988
Methyl bromide, a pre-emergent soil fumigant, is scheduled to be phased out in the US by 2005, with exceptions for critical use. Comparison of some of the physical constants related to distribution and retention for methyl bromide (MBr) to other fumigants yields a useful quantification of possible alternatives. In this study, the atmospheric and subsurface dissipation of methyl bromide as well as (Z)- and (E)-1,3-dichloropropene (1,3-D) isomers in Telone II were examined. The Henry's law constants of the three chemicals at soil temperature and their mass transfer coefficients for movement through an agricultural mulch of UV-resistant, high-density polyethylene (PE) were evaluated using field data. At the soil temperature of 16.4 degrees C, calculated Henry's law constant gave a fumigant ranking of MBr (0.21)>(Z)-1,3-D (0.041)>(E)-1,3-D (0.027). Since rapid subsurface distribution of a fumigant is highly dependent on the amount in the gas phase, the greater value for Henry's law constant implies faster distribution throughout the soil. After distribution through the soil, retention of the fumigant becomes imperative. Calculation of the fumigant's mass transfer coefficients through PE from field data gave a ranking of the three chemicals: MBr (1.08 cm/h)<(E)-1,3-D (3.25 cm/h)<(Z)-1,3-D (4.13 cm/h). With mass transfer coefficients of this magnitude, it was concluded that PE film was an inadequate barrier for retaining these fumigants in an agricultural setting.  相似文献   

20.
The Henry's law constant is important in the gas-liquid mass transfer process. Apparent dimensionless Henry's law constant, or the gas-liquid partition coefficient (K'H), for both hydrophilic (methanol, isopropyl alcohol, and acetone) and hydrophobic (toluene and p-xylene) organic compounds in deionized (DI) water, a wastewater with a maximum total dissolved organic carbon (DOC) content of 700 mg/L, and DI water mixed with a maximum activated sludge suspended solid (SS) concentration of 40,000 mg/L were measured using the single equilibrium technique at 293 K. Experimental results demonstrate that the K'H of any of the test volatile organic compounds varied among three situations. First, the K'H of the hydrophilic compounds in mixed liquor with the maximum SS concentration was 9-21% higher than those in DI water. Second, those for toluene and p-xylene were 77% and 93% lower, respectively, in the mixed liquor with the maximum SS concentration. Third, the K'H values of all of the test compounds in the wastewater were only 10% lower than those in DI water. A model was developed to relate K'H with wastewater DOC and the SS concentration in the activated sludge using an organic carbon-water partition coefficient and activated sludge-water partition coefficient as model parameters. The model was verified and model parameters for test compounds estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号