首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A summertime study of the number concentration and the size distribution of combustion derived nanometre sized particles (termed nanoparticles) from diesel and spark-ignition (SI) engine emissions were made under rush-hour and free-flow traffic conditions at an urban roadside location in Leeds, UK in July 2003. The measured total particle number concentrations (N(TOTAL)) were of the order 1.8 x 10(4) to 3.4 x 10(4) cm(-3), and tended to follow the diurnal traffic flow patterns. The N(TOTAL) was dominated by particles < or =100 nm in diameter which accounted for between 89-93% of the measured particle number. By use of a log-normal fitting procedure, the modal parameters of the number based particle size distribution of urban airborne particulates were derived from the roadside measurements. Four component modes were identified. Two nucleation modes were found, with a smaller, more minor, mode composed principally of sub-11 nm particles, believed to be derived from particles formed from the nucleation of gaseous species in the atmosphere. A second mode, much larger in terms of number, was composed of particles within the size range of 10-20 nm. This second mode was believed to be principally derived from the condensation of the unburned fuel and lube oil (the solvent organic fraction or SOF) as it cooled on leaving the engine exhaust. Third and fourth modes were noted within the size ranges of 28-65 nm and 100-160 nm, respectively. The third mode was believed to be representative of internally mixed Aitken mode particles composed of a soot/ash core with an adsorbed layer of readily volatilisable material. The fourth mode was believed to be composed of chemically aged, secondary particles. The larger nucleation and Aitken modes accounted for between 80-90% of the measured N(TOTAL), and the particles in these modes were believed to be derived from SI and diesel engine emissions. The overall size distribution, particularly in modes II-IV, was observed to be strongly related to the number of primary particle emissions, with larger count median diameters observed under conditions where low numbers of primary soot based particles were present.  相似文献   

2.
This study used a scanning mobility particle sizer (SMPS) to measure and categorize submicron atmospheric particles in the 14–737-nm size range for ambient and urban roadside air and for air in the Hsuehshan Tunnel (12.9 km), Taiwan. Principal component analysis, traffic flow, and particle size distributions were used to identify the emission characteristics of light-duty vehicles (LDV) with the SMPS data. In the Hsuehshan Tunnel, the particle size from the majority of emissions discharged by LDV is approximately 20–60 nm, and the maximum particle number can reach up to 2.5?×?105. In contrast, submicron particle size distribution for urban roadsides is mostly 14–200 nm, and the maximum particle number is approximately 4?×?104 with the particle number for most particle sizes being below 1,200. The submicron particle size distribution at the ambient air station was unimodal with a mode sizes at 30–50 nm with the maximum particle number of 3,000.  相似文献   

3.
The size of particles in urban air varies over four orders of magnitude (from 0.001 μm to 10 μm in diameter). In many cities only particle mass concentrations (PM10, i.e. particles <10 μm diameter) is measured. In this paper we analyze how differences in emissions, background concentrations and meteorology affect the temporal and spatial distribution of PM10 and total particle number concentrations (PNC) based on measurements and dispersion modeling in Stockholm, Sweden. PNC at densely trafficked kerbside locations are dominated by ultrafine particles (<0.1 μm diameter) due to vehicle exhaust emissions as verified by high correlation with NOx. But PNC contribute only marginally to PM10, due to the small size of exhaust particles. Instead wear of the road surface is an important factor for the highest PM10 concentrations observed. In Stockholm, road wear increases drastically due to the use of studded tires and traction sand on streets during winter; up to 90% of the locally emitted PM10 may be due to road abrasion. PM10 emissions and concentrations, but not PNC, at kerbside are controlled by road moisture. Annual mean urban background PM10 levels are relatively uniformly distributed over the city, due to the importance of long range transport. For PNC local sources often dominate the concentrations resulting in large temporal and spatial gradients in the concentrations. Despite these differences in the origin of PM10 and PNC, the spatial gradients of annual mean concentrations due to local sources are of equal magnitude due to the common source, namely traffic. Thus, people in different areas experiencing a factor of 2 different annual PM10 exposure due to local sources will also experience a factor of 2 different exposure in terms of PNC. This implies that health impact studies based solely on spatial differences in annual exposure to PM10 may not separate differences in health effects due to ultrafine and coarse particles. On the other hand, health effect assessments based on time series exposure analysis of PM10 and PNC, should be able to observe differences in health effects of ultrafine particles versus coarse particles.  相似文献   

4.
In this study, PM10 concentrations and elemental (Al, Fe, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Sn, Sb, Ba, Pb, and Bi) contents of particles were determined in Düzce, Turkey. The particulate matter samplings were carried out in the winter and summer seasons simultaneously in both urban and sub-urban sampling sites. The average PM10 concentration measured in the winter season was 86.4 and 27.3 μg/m3, respectively, in the urban and sub-urban sampling sites, while it was measured as 53.2 and 34.7 μg/m3 in the summer season. According to the results, it was observed that the PM10 levels and the element concentrations reached higher levels, especially at the urban sampling site, in the winter season. The positive matrix factorization model (PMF) was applied to the data set for source apportionment. Analysis with the PMF model revealed six factors for both the urban (coal combustion, traffic, oil combustion, industry, biomass combustion, and soil) and sub-urban (industry, oil combustion, traffic, road dust, soil resuspension, domestic heating) sampling sites. Loadings of grouped elements on these factors showed that the major sources of the elements in the atmosphere of Düzce were traffic, fossil fuel combustion, and metal industry-related emissions.  相似文献   

5.
Ambient gas and particle phase samples were collected during two sampling periods from a residential area of an industrialized city, Kocaeli, Turkey. The sampling occurred during winter months when structures were being heated, and summer months when structures were not being heated. Σ(13)PAH (gas + particle) concentrations ranged between 6.2 ng m(-3) (DahA) and 98.6 ng m(-3) (Phe) in the heating (winter) period and 3.0 ng m(-3) (BaA) and 35.1 ng m(-3) (Phe) in the non-heating (summer) period. Phe, Flt and Pyr were found to be at high concentrations in both sampling periods. Winter time to summer time concentration ratios for individual ambient PAH concentration ratios ranged between 1.2 (DahA) and 17.5 (Flu), indicating the effect of the emissions from residential heating on measured concentrations of PAHs, but great industrial plants and the only incinerator facility of Turkey are other important pollution sources around the city. Temperature dependence of gas phase PAHs was investigated using the Clausius-Clapeyron equation. A high slope obtained (5069.7) indicated the effect of the local sources on measured gas phase PAHs. Correlation of the supercooled vapor pressure (P) with the gas particle partitioning coefficient (K(p)) and particle phase fraction was also evaluated. The relationship between the meteorological parameters and individual PAH (gas + particle) concentrations was investigated further by multiple linear regression analysis. It was found that the temperature had a significant effect on all of the measured PAH concentrations, while the effects of the wind speed and direction were not significant on the individual PAHs. On the other hand, PAH concentrations showed a strong linear relationship with the ventilation coefficient (VC) which showed the influence of local sources on measured PAHs. Benzo[a]pyrene toxic equivalent (BaP(eq.)) concentrations were used for health risk assessment purposes. The winter period risk level (2.92 × 10(-3)) due to the respiratory exposure to PAHs was found to be almost 3 times higher than in the summer period (1.15 × 10(-3)).  相似文献   

6.
株洲市某交通干道夏季细颗粒物分布特征及相关因素   总被引:1,自引:0,他引:1  
2014年夏季采用扫描电迁移率粒径谱仪,选取株洲市某交通干道附近,对其环境细颗粒物进行连续测量,并统计干道的车流量。实验结果表明:环境中的细颗粒物数浓度呈双峰分布,峰值一般出现在9.47~17.5、98.2~121.9 nm粒径段,晴天和雨天不同粒径段的细颗粒物数浓度的波动性不一致,降水过程对细颗粒有一定的去除作用。结合所观测的机动车流量和所排放的细颗粒物粒径谱,分析其与细颗粒物浓度之间的关系,可初步判断该环境中爱根核模态的细颗粒物来源于机动车排放。  相似文献   

7.
From March 2008 to February 2009, PM(10) samples were collected and analyzed for polycyclic aromatic hydrocarbons (PAHs) at eight sampling sites in Great Xiamen Bay, China. Analyses of the seasonal and spatial variations of these compounds revealed the following results. Significantly high levels of PAHs were found in the winter compared to the summer, sometimes exceeding 100 ng m(-3), and the spatial variations were influenced most by the sampling site surroundings. Composition profiles of PAHs of an urban and a rural site were shown to be very similar with a positive correlation coefficient larger than 0.9 at the 0.01 level of significance for the same season. Diagnostic ratios, together with principal component and multiple linear regression analysis, showed that more PAHs were from grass/wood/coal combustion in winter than in other seasons. The ratios of benzo[a]pyrene to benzo[e]pyrene (BaP-BeP) in winter and fall were 0.6-1.7 times higher than those in spring and summer, suggesting the importance of local emissions of PAHs. The BaP-BeP ratios in Kinmen were generally lower than those in Xiamen, indicating that the aging degree of PAHs was higher in Kinmen than in Xiamen. The external input of PAHs from upwind urban and industrial areas was one of the key factors causing high levels of PAHs in PM(10) in Great Xiamen Bay in winter.  相似文献   

8.
为研究长三角典型城市公交车细颗粒物排放特征,采用便携式排放测试系统(PEMS),对上海、杭州和苏州三大城市的8辆典型城市公交车开展实际道路细颗粒物排放实验。研究结果表明:长三角典型城市车辆的实际道路平均车速为22.7 km/h,怠速比例为20.4%,加减速比例为54.5%;在稳态行驶工况下,随车速增大,公交车颗粒物质量及数量排放呈逐渐增大趋势;在20 km/h车速范围内,上海国III、国IV和苏州国III公交车颗粒数浓度呈双峰粒径分布,其他公交车均为单峰分布;随比功率的增大,公交车颗粒质量呈逐渐增大的趋势,国IV公交车颗粒数量呈先下降再增大趋势,国III公交车颗粒数量呈上升趋势;公交车颗粒质量综合排放因子为0.8~189 mg/km,颗粒数量综合排放因子为6.2×1012~9.6×1014#/km。  相似文献   

9.
Daily measurements of sulfate, nitrate and chloride in PM(10) have been made at three geographically separated UK sites over a three year period. Chloride shows a clear seasonal pattern with highest concentrations in winter, whilst sulfate and nitrate both show highest concentrations in the spring, apparently related to weather patterns. Spatial variability of both sulfate and nitrate is low in comparison to temporal variations, with high correlations of both species between all three sites, London (North Kensington), Harwell and Belfast, despite a geographic separation of 510 km. Both SO/SO(2) and NO/NO(x) ratios are considerably higher in summer than winter, reflecting a greater oxidising capacity of the atmosphere. SO(4)(2-)/NO(3)(-) ratios are higher in summer than winter, suggesting that aqueous phase oxidation of SO(2), expected to be most important in the winter months is not appreciably influencing production of sulfate aerosol, although greater dissociation of ammonium nitrate in summer may also play a role. Regression of concentrations at London, North Kensington with those from the proximate rural site of Harwell is interpreted as showing a similar effect of regional transport at the two sites and a small influence of local formation in the urban atmosphere or primary emissions, averaging 0.46 microg m(-3) of nitrate and 0.22 microg m(-3) of sulfate.  相似文献   

10.
Continuous visibility monitoring has been carried out inKwangju, Korea since May 1999. The total light extinctioncoefficient b ext measured by a transmissometer andreveals seasonal trends in urban visual air quality,especially under hazy conditions with a visual range of lessthan 15 km. Seasonal atmospheric visibility under lowrelative humidity during the winter was observed to be betterthan during any other seasons. Summertime visibility wasseverely degraded due to highly increased light scattering byhygroscopic particles under high humidity atmosphericconditions. Visibility during spring and fall was alsomoderate. However, yellow sand in spring caused the lowestvisibility conditions over the measurement area for a fewdays. With continuous monitoring using the transmissometer,the daily average seasonal visual range was measured to be13.1, 9.2, 11.0, and 13.9 km in spring, summer, falland winter, respectively. Under the atmospheric humiditycondition less than 60%, visual range was observed tobe 16.1, 13.9, 15.1, and 16.6 km in spring, summer,fall, and winter, respectively. The mean light extinctionbudget by sulfate and nitrate aerosols was determined to bethe highest value of 63.71% during the summer and thelowest value of 27.08% during spring. During the `yellow sand dust' period, a mean light extinction budget by soil particles was estimated to be at an unusually high value of 44.22%.  相似文献   

11.
An intensive two month measurement campaign has been performed during a two year study of major component composition of urban PM10 and PM2.5 in Ireland (J. Yin, A. G. Allen, R. M. Harrison, S. G. Jennings, E. Wright, M. Fitzpatrick, T. Healy, E. Barry, D. Ceburnis and D. McCusker, Atmos. Res., 2005, 78(3-4), 149-165). Measurements included size-segregated mass, soluble ions, elemental carbon (EC) distributions, fine and coarse fraction organic carbon (OC) and major gases along with standard meteorological measurements. The study revealed that urban emissions in Ireland had mainly a local character and therefore were confined within a limited area of 20-30 km radius, without significantly affecting regional air quality. Gaseous measurements have shown that urban emissions in Ireland had clear, but fairly limited influence on the regional air quality due to favorable mixing conditions at higher wind speeds, in particular from the western sector. Size-segregated mass and chemical measurements revealed a clear demarcation size between accumulation and coarse modes at about 0.8 microm which was constant at all sites. Carbonaceous compounds at the urban site accounted for up to 90% of the particle mass in a size range of 0.066-0.61 microm. Nss SO4(2-) concentrations in PM2.5 were only slightly higher at the urban site compared to the rural or coastal sites, while NO3- and NH4+ concentrations were similar at the urban and coastal sites, but were a factor of 2 to 3 higher than at the rural site. OC was highly variable between the sites and revealed clear seasonal differences. Natural or biogenic OC component accounted for <10% in winter and up to 30% in summer of the PM2.5 OC at urban sites. A contribution of biogenic OC component to PM2.5 OC mass at rural site was dominant.  相似文献   

12.
重金属铅由于其对人体健康的影响而广受关注。利用在线单颗粒气溶胶质谱仪对2012年发生在华南地区的一次金属铅污染事故中的含铅颗粒物的质谱特征、粒径分布及排放规律进行了分析。监测发现A、B两个监测点位的含铅颗粒物比例多在夜间或凌晨达到高峰,高峰时刻含铅颗粒物数浓度占比最高可达67%,对比广州市区、鹤山超级站的含铅颗粒物浓度占比,可知该地区含铅颗粒物的污染程度较高。两监测点位的含铅颗粒物质谱特征及粒径分布情况非常相似,可能存在相同的排放源或具有相同的形成机制。质谱中都均含有明显的铅、元素碳、硫、硫酸盐等信号,可能来自于燃煤源的排放。通过进一步对比分析燃煤烟气排放的含铅颗粒物质谱特征,判断其为燃煤源排放。  相似文献   

13.
To investigate the diurnal profile of the concentration and composition of ambient coarse particles, three sampling sites were set up in the Los Angeles Basin to collect coarse particulate matter (CPM) in four different time periods of the day (morning, midday, afternoon and overnight) in summer and winter. The samples were analyzed for total and water-soluble elements, inorganic ions and water-soluble organic carbon (WSOC). In summer, highest concentrations of CPM gravimetric mass, mineral and road dust, and WSOC were observed in midday and afternoon, when the prevailing onshore wind was stronger. In general, atmospheric dilution was lower in winter, contributing to the accumulation of air pollutants during stagnation conditions. Turbulences induced by traffic become a significant particle re-suspension mechanism, particularly during winter night time, when mixing height was lowest. This is evident by the high levels of CPM mass, mineral and road dust in winter overnight at the near-freeway sites located in urban Los Angeles, and to a lesser extent in Riverside. WSOC levels were higher in summer, with a similar diurnal profile with mineral and road dust, indicating that they either share common sources, or that WSOC may be adsorbed or absorbed onto the surfaces of these dust particles. In general, the contribution of inorganic ions to CPM mass was greater in the overnight sampling period at all sampling sites, suggesting that the prevailing meteorological conditions (lower temperature and higher relative humidity) favor the formation of these ions in the coarse mode. Nitrate, the most abundant CPM-bound inorganic species in this basin, is found to be predominantly formed by reactions with sea salt particles in summer. When the sea salt concentrations were low, the reaction with mineral dust particles and the condensation of ammonium nitrate on CPM surfaces also contributes to the formation of nitrate in the coarse mode.  相似文献   

14.
This paper presents the analysis of polycyclic aromatic hydrocarbons (PAHs) measured in all four seasons in suspendedparticulate matter (SPM) collected with a high-volume sampler on one measuring site in the northern part of Zagreb. About 30 samples of SPM were analysed for each season, including workdays and weekends and there were no differences amongst them. The concentrations of all PAHs were highest in winter andlowest in summer. The spring PAH concentrations were lower thanthe autumn ones, as the spring had more sunny and warm days. Theprofiles of PAH/BaP at the measurement sites showed that the mainsource of PAHs in spring and summer was traffic while asubstantial amount of autumn and winter PAHs, besides traffic,came from heating.  相似文献   

15.
This complex study presents indoor and outdoor levels of air-borne fine particles, particle-bound PAHs and VOCs at two urban locations in the city of Kaunas, Lithuania, and considers possible sources of pollution. Two sampling campaigns were performed in January-February and March-April 2009. The mean outdoor PM(2.5) concentration at Location 1 in winter was 34.5 ± 15.2 μg m(-3) while in spring it was 24.7 ± 12.2 μg m(-3); at Location 2 the corresponding values were 36.7 ± 21.7 and 22.4 ± 19.4 μg m(-3), respectively. In general there was little difference between the PM concentrations at Locations 1 and 2. PM(2.5) concentrations were lower during the spring sampling campaign. These PM concentrations were similar to those in many other European cities; however, the levels of most PAHs analysed were notably higher. The mean sum PAH concentrations at Locations 1 and 2 in the winter campaign were 75.1 ± 32.7 and 32.7 ± 11.8 ng m(-3), respectively. These differences are greater than expected from the difference in traffic intensity at the two sites, suggesting that there is another significant source of PAH emissions at Location 1 in addition to the traffic. The low observed indoor/outdoor (I/O) ratios indicate that PAH emissions at the locations studied arise primarily from outdoor sources. The buildings at both locations have old windows with wooden frames that are fairly permissive in terms of air circulation. VOC concentrations were mostly low and comparable to those reported from Sweden. The mean outdoor concentrations of VOC's were: 0.7 ± 0.2, 3.0 ± 0.8, 0.5 ± 0.2, 3.5 ± 0.3, and 0.2 ± 0.1 μg m(-3), for benzene, toluene, ethylbenzene, sum of m-, p-, o-xylenes, and naphthalene, respectively. Higher concentrations of VOCs were observed during the winter campaign, possibly due to slower dispersion, slower chemical transformations and/or the lengthy "cold start" period required by vehicles in the wintertime. A trajectory analysis showed that air masses coming from Eastern Europe carried significantly higher levels of PM(2.5) compared to masses from other regions, but the PAHs within the PM(2.5) are of local origin. It has been suggested that street dust, widely used for winter sanding activities in Eastern and Central European countries, may act not only as a source of PM, but also as source of particle-bound PAHs. Other potential sources include vehicle exhaust, domestic heating and long-range transport.  相似文献   

16.
对北京市地面监测站点的CO浓度进行分析,探讨其浓度水平、变化趋势和时空分布特征。2014年春、夏、秋、冬四季北京市CO平均浓度分别为1.06、0.87、1.34、2.17 mg/m3。CO浓度均呈双峰型变化,第一个峰值出现在07:00-09:00,主要由交通早高峰的排放引起;第二个峰值出现在23:00左右,主要受交通晚高峰排放和夜间边界层高度降低的挤压效应的共同影响。从空间分布来看,全年整体呈现南高北低的分布特征,尤其是秋、冬季较为明显,体现了工业布局和区域传输对CO的影响。从全年来看,湿度对CO浓度的影响最大。对2014年冬季北京市的一次高CO浓度分析结果表明,此次过程是由本地排放和区域传输共同造成的,气象要素中地面气压对CO浓度影响最大。  相似文献   

17.
Measurements of aerosol particles in the air of an urban area in the UK have been made. Ambient air was sampled and the particulates measured after passing through a size selective PM10 inlet. Particle mass was measured using a Tapered Element Oscillating Microbalance (TEOM). Particle number and size distributions were obtained using an Electrical Aerosol Analyser (EAA) and an Aerodynamic Particle Sizer (APS). Measurements were also made of local meteorological parameters. Fine particle number concentrations were found to show better temporal agreement, including diurnal variation, with particle mass concentrations than the coarser particle number concentrations.  相似文献   

18.
Evidence on the correlation between particle mass and (ultrafine) particle number concentrations is limited. Winter- and spring-time measurements of urban background air pollution were performed in Amsterdam (The Netherlands), Erfurt (Germany) and Helsinki (Finland), within the framework of the EU funded ULTRA study. Daily average concentrations of ambient particulate matter with a 50% cut off of 2.5 microm (PM2.5), total particle number concentrations and particle number concentrations in different size classes were collected at fixed monitoring sites. The aim of this paper is to assess differences in particle concentrations in several size classes across cities, the correlation between different particle fractions and to assess the differential impact of meteorological factors on their concentrations. The medians of ultrafine particle number concentrations were similar across the three cities (range 15.1 x 10(3)-18.3 x 10(3) counts cm(-3)). Within the ultrafine particle fraction, the sub fraction (10-30 nm) made a higher contribution to particle number concentrations in Erfurt than in Helsinki and Amsterdam. Larger differences across the cities were found for PM2.5(range 11-17 microg m(-3)). PM2.5 and ultrafine particle concentrations were weakly (Amsterdam, Helsinki) to moderately (Erfurt) correlated. The inconsistent correlation for PM2.5 and ultrafine particle concentrations between the three cities was partly explained by the larger impact of more local sources from the city on ultrafine particle concentrations than on PM2.5, suggesting that the upwind or downwind location of the measuring site in regard to potential particle sources has to be considered. Also, relationship with wind direction and meteorological data differed, suggesting that particle number and particle mass are two separate indicators of airborne particulate matter. Both decreased with increasing wind speed, but ultrafine particle number counts consistently decreased with increasing relative humidity, whereas PM2.5 increased with increasing barometric pressure. Within the ultrafine particle mode, nucleation mode (10-30 nm) and Aitken mode (30-100 nm) had distinctly different relationships with accumulation mode particles and weather conditions. Since the composition of these particle fractions also differs, it is of interest to test in future epidemiological studies whether they have different health effects.  相似文献   

19.
为了解冬季采暖对济南市大气PM2.5中汞浓度的影响,在济南市城郊开展了为期超过两年的PM2.5样品采集工作,共计采集有效样品481个,测定并分析其中的颗粒汞(PHg)浓度和汞含量变化特征。结果表明,济南市大气PHg在采暖期的浓度均值为583.1 pg/m3,约为非采暖期的1.4倍,在国内外城市中处于中等偏上水平。济南市大气PM2.5对PHg具有极强的富集能力,且在采暖期更强,可能与燃煤等活动排放了更多的超细颗粒物有关。在采暖期,大气PHg浓度主要受煤炭燃烧源和交通排放源影响,两者分别贡献了总方差的39.2%和16.7%;在非采暖期,气象条件季节性变化、交通排放源、煤炭燃烧源的影响显著,三者分别贡献了总方差的32.4%、15.8%、12.0%。高浓度PHg主要来源于分布在采样站点东北偏东方向上的众多燃煤工业企业。此外,济南市大气PHg还主要受来源于鲁西南地区的区域污染气团的影响,途经污染较重的京津冀地区的污染气团对济南市PHg浓度也有较大贡献。在非采暖期,济南市PHg还受到来自东南和西南方向的清洁海洋气团的显著影响。  相似文献   

20.
Total suspended particle samples and gas phase samples were collected at three representative sampling sites in the southeastern suburb of Beijing from March 2005 to January 2006. The samples were analyzed for 16 US EPA priority PAHs using GC/MS. Concentrations of Sigma PAHs in particle and gas phases were 0.21-1.18 x 10(3) ng m(-3) and 9.5 x 10(2) ng-1.03 x 10(5) ng m(-3), respectively. PAH concentrations displayed seasonal variation in the order of winter>spring>autumn>summer for particle phase, and winter>autumn>summer>spring for gas phase. Partial correlation analysis indicates that PAH concentrations in particle phase are negatively correlated with temperature and positively correlated with air pollution index of SO(2). No significant correlation is observed between gas phase PAHs and the auxiliary parameters. Sources of PAH are identified through principal component analysis, and source contributions are estimated through multiple linear regression. Major sources of atmospheric PAHs in the study area include coal combustion, coke industry, vehicular emission and natural gas combustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号