共查询到17条相似文献,搜索用时 78 毫秒
1.
为了研究缺氧(75 min)-好氧(294 min)交替运行的SBR系统中除磷的原因,采用静态实验,对比了不同碳源、水质及运行环境下对磷的去除情况。实验结果表明,该SBR脱氮系统中的好氧段磷的减少是生物去除的结果。当供给碳源为丙酸-乙酸混合物(摩尔比为2∶1)、葡萄糖、淀粉或蛋白胨时,污泥都可将磷去除,去除效率依次降低;COD/NO3--N为8.77∶1(400 mg/L∶45.6 mg/L)时除磷效果明显好于5.41∶1(400 mg/L∶73.9 mg/L)和3.57∶1(400 mg/L∶112 mg/L);进水磷浓度为8 mg/L时,COD由50 mg/L增加到400 mg/L,污泥对磷的去除效果基本一样;完全的缺氧或完全的好氧环境下,污泥对磷的去除能力逐渐丧失。 相似文献
2.
溶解氧对SBR脱氮性能与脱氮方式的影响 总被引:4,自引:0,他引:4
通过设置不同溶解氧(DO)浓度(曝气时段DO浓度均值分别为2.0、1.2和0.4 mg/L),研究了SBR的脱氮性能以及脱氮方式。结果表明,低DO条件下SBR可实现良好的脱氮效果,但需延长曝气时间。运行稳定后,各反应器氨氮的去除率均达到94%以上。总氮去除率随DO水平的降低而增高,分别为67%、74%和78%。不同DO浓度下SBR的脱氮方式不尽相同,DO浓度越低,同步硝化反硝化(SND)脱氮效果越明显。DO为2.0、1.2和0.4 mg/L时,SND率分别为31.4%、48.3%和66.8%。典型周期性实验表明,DO为2.0 mg/L时,通过SND现象去除的总氮占进水总氮的比例为7.6%,通过内源反硝化去除的总氮为12.0%;DO为1.2 mg/L时,通过亚硝酸型SND现象去除的总氮为12.2%,通过内源反硝化去除的总氮为8.1%;DO为0.4 mg/L时,通过亚硝酸型SND现象去除的总氮为15.8%,通过内源反硝化去除的总氮为5.0%。 相似文献
3.
利用序批式活性污泥反应器(SBR)研究NaCl盐度对耐盐脱氮污泥硝化功能的影响,在此基础上考察瞬时盐度冲击对氨氧化细菌(AOB)、亚硝酸氮氧化细菌(NOB)的抑制及恢复情况。实验结果表明,当废水中NaCl浓度为0~50g/L时,AOB几乎没有影响,NOB影响较小。当NaCl浓度为60 g/L时,AOB影响较小,NOB受到一定程度的抑制。当NaCl浓度为70 g/L时,AOB、NOB均受到严重的抑制;耐盐脱氮污泥能够适应NaCl浓度50 g/L的瞬时冲击,盐度降低有利于AOB、NOB的恢复。当耐盐脱氮污泥受到NaCl浓度60 g/L的瞬时冲击时,系统发生"中毒"现象,盐度降低至0 g/L时,AOB、NOB均有不同程度恢复。 相似文献
4.
间歇曝气SBR工艺脱氮除磷试验研究 总被引:2,自引:0,他引:2
采用间歇曝气序批式反应器(SBR)工艺,通过曝气时间、交替次数的调整对该系统的脱氮除磷效果进行了研究,最终将工艺确定为厌氧1.5 h、好氧1.0 h、缺氧1.0 h、好氧20 min、缺氧1.0 h、好氧20 min.同时进行批式试验,对不同阶段的反硝化除磷菌(DPAOs)占除磷菌(PAOs)的比例进行了计算.结果表明:该系统与最初的厌氧/好氧SBR相比节省了44%的曝气量,且对COD、总氮、氨氮和磷的去除率分别达88%、89%、100%和100%,系统中DPAOs所占比例为39%. 相似文献
5.
6.
7.
NaCl盐度对耐盐活性污泥沉降性能及脱氮的影响 总被引:5,自引:3,他引:5
针对海水冲厕工程的实施,采用序批式活性污泥反应器(SBR)处理实际含盐生活污水,考察了盐度对耐盐活性污泥沉降性能及脱氮效能的影响。研究发现,经过长期盐度驯化后的污泥系统也会出现丝状菌污泥膨胀。在经过10 g/L盐度长期驯化的污泥系统中,污泥容积指数(SVI)随着盐度的升高而降低,盐度升高使丝状菌减少,污泥絮体变小变密实。但是,盐度降低时会引发更严重的污泥膨胀,导致污泥流失。对脱氮性能的研究表明,硝化菌的耐盐能力较强。当盐度由10 g/L改变为0、5、15、20 g/L时,氨氮去除率依然可以维持在99%以上。但亚硝酸盐积累率无论是盐度升高或降低时都升高,这表明驯化后污泥中的亚硝酸氧化菌(NOB)对盐度变化的耐受能力比氨氧化菌(AOB)弱,无论盐度升高或降低都会对其产生较大的影响。 相似文献
8.
以人工配水为研究对象,采用厌氧/好氧/缺氧/好氧交替运行的序批式反应器,研究了(AO)2SBR系统同步脱氮除磷的效果,并结合批式实验讨论了同步脱氮除磷的反应机理。研究结果表明,该系统以厌氧1.5 h、好氧1 h、缺氧3h、好氧0.5 h的方式运行,在DO=2.5 mg/L,SRT=15 d的条件下,具有良好的脱氮除磷效果,配水中的总氮、总磷、COD和总有机碳的去除率分别为96.26%、99.87%、90.46%和85.57%。批式实验表明,合成的内碳源越多,氨氮的硝化越充分,反硝化除磷越多。 相似文献
9.
SBR脱氮除磷工艺分析与优化设计 总被引:1,自引:0,他引:1
结合具有脱氮除磷功能的SBR工艺的运行和动力学分析,介绍了SBR工艺优化设计的统一数学模式,并指出了该工艺在实际应用中的控制要点。 相似文献
10.
11.
为了提高低碳源污水脱氮除磷的效率,在传统SBR的基础上,通过改变SBR的运行方式和结构,构建了厌氧、好氧和缺氧在同一反应器中不同部位同时进行的反硝化除磷双泥系统。探究SBR工艺新的运行方式下的反硝化除磷脱氮效能,实验表明,在最佳运行工况下,即厌氧(进出水)30 min→上部好氧90 min(下部厌氧90 min)→缺氧50 min→沉淀10 min,系统对COD、氨氮、总氮和总磷的去除率分别达到94%、82.08%、76.78%和95.47%,出水能达到国家污水综合排放一级A标准(GB18918-2002)。 相似文献
12.
介绍了CSBR及MSBR2种改进型SBR处理工艺,并比较分析了两者的优缺点。结果表明,尽管两者在除磷脱氮、工艺灵活性和占地等方面都有明显的优势,但两者有各自的优缺点,设计时应根据不同的边界条件择优选用。 相似文献
13.
廖钧 《环境污染治理技术与设备》2005,6(7):80-83
介绍了CSBR及MSBR2种改进型SBR处理工艺,并比较分析了两者的优缺点。结果表明,尽管两者在除磷脱氮、工艺灵活性和占地等方面都有明显的优势,但两者有各自的优缺点,设计时应根据不同的边界条件择优选用。 相似文献
14.
4种固定化藻类对污水中氮的净化能力研究 总被引:1,自引:0,他引:1
取培养至对数末期的藻,采用海藻酸钙凝胶包埋固定,对人工污水进行静态模拟净化试验,研究了蛋白核小球藻、鱼腥藻、双对栅藻和突变衣藻4种藻在固定和悬浮状态下,对污水中的氨氮和硝酸氮的净化效率以及藻类的生长特性。结果表明:固定化藻细胞比悬浮态藻细胞具有生长更趋于稳定、藻类的活性保持时间更长的优势。4种藻类中,小球藻和鱼腥藻在污水中的生长状况更好,较适宜采用海藻酸钙凝胶包埋固定化技术。实验第5 d时,固定化小球藻、鱼腥藻、双对栅藻和衣藻对NH3-N去除率分别为91.9%、84.8%、68.3%和51.2%;对NO-3-N的去除率分别为85.1%、100%、96.9%和65.9%。固定化小球藻对NH3-N的去除效果最好,而固定化鱼腥藻对NO-3-N的去除效果最好。因此,小球藻和鱼腥藻更适用于去除污水中的氮,具有很好的应用前景。 相似文献
15.
利用CASS工艺协同处理高盐高氮榨菜有机废水和生活污水,针对协同处理碳源不足问题,提出以榨菜废水和甲醇作为碳源的两种碳源投加方案,对比分析了CASS工艺在运行周期为8 h、排水比为30%、回流比为100%、预处理后的榨菜废水掺入比为20%的条件下,分别以榨菜废水和甲醇补充碳源及不外加碳源3种情况的脱氮效果。实验结果表明,不外加碳源时,协同处理进水C/N小于3∶1,系统脱氮效果差,出水总氮不达标;以榨菜废水和甲醇为碳源提高C/N至4∶1~5∶1时,系统脱氮效果提高,出水总氮满足GB18918-2002一级B标排放标准;盐度的变化对微生物活性产生的抑制作用,当盐度升高0.1%±0.02%时,微生物系统恢复时间为10 d,而当盐度降低0.1%±0.02%时,微生物系统恢复时间为15 d。 相似文献
16.
活性污泥对甲醛废水的净化性能 总被引:3,自引:1,他引:3
采用微生物法处理低浓度甲醛废水达标排放是比较经济的方法之一.在研究中采用序批式活性污泥法(SBR)工艺,考察了曝气时间、进水甲醛浓度、进水 pH 和水温对微生物净化低浓度甲醛废水的影响.结果表明,随着曝气时间的延长,活性污泥对甲醛的去除率增大.进水甲醛浓度在 40~120 mg/L 范围内,随着浓度升高甲醛污泥负荷增加,微生物对甲醛的降解速率增加,但对甲醛的去除率降低.活性污泥在 pH 为 5~7 的中性和弱酸性环境中对甲醛的降解速率较高.在15~35℃范围内,污泥对废水中甲醛的去除率随温度升高而上升,微生物对甲醛的降解速率随温度升高呈指数递增趋势. 相似文献
17.
在SBR中添加氧化锌纳米颗粒(ZnO-NPs),研究ZnO-NPs对活性污泥脱氮性能及硝化细菌丰度的影响。结果表明,低浓度(1 mg·L-1)ZnO-NPs对活性污泥脱氮性能无影响,高浓度(10、50 mg·L-1)ZnO-NPs可抑制活性污泥硝化性能,且对硝化菌活性抑制作用小于亚硝化菌。ZnO-NPs浓度梯度增加至50 mg·L-1较直接投加50 mg·L-1 ZnO-NPs对污泥活性抑制作用小。高浓度ZnO-NPs改变活性污泥微生物胞外聚合物(EPS)产量和性质。SBR运行结束时,高浓度ZnO-NPs的添加导致亚硝化菌相对丰度大幅度减小,而对硝化菌相对丰度影响较小。 相似文献