首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为研究以河道底泥为主要原材料,废弃建筑泥浆、污水污泥及黏土为辅料制备陶粒轻骨料的适宜工艺条件,利用旋转管式反应炉分别探索了煅烧温度、保温时间、升温速率以及物料配比对陶粒轻骨料表观密度、吸水率、抗压强度和综合指数的影响.结果表明,适宜的工艺条件为:升温速率35℃/min,煅烧温度1175℃(保持15 min),河道底泥:...  相似文献   

2.
利用煤矸石为原料制备超细氢氧化铝粉体.采用高温煅烧活化煤矸石,利用C2S晶相转变制备煤矸石自粉化料,用8%Na2CO3溶液从煤矸石自粉化料中以NaAlO2形式提取铝组分,用高效分散剂碳化法制备超细氢氧化铝粉体.研究了高效分散剂碳化法制备高纯超细氢氧化铝粉体的影响因素,找出了高效分散剂碳化法制备超细氢氧化铝粉体的最佳条件,制备出了平均粒度<100nm、纯度>99.9%的氢氧化铝,为煤矸石的高价值利用开辟了一条新的途径.  相似文献   

3.
用高效分散剂碳化法从煤矸石中制备超细氢氧化铝粉体   总被引:2,自引:0,他引:2  
利用煤矸石为原料制备超细氢氧化铝粉体。采用高温煅烧活化煤矸石,利用C2S晶相转变制备煤矸石自粉化料,用8%Na2CO3溶液从煤矸石自粉化料中以NaAlO2形式提取铝组分,用高效分散剂碳化法制备超细氢氧化铝粉体。研究了高效分散剂碳化法制备高纯超细氢氧化铝粉体的影响因素,找出了高效分散剂碳化法制备超细氢氧化铝粉体的最佳条件,制备出了平均粒度〈100nm、纯度〉99.9%的氢氧化铝,为煤矸石的高价值利用开辟了一条新的途径。  相似文献   

4.
羟基磷灰石的制备及除氟性能研究   总被引:5,自引:1,他引:5  
采用化学沉淀法,使用不同原料制备羟基磷灰石;研究羟基磷灰石的除氟性能及除氟机理。静态吸附试验结果表明,样品对氟离子的吸附性能良好,吸附平衡时间一般在3 h左右;随着溶液氟离子浓度的增加,平衡吸附容量不断增加,两者都没有极限值,属于弗兰德里希(Freundlich)吸附。  相似文献   

5.
以钛酸丁酯为钛源,氯化铵为氮源,采用溶胶-凝胶法,不同煅烧温度条件制备N掺杂TiO2纳米材料,采用X射线粉末衍射(XRD)、傅里叶变换红外(FT-IR)、扫描电镜(SEM)、紫外-可见漫反射(UV-Vis DRS)手段对其进行表征,并通过降解腐殖酸(HA)实验,探讨N-TiO2可见光催化性能。结果表明,制备的光催化纳米材料为锐钛矿相,TiO2光响应范围可拓宽到可见光区;煅烧温度是影响可见光催化活性的重要因素,350℃煅烧的N-TiO2可见光催化活性最佳,光反应140 min后,对初始浓度为5 mg/L的HA溶液降解率达80.32%,光催化反应过程符合准一级动力学,煅烧温度过高或过低,动力学反应速率常数呈现不同程度的减小,降解反应速率明显下降。  相似文献   

6.
掺铁碳羟基磷灰石复合物对铅离子废水的吸附   总被引:1,自引:0,他引:1  
采用废弃蛋壳和自制纳米Fe3O4为原材料,采用水热法制备Fe3O4/碳羟基磷灰石复合物(简称掺铁碳羟基磷灰石复合物,Fe-CHAP),将其用于吸附含Pb2+废水。通过BET比表面积、FTIR和XRD等表征手段对样品进行测试,分别探讨了影响吸附性能的主要因素,如pH、吸附剂用量、吸附时间、Pb2+初始浓度以及反应温度等。研究结果表明,在p H=5.0、0.03 g Fe-CHAP、150 mg/L Pb2+初始浓度、作用时间45 min和反应温度323 K等优化条件下,Fe-CHAP对Pb2+的去除率和吸附容量分别为98.59%和492.95mg/g。Langmuir等温模型较好地拟合了吸附实验数据,相关系数高达0.99,饱和吸附容量高达1 111.11 mg/g;准二级动力学模型较好地描述该吸附行为,相关系数高达0.999;热力学参数ΔG、ΔH和ΔS的计算值显示该吸附过程为自发吸热过程。  相似文献   

7.
本研究利用红外光谱(FTIR)、扫描电镜(SEM)和X射线粉末衍射(XRD)观察了共沉淀法合成羟基磷灰石(HAP)的形貌及其晶型结构,并探讨了Ca/P摩尔比、反应时间及反应温度等因素对羟基磷灰石吸附水中氟离子性能的影响。结果表明,n(Ca/P)=1.5/1、反应时间1 h、反应温度40℃、陈化时间48 h、煅烧温度200℃、煅烧时间2 h时,HAP除氟效果最佳,吸附效率和吸附容量分别达到68.8%和6.88 mg/g。实验数据Langmuir 等温模式拟合效果优于Freundlich模式,热力学参数计算可知,HAP对氟离子的吸附是自发 (ΔG0吸热 (ΔH0>0),熵增 (ΔS0 >0)的过程。HAP对氟离子的吸附符合拟二级反应动力学过程。  相似文献   

8.
羟基磷灰石除氟滤料的吸附平衡及动力学   总被引:1,自引:0,他引:1  
羟基磷灰石(HAP)是一种高容量、环保型饮用水除氟材料。以氢氧化钙和磷酸为原料采用沉淀法合成了羟基磷灰石,并用红外光谱和XRD图谱进行了表征。研究了接触时间、pH值和温度等因素对羟基磷灰石吸附氟性能的影响。通过对吸附过程中的热力学动力学参数的计算来判断吸附的实质过程。研究结果表明,60 min以内吸附速率较快,在约70 min时吸附过程趋于平衡;酸性环境中的吸附效果要比在碱性环境中要好;升高温度有利于吸附的进行。吸附过程更符合Langmuir吸附模型,说明化学吸附占主导地位;吸附过程是一个自发的吸热过程,其中ΔGo<0,ΔHo为13.10 kJ/mol,Ea为15.24 kJ/mol,ΔSo为31.42 J/(mol.K);吸附过程符合拟二级动力学模型。  相似文献   

9.
探索了一种盐酸酸洗废液资源化处理的新工艺,采用“负压蒸发+纳米氧化铁制备”组合模式,实现了废液中盐酸的回收及铁盐的综合利用。采用正交实验考察了真空度、反应温度和蒸发量对负压蒸发工艺的影响;然后在最佳负压蒸发工艺操作条件下进行纳米氧化铁的制备,并采用正交实验考察了氨水浓度、Fe2+浓度、反应温度、搅拌速率和煅烧温度等因素对α-Fe2O3制备的影响。  相似文献   

10.
以白碳黑、硅灰、硅藻土和硅胶筛选硅质原料,并与钙质原料电石渣制备了水化硅酸钙。借助XRF、BET、FT—IR等表征手段,通过多次重复除磷实验,研究了硅质原料特性对水化硅酸钙回收磷性能的影响。结果表明,白碳黑具有极高的反应活性,因此可作为制备具有磷回收特性的水化硅酸钙的硅质原料。结合XRD等表征发现,白碳黑的有效利用率是影响水化硅酸钙回收磷性能的关键,该利用率取决于白碳黑与电石渣的摩尔配比以及水热反应温度。当电石渣与白碳黑的摩尔比为1.6:1,反应温度为170℃时,白碳黑具有最佳的利用效率。该条件制备的水化硅酸钙可作为晶种,在其表面结晶形成羟基磷灰石,从而达到磷回收的目的,磷回收后固体物质中的磷含量为19.05%。  相似文献   

11.
Concentrations of different chlorinated compounds were measured in mussels incubated in two polluted watercourses, a river (the River Kymijoki) and a lake (Lake Vanaja) for four weeks in summer 1995. The sum concentrations of polychlorinated phenols (PCP) and biphenyls (PCB) were both about 1 μg/g lipid weight (lw) in Lake Vanaja mussels, while in the River Kymijoki mussels PCPs were non-detectable and PCBs were measured 120 ng/g lIw. The concentrations of toxic polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) congeners ranged between <17 and 370 pg/g Iw in Lake Vanaja mussels and between <38 and 11,000 pg/g lw in the River Kymijoki mussels. Polychlorinated diphenyl ethers (PCDE) were detected in the mussels incubated in the River Kymijoki (0.4–1.1 ng/g Iw), but not in those incubated in Lake Vanaja. Polychlorinated phenoxyanisoles (PCPA) were measured 33 ng/g lw and polychlorinated phenoxyphenols (PCPP) 300 ng/g lw in the mussels incubated in the River Kymijoki. PCPAs were also detected in reference samples, which were sediment and pike from the River Kymijoki and Baltic salmon, seal and white-tailed sea eagle.  相似文献   

12.
Book review     
The Pesticide Manual ‐ A World Compendium, 8th Edition, C.R. Worthing, Editor and S.B. Walker, Assistant Editor, British Crop Protection Council, BCPC Publications Sales, Bear Farm, Binfield, Bracknell, Berkshire RG12 5QE, England. 1987, 1100 pp., UK £50; Overseas £56. ISBN 0–948404–01–9.  相似文献   

13.
Organochlorine compounds in a three-step terrestrial food chain   总被引:1,自引:0,他引:1  
The concentrations of 15 organochlorine chemicals (PCBs and pesticides) were studied in a Central European oak wood food chain system: Great tit (Parus major), caterpillars (Tortrix viridana, Operophtera brumata, Erannis defoliaria), and oak-leaves (Quercus robur). Juvenile tits receive organochlorines from the mother via egg transfer and, eventually to a greater extent, from the caterpillar food source during nestling period. The concentrations of PCB 153 (2,2′,4,4′,5,5′-hexachlorobiphenyl, the most abundant in this study) was found in leaf material at ca. 1 ng/g, in caterpillars 10 ng/g, and in bird eggs 170 ng/g on an average and on a dry mass basis.  相似文献   

14.
Abstract

The active ingredients in commercial formulations of malathion, oxamyl, carbaryl, diazinon, and chlorpyrifos diluted to “spray tank”; concentrations with buffered distilled or natural water of pH 4–9 were stable for at least 24 hr. Formulations of trichlorfon were not stable at pH 7 or above but disappearance rates were slower than for the pure chemical in homogeneous solution. Cupric ion was observed to be an effective catalyst for the hydrolysis of a variety of pure organophosphorus insecticides but did not catalyze hydrolysis of the active ingredients of the formulations examined. Increasing the dilution of the formulation increased the susceptibility of malathion, oxamyl, and carbaryl to hydrolysis.  相似文献   

15.
Abstract

The pH‐disappearance rate profiles were determined at ca. 25°C for 24 insecticides at 4 or 5 pH values over the range 4.5 to 8.0 in sterile phosphate buffers prepared in water‐ethanol (99: 1 v/v). Half‐lives measured at pH 8 were generally smaller than at lower pH values. Changes in half lives between pH 8.0 and 4.5 were largest (>1000x) for the aryl carbamates, carbofuran and carbaryl, the oxime carbamate, oxamyl, and the organophosphorus insecticide, trichlorfon. In contrast, half lives of phorate, terbufos, heptachlor, fensulfothion and aldicarb were affected only slightly by pH changes. Under the experimental conditions described half lives at pH8 varied from 1–2 days for trichlorfon and oxamyl to >1 year for fensulfothion and cyper‐methrin. Insecticide persistence on alumina (acid, neutral and basic), mineral soils amended with aluminum sulfate or calcium hydroxide to different pH values and four natural soils of different pH was examined. No correlation was observed between the measured pH of these solids and the rate of disappearance of selected insecticides applied to them. These observations demonstrate the difficulty of extrapolating the pH dependent disappearance behaviour observed in homogeneous solution to partially solid heterogeneous systems such as soil.  相似文献   

16.
Abstract

One of the dominant tree species growing within and around the eastern portion of Los Alamos National Laboratory (LANL), Los Alamos, NM, lands is the pinon pine (Pinus edulis). Pinon pine is used for firewood, fence posts, and building materials and is a source of nuts for food—the seeds are consumed by a wide variety of animals and are also gathered by people in the area and eaten raw or roasted. This study investigated the (1) concentration of 3H, 137Cs, 90Sr, totU, 238Pu, 239, 240Pu, and241 Am in soils (0‐ to 12‐in. [31 cm] depth underneath the tree), pinon pine shoots (PPS), and pinon pine nuts (PPN) collected from LANL lands and regional background (BG) locations, (2) committed effective dose equivalent (CEDE) from the ingestion of nuts, and (3) soil to PPS to PPN concentration ratios (CRs). Most radionuclides, with the exception of 3H in soils, were not significantly higher (p < 0.10) in soils, PPS, and PPN collected from LANL as compared to BG locations, and concentrations of most radionuclides in PPN from LANL have decreased over time. The maximum net CEDE (the CEDE plus two sigma minus BG) at the most conservative ingestion rate (10 lb [4.5 kg]) was 0.0018 mrem (0.018 μSv); this is far below the International Commission on Radiological Protection (all pathway) permissible dose limit of 100 mrem (1000 μSv). Soil‐to‐nut CRs for most radionuclides were within the range of default values in the literature for common fruits and vegetables.  相似文献   

17.
Degradation and sorption/desorption are important processes affecting the leaching of pesticides through soil. This research characterized the degradation and sorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine) in Drummer (silty clay loam) and Exeter (sandy loam) surface soils and their corresponding subsurface soils using sequential extraction methods over 400 days. By the end of the incubation, approximately 55% of imidacloprid applied at a rate of 1.0 mg kg?1 degraded in the Exeter sandy loam surface and subsurface soils, compared to 40% of applied imidacloprid within 300 days in Drummer surface and subsurface soils. At the 0.1 mg kg?1 application rate, dissipation was slower for all four soils. Water-extractable imidacloprid in Exeter surface soil decreased from 98% of applied at day 1 to > 70% of the imidacloprid remaining after 400 d, as compared to 55% in the Drummer surface soil at day 1 and 12% at day 400. These data suggest that imidacloprid was bioavailable to degrading soil microorganisms and sorption/desorption was not the limiting factor for biodegradation. In subsurface soils > 40% of 14C-benzoic acid was mineralized over 21 days, demonstrating an active microbial community. In contrast, cumulative 14CO2 was less than 1.5% of applied 14C-imidacloprid in all soils over 400 d. Qualitative differences in the microbial communities appear to limit the degradation of imidacloprid in the subsurface soils.  相似文献   

18.
The ability of two biodegradable surfactants, polyoxyethylene (20) sorbitan monooleate (Tween 80) and sodium dihexyl sulfosuccinate (Aerosol MA), to recover a representative dense non-aqueous-phase liquid (DNAPL), trichloroethene (TCE), from heterogeneous porous media was evaluated through a combination of batch and aquifer cell experiments. An aqueous solution containing 3.3% Aerosol MA, 8% 2-propanol and 6 g/l CaCl(2) yielded a weight solubilization ratio (WSR) of 1.21 g TCE/g surfactant, with a corresponding liquid-liquid interfacial tension (IFT) of 0.19 dyn/cm. Flushing of aquifer cells containing a TCE-DNAPL source zone with approximately two pore volumes of the AMA formulation resulted in substantial (>30%) mobilization of TCE-DNAPL. However, a TCE mass recovery of 81% was achieved when the aqueous-phase flow rate was sufficient to displace the mobile TCE-DNAPL toward the effluent well. Aqueous solutions of Tween 80 exhibited a greater capacity to solubilize TCE (WSR=1.74 g TCE/g surfactant) and exerted markedly less reduction in IFT (10.4 dyn/cm). These data contradict an accepted empirical correlation used to estimate IFT values from solubilization capacity, and indicate a unique capacity of T80 to form concentrated TCE emulsions. Flushing of aquifer cells with less than 2.5 pore volumes of a 4% T80 solution achieved TCE mass recoveries ranging from 66 to 85%, with only slight TCE-DNAPL mobilization (<5%) occurring when the total trapping number exceeded 2 x 10(-5). These findings demonstrate the ability of Tween 80 and Aerosol MA solutions to efficiently recover TCE from a heterogeneous DNAPL source zone, and the utility of the total trapping number as a design parameter for a priori prediction of DNAPL mobilization and bank angle formation when flushing with low-IFT solutions. Given their potential to stimulate microbial reductive dechlorination at low concentrations, these surfactants are well-suited for remedial action plans that couple aggressive mass removal followed by enhanced bioremediation to treat chlorinated solvent source zones.  相似文献   

19.
Abstract

Five organophosphorous insecticides: Leptophos, EPN, Cyano‐fenphos, trichloronate and salithion proved to cause irreversible ataxia not only to chicken but also to mice and sheep. TOCP was included as a reference. Cyanofenphos blocked the catecholamine B‐receptor binding activity with 3H‐norepinephrine at a level similar to that of the specific inhibitor propranolol in the mouse heart preparation. In the lamb heart preparation, the B‐receptor was more sensitive to Leptophos, salithion and TOCP than to propranolol. The six compounds and their oxons were screened for their in‐vitro inhibition to monamine oxidase (MAO), acetyl cholinesterase (AChE) and neurotoxic esterase (NTE) in the brain of either mouse, lamb or chicken. It is believed that their AChE inhibition stands for their acute toxicity, while NTE inhibition is responsible for their paralytic ataxia.  相似文献   

20.
Background, Aims and Scope The global problem concerning contamination of the environment as a consequence of human activities is increasing. Most of the environmental contaminants are chemical by-products and heavy metals such as lead (Pb). Lead released into the environment makes its way into the air, soil and water. Lead contributes to a variety of health effects such as decline in mental, cognitive and physical health of the individual. An alternative way of reducing Pb concentration from the soil is through phytoremediation. Phytoremediation is an alternative method that uses plants to clean up a contaminated area. The objectives of this study were: (1) to determine the survival rate and vegetative characteristics of three grass species such as vetivergrass, cogongrass and carabaograss grown in soils with different Pb levels; and (2) to determine and compare the ability of the three grass species as potential phytoremediators in terms of Pb accumulation by plants. Methods The three test plants: vetivergrass (Vetiveria zizanioides L.); cogongrass (Imperata cylindrica L.); and carabaograss (Paspalum conjugatum L.) were grown in individual plastic bags containing soils with 75 mg kg−1 (37.5 kg ha−1) and 150 mg kg−1 (75 kg ha−1) of Pb, respectively. The Pb contents of the test plants and the soil were analyzed before and after experimental treatments using an atomic absorption spectrophotometer. This study was laid out following a 3 × 2 factorial experiment in a completely randomized design. Results On the vegetative characteristics of the test plants, vetivergrass registered the highest whole plant dry matter weight (33.85–39.39 Mg ha−1). Carabaograss had the lowest herbage mass production of 4.12 Mg ha−1 and 5.72 Mg ha−1 from soils added with 75 and 150 mg Pb kg−1, respectively. Vetivergrass also had the highest percent plant survival which meant it best tolerated the Pb contamination in soils. Vetivergrass registered the highest rate of Pb absorption (10.16 ± 2.81 mg kg−1). This was followed by cogongrass (2.34 ± 0.52 mg kg−1) and carabaograss with a mean Pb level of 0.49 ± 0.56 mg kg−1. Levels of Pb among the three grasses (shoots + roots) did not vary significantly with the amount of Pb added (75 and 150 mg kg−1) to the soil. Discussion Vetivergrass yielded the highest biomass; it also has the greatest amount of Pb absorbed (roots + shoots). This can be attributed to the highly extensive root system of vetivergrass with the presence of an enormous amount of root hairs. Extensive root system denotes more contact to nutrients in soils, therefore more likelihood of nutrient absorption and Pb uptake. The efficiency of plants as phytoremediators could be correlated with the plants’ total biomass. This implies that the higher the biomass, the greater the Pb uptake. Plants characteristically exhibit remarkable capacity to absorb what they need and exclude what they do not need. Some plants utilize exclusion mechanisms, where there is a reduced uptake by the roots or a restricted transport of the metals from root to shoots. Combination of high metal accumulation and high biomass production results in the most metal removal from the soil. Conclusions The present study indicated that vetivergrass possessed many beneficial characteristics to uptake Pb from contaminated soil. It was the most tolerant and could grow in soil contaminated with high Pb concentration. Cogongrass and carabaograss are also potential phytoremediators since they can absorb small amount of Pb in soils, although cogongrass is more tolerant to Pb-contaminated soil compared with carabaograss. The important implication of our findings is that vetivergrass can be used for phytoextraction on sites contaminated with high levels of heavy metals; particularly Pb. Recommendations and Perspectives High levels of Pb in localized areas are still a concern especially in urban areas with high levels of traffic, near Pb smelters, battery plants, or industrial facilities that burn fuel ending up in water and soils. The grasses used in the study, and particularly vetivergrass, can be used to phytoremediate urban soil with various contaminations by planting these grasses in lawns and public parks. ESS-Submission Editor: Dr. Willie Peijnenburg (wjgm.peijnenburg@rivm.nl)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号