首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The behaviour of 4,4′-bis(2-sulfostyryl)biphenyl (DSBP), a fluorescent whitening agent, was investigated in the presence of Fe(III) aquacomplexes at room temperature. In the dark, a two-step reaction was observed when adding Fe(III) to a solution of DSBP: an initial fast redox reaction between DSBP and the monomeric species Fe(OH)2+ and a slower reaction leading to the coagulation of oxidised DSBP and iron. This phenomenon is due to the formation of a complex or an ion-pair between Fe(II) and/or Fe(III) with oxidised DSBP and it probably occurs by charge neutralisation in our experimental conditions. The precipitation of DSBP depends on the initial concentration in Fe(OH)2+ and is achieved for a ratio [Fe(OH) 2+]/[DSBP] of 5 approximately. Under irradiation at 365 nm, a complicated behaviour was observed: a complexation of iron by oxidised DSBP favoured by irradiation and a degradation of DSBP induced by an intramolecular electron transfer in the complex or by a photoredox of Fe(OH)2+ species generating OH radicals in the supernatant. The complete degradation of DSBP is reached four times faster in the presence of Fe(III) with respect to the direct photolysis of DSBP alone. Moreover, the total mineralization of DSBP obtained in less than 120 h upon irradiation at 365 nm is only observed in the presence of the ferric ions, enlightening the efficiency of the method involving Fe(III) and UV irradiation.  相似文献   

2.
The degradation of diethyl phthalate (DEP) photoinduced by Fe(III) in aqueous solutions has been investigated under solar irradiation in the compound parabolic collector reactor at Plataforma Solar de Almeria. Hydroxyl radicals *OH, responsible of the degradation, are formed via an intramolecular photoredox process in the excited state of Fe(III) aquacomplexes. The primary step of the reaction is mainly due to the attack of *OH radicals on the aromatic ring. For prolonged irradiations DEP and its photoproducts are completely mineralized due to the regeneration of the absorbing species and the continuous formation of *OH radicals that confers a catalytic aspect to the process. Consequently, the degradation photoinduced by Fe(III) could be an efficient method of DEP removal from water.  相似文献   

3.
Zhou H  He Y  Lan Y  Mao J  Chen S 《Chemosphere》2008,72(6):870-874
The removal of Cr(VI) by zero-valent iron (Fe(0)) and the effect of three complex reagents, ethylenediaminetetraacetic acid (EDTA), NaF and 1,10-phenanthroline, on this reaction were investigated using batch reactors at pH values of 4, 5 and 6. The results indicate that the removal of Cr(VI) by Fe(0) is slow at pH 5.0 and that three complex reagents play different roles in the reaction. EDTA and NaF significantly enhance the reaction rate. The zero-order rate constants at pH 5.0 were 5.44 microM min(-1) in the presence of 4mM EDTA and 0.99 micrM min(-1) in the presence of 8 mM NaF, respectively, whereas that of control was only 0.33 micrM min(-1), even at pH=4.0. This enhancement is attributed to the formation of complex compounds between EDTA/NaF and reaction products, such as Cr(III) and Fe(III), which eliminate the precipitates of Cr(III), Fe(III) hydroxides and Cr(x)Fe(1-)(x)(OH)(3) and thus reduce surface passivation of Fe(0). In contrast, 1,10-phenanthroline, a complex reagent for Fe(II), dramatically decreases Cr(VI) reduction by Fe(0). At pH=4.0, the zero-order rate constant in the presence of 1mM of 1,10-phenanthroline was 0.02 micrM min(-1), decreasing by 99.7% and 93.9%, respectively, compared with the results in the presence and absence of EDTA. The results suggest that a pathway of the reduction of Cr(VI) to Cr(III) by Fe(0) may involve dissolution of Fe(0) to produce Fe(II), followed by reduction of Cr(VI) by Fe(II), rather than the direct reaction between Cr(VI) and Fe(0), in which Fe(0) transfers electrons to Cr(VI).  相似文献   

4.
4-Tert-octylphenol (4-t-OP), a kind of endocrine-disrupting compounds, is widely distributed in natural water surroundings but can hardly be biodegraded. The advanced oxidation processes (AOPs) have been proved to be an efficient method to degrade 4-t-OP. In this study, the photodegradation of 4-t-OP in aqueous solution promoted by Fe(III) and the photooxidation mechanism were investigated. The ferric perchlorate was added into the aqueous solution for the production of hydroxyl radical. The efficiency of mineralization was monitored by total organic carbon analyzer, and photooxidation products were determined by high-performance liquid chromatography and liquid chromatography-mass spectrometer. 4-t-OP (2.4?×?10?5 M) in aqueous solution was completely degraded after 45 min in the presence of Fe(III) (1.2?×?10?3 M) under UV irradiation (λ?=?365 nm). The optimal pH was 3.5. Higher Fe(III) concentration or lower initial 4-t-OP concentration led to increased photodegradation efficiency of 4-t-OP. The reaction was almost completely inhibited in the presence of 2-propanol. About 70 % mineralization of the solution was obtained after 50 h. The photooxidation product was supposed to be 4-tert-octyl catechol. 4-t-OP in aqueous solution can be degraded in the presence of Fe(III) under the solar irradiation. The photoinduced degradation is due to the reaction with hydroxyl radicals. It shows that the 4-t-OP is mineralized by the inducement of Fe(III) aquacomplexes, which exposes to solar light. Therefore, the results would provide useful information for the potential application of the AOPs to remove 4-t-OP in water surroundings.  相似文献   

5.
Mailhot G  Asif A  Bolte M 《Chemosphere》2000,41(3):363-370
The Fe(III)-photoinduced degradation of 4-dodecylbenzenesulphonate (DBS) in aqueous solution was investigated. The mixing of DBS (1 mm) and Fe(III) (1 mm) solutions immediately led to the formation of a precipitate that contained DBS and monomeric Fe(OH)2+, the predominant Fe(III) species. Both species were also present in the supernatant. Irradiation of the supernatant solution resulted in a photoredox process that yielded Fe(II) and *OH radicals. The disappearance of DBS was shown to involve only attack by *OH radicals; the quantum yield of DBS disappearance is similar to the quantum yield of *OH radical formation. A wavelength effect was also observed; the rate of DBS disappearance was higher for shorter wavelength irradiation. Five photoproducts, all containing the benzene sulphonate group, were identified. *OH radicals preferentially abstract hydrogen from the carbon in the alpha position of the aromatic ring. The results show that the Fe(III)-photoinduced degradation of DBS could be used as an alternative method for polluted water treatment.  相似文献   

6.
Iron-catalyzed oxidation of As(III) to As(V) can be highly effective for toxic arsenic removal via Fenton reaction and Fe(II) oxygenation. However, the contribution of ubiquitous organic ligands is poorly understood, despite its significant role in redox chemistry of arsenic in natural and engineered systems. In this work, selected naturally occurring organic ligands and synthetic ligands in co-oxidation of Fe(II) and As(III) were examined as a function of pH, Fe(II), H2O2, and radical scavengers (methanol and 2-propanol) concentration. As(III) was not measurably oxidised in the presence of excess ethylenediaminetetraacetic acid (EDTA) (i.e. Fe(II):EDTA < 1:1), contrasting with the rapid oxidation of Fe(II) by O2 and H2O2 at neutral pH under the same conditions. However, partial oxidation of As(III) was observed at a 2:1 ratio of Fe(II):EDTA. Rapid Fe(II) oxidation in the presence of organic ligands did not necessarily result in the coupled As(III) oxidation. Organic ligands act as both iron speciation regulators and radicals scavengers. Further quenching experiments suggested both hydroxyl radicals and high-valent Fe species contributed to As(III) oxidation. The present findings are significant for the better understanding of aquatic redox chemistry of iron and arsenic in the environment and for optimization of iron-catalyzed arsenic remediation technology.  相似文献   

7.
The redox process between iron(III) (in dissolved form and as the mineral phase ferrihydrite) and phenolic substances has been examined. We investigated the relationship between the structure and reactivity for the dihydrobenzene reductants catechol, hydroquinone and resorcine, and for the 2-methoxyphenol guaiacol with iron(III), by determining the rate of the Fe(III) reduction as well as the production of CO2. This work demonstrates that catechol and guaiacol will be effectively oxidized to CO2 by reducing iron(III). Hydroquinone shows a reduction of iron(III), but no accompanying mineralization could be determined. In contrast, resorcine showed no reaction with Fe(II). The deciding factor on whether or not mineralization occurs were controlled by the position of the hydroxy groups. It is shown that phenolic substances with two hydroxy groups in the orthoposition or at least one hydroxy group and a methoxy group can be oxidized to CO2 while iron(III) is reduced.  相似文献   

8.
The iron(III)-catalyzed autoxidation of sulfur(IV)-oxides results in the formation of two different oxidation products of sulfur(IV): dithionate, S2O62−, and sulfate, SO42−. The yield of these reaction products depends on the experimental conditions. Under the studied conditions ([Fe(III)] : [SIV)] = 1:10, pH = 2–4) dithionate is the minor reaction product. The formation of dithionate is influenced by the initial pH but not by the initial O2 concentration. The presence of CO2+, Mn2+, and Ni2+ have no influence on the yield of dithionate, whereas in the presence of Cr3+ less and, in the presence of Cu2+, no dithionate is formed.  相似文献   

9.
A study was undertaken to determine the transformation kinetic of methylparathion (O, O, -dimethyl O-4 nitrophenylphosphorotioate) in the presence of Fe(III) between pH 2 and 7. The Fe(III) was not electroactive under the conditions used in this study, and polarographic signals were exhibited by methylparathion and main degradation product only. Data suggest that hydrolysis of methylparathion in an acid medium is catalyzed by Fe(III) and the pesticide did not degrade in this medium without this cation. Methylparathion degradation was observed at all the pHs studied and was independent of the predominant chemical form of Fe(III) in the aqueous medium. The reaction was first-order with pH-dependent rate constant (k) values ranging from 3.3 x 10(- 3) h(- 1) to 7.0 x 10(- 3) h(- 1). The k values increased as pH decreased, suggesting that Fe(III) acted as an electrophile in the reaction mechanism.  相似文献   

10.
Tzou YM  Wang MK  Loeppert RH 《Chemosphere》2003,51(9):993-1000
The complexation of Fe(II) with organic ligand results in the decrease of redox potential, and enhances the reduction ability of Fe(II). An important example is the use of Fe(II)-organic complexes to accelerate Cr(VI) reduction. Dissolved O(2) and light can potentially affect Cr(VI) reduction; however, these two factors have not been adequately evaluated. A batch technique was used to investigate the Cr(VI) reduction as influenced by the light and dissolved O(2) using N-hydroxyethyl-ethylenediamine-triacetic acid (HEDTA) and Fe(II) solutions. The oxidation of Fe(II) by dissolved O(2) was rapid in the presence of HEDTA at low pH; nonetheless, the oxidation proceeded slowly when HEDTA was absent. Although Cr(VI) could be reduced by free Fe(II) at low pH, the reaction was considerably slower than that of systems involving HEDTA. The enhancement of Cr(VI) reduction by Fe(II) in the presence of high concentrations of HEDTA was achieved as a result of two processes. First, HEDTA acted as a ligand for expediting electron transfer between Fe(II) and Cr(VI). Secondly, HEDTA served as a reductant for Cr(VI) under illumination.  相似文献   

11.
A study was undertaken to determine the transformation kinetic of methylparathion (O, O, -dimethyl O-4 nitrophenylphosphorotioate) in the presence of Fe(III) between pH 2 and 7. The Fe(III) was not electroactive under the conditions used in this study, and polarographic signals were exhibited by methylparathion and main degradation product only. Data suggest that hydrolysis of methylparathion in an acid medium is catalyzed by Fe(III) and the pesticide did not degrade in this medium without this cation. Methylparathion degradation was observed at all the pHs studied and was independent of the predominant chemical form of Fe(III) in the aqueous medium. The reaction was first-order with pH-dependent rate constant (k) values ranging from 3.3 × 10? 3 h? 1 to 7.0 × 10? 3 h? 1. The k values increased as pH decreased, suggesting that Fe(III) acted as an electrophile in the reaction mechanism.  相似文献   

12.
Gallard H  De Laat J 《Chemosphere》2001,42(4):405-413
The rates of degradation of 1,2,4-trichlorobenzene (TCB), 2,5-dichloronitrobenzene (DCNB), diuron and isoproturon by Fe(II)/H2O2 and Fe(III)/H2O2 have been investigated in dilute aqueous solution ([Organic compound]0 approximately 1 microM, at 25.0 +/- 0.2 degrees C and pH < or = 3). Using the relative rate method with atrazine as the reference compound, and the Fe(II)/H2O2 (with an excess of Fe(II)) and Fe(III)/H2O2 systems as sources of OH radicals, the rate constants for the reaction of OH* with TCB and DCNB were determined as (6.0 +/- 0.3)10(9) and (1.1 +/- 0.2)10(9) M(-1) s(-1). Relative rates of degradation of diuron and isoproturon by Fe(II)/H2O2 were about two times smaller in the absence of dissolved oxygen than in the presence of oxygen. These data indicate that radical intermediates are reduced back to the parent compound by Fe(II) in the absence of oxygen. Oxidation experiments with Fe(III)/H2O2 showed that the rate of decomposition of atrazine markedly increased in the presence of TCB and this increase has been attributed to a regeneration of Fe(II) by oxidation reactions of intermediates (radical species and dihydroxybenzenes) by Fe(III).  相似文献   

13.
An interesting aspect of the chemistry of nitrite is the possibility for this compound to interact with other environmental factors and many oxidising species, which results in the oxidation of nitrite to nitrogen dioxide. This is a potentially interesting process that can lead to the formation of nitroaromatic compounds in the environment. In previous papers we have shown that nitrite can interact with dissolved Fe(III) and nitrate under irradiation, Fenton and heterogeneous photo-Fenton reagents, and semiconductor oxides such as TiO2, alpha-Fe2O3, and beta-FeOOH under irradiation. This paper reports on the interaction between nitrite/nitrous acid and the Mn(III,IV) (hydr)oxides beta-MnO2 and gamma-MnOOH, both in neutral solution under irradiation and in acidic conditions in the dark. beta-MnO2 and gamma-MnOOH originate from the oxidation of Mn(II) and play a key role in the redox cycling of manganese in the environment. These Mn(III,IV) (hydr)oxides show some photocatalytic activity, and they can act as thermal oxidants at acidic pH. The photoinduced oxidation of nitrite and the thermal oxidation of nitrous acid by Mn(III,IV) (hydr)oxides yield nitrogen dioxide and lead to the formation of nitrophenols in the presence of phenol. These processes can take place at the water-sediment or water-colloid interface in natural waters and on the surface of atmospheric particulate. Furthermore, the phenol/gamma-MnOOH/HNO2 system in dark acidic solution is an interesting model due to the formation of phenoxyl radical upon phenol monoelectronic oxidation by gamma-MnOOH. The kinetics of nitrophenol generation under such conditions indicates that phenol nitration is unlikely to take place upon reaction between phenoxyl and *NO2 and suggests a solution to a literature debate on the subject.  相似文献   

14.
胶团强化超滤法(MEUF)去除废水中氯苯的研究   总被引:1,自引:0,他引:1  
研究了3种单一表面活性剂十二烷基硫酸钠(SDS)、十六烷基三甲基溴化铵(CTMAB)、聚氧乙烯失水山梨脂肪酸酯醇醚(TW80)和混合表面活性剂TW80-SDS对氯苯(CB)的强化超滤,以期为有机废水胶团强化超滤技术提供参考。结果表明,进料液静置时间对去除率无显著影响,而振荡时间在1 h后对去除率影响不大。氯苯的去除率随进料液中表面活性剂浓度的增大而增大,单一的表面活性剂对氯苯的去除效果顺序为TW80CTMABSDS,且表面活性剂对氯苯的去除效果与表面活性剂的临界胶束浓度值(CMC)、亲水-亲油平衡值(HLB)呈负相关。阴-非混合表面活性剂TW80-SDS对氯苯的去除效果明显强于单一的SDS,且去除率随着非离子表面活性剂质量分数的增加而增加。渗透通量随着进料液中表面活性剂浓度的增加而下降,单一表面活性剂种类对渗透通量的影响顺序为SDSTW80CTMAB,混合表面活性剂中随着非离子表面活性剂质量分数的增加而渗透液的渗透通量越低。  相似文献   

15.
Mazellier P  Bolte M 《Chemosphere》2001,42(4):361-366
The transformation of 3-chlorophenol (3CP) photoinduced by iron(II) in aqueous solution has been investigated under monochromatic irradiation (lambda(exc) = 365 nm) representative of atmospheric solar emission. Hydroxyl radicals are formed via an intramolecular photoredox process in iron(III) excited hydroxy-complexes. Fe(OH)2+ is the most active complex in terms of HO* formation and according to our experiments and calculations, it appears that Fe(OH)2+ is the only iron(III) species involved in 3CP oxidation process. Hydroxyl radicals react very rapidly with 3CP, which is eliminated from the solution. The primary intermediates do not accumulate in the medium but rapidly degraded to non-absorbing compounds by a subsequent action of hydroxyl radicals.  相似文献   

16.
The environmental fate of ethylenediaminetetraacetic acid (EDTA) has been extensively studied, while much less is known about the environmental behaviour of diethylenetriaminepentaacetic acid (DTPA). In this study, it was confirmed that DTPA is persistent toward biodegradation. The biodegradability of DTPA was investigated in the absence and in the presence of Fe(III) by using CO2 evolution test and Manometric respirometry test. The CO2 evolution and oxygen uptake of iron-free (DTPA was added as free acid) and Fe(III)DTPA were less than in inoculum blank. Possible inhibitor effect was analysed by testing biodegradation of sodium benzoate with and without iron-free or Fe(III)DTPA in the Manometric respirometry test. Only slight inhibition was observed when DTPA was added as free acid. Photodegradation of iron-free DTPA and Fe(III)-DTPA complex was studied by using sunlight and UV radiation at the range 315-400 nm emitted by black light lamps. The results indicate that DTPA added as free acid degrades photochemically in humic lake water. Fe(III)DTPA was shown to be very photolabile in humic lake water in the summer; the photochemical half-life was below one hour. Photodegradation products were identified by the mass spectrometric technique (GC-MS). It was shown that photodegradation of Fe(III)DTPA does not result in total mineralization of the compound. Diethylenetriaminetetraacetic acid, diethylenetriaminetriacetic acid, ethylenediaminetriacetic acid, N,N'- and/or N,N-ethylenediaminediacetic acid, iminodiacetate, ethylenediaminemonoacetic acid and glycine were identified as photodegradation products of Fe(III)DTPA. Based on these observations, we propose a photodegradation pathway for Fe(III)DTPA.  相似文献   

17.
Hexabromocyclododecane (HBCD) is a globally produced brominated flame retardant used primarily as an additive flame retardant in polystyrene and textile products. Photodegradation of HBCD in the presence of Fe(III)-carboxylate complexes/H2O2 was investigated under simulated sunlight. The degradation of HBCD decreased with increasing pH in the Fe(III)-oxalate solutions. In contrast, the optimum pH was 5.0 for the Fe(III)-citrate-catalyzed photodegradation within the range of 3.0 to 7.0. For both Fe(III)-oxalate and Fe(III)-citrate complexes, the increase of carboxylate concentrations facilitated the photodegradation. The photochemical removal of HBCD was related to the photoreactivity and speciation distribution of Fe(III) complexes. The addition of H2O2 markedly accelerated the degradation of HBCD in the presence of Fe(III)-citrate complexes. The quenching experiments showed that ·OH was responsible for the photodegradation of HBCD in the Fe(III)-carboxylate complexes/H2O2 solutions. The results suggest that Fe(III) complexes/H2O2 catalysis is a potential method for the removal of HBCD in the aqueous solutions.  相似文献   

18.
Laboratory-scale tracer experiments were conducted to investigate the geochemical and hydrological processes that govern the fate and transport of organically chelated radionuclides and toxic metals in undisturbed saturated columns of weathered, fractured shale saprolite. Three long-term, reactive contaminant injections were pulsed onto three separate soil columns, with the following influent mixtures: (1) 109CdEDTA2−, (2) 109CdEDTA2− and 57,58Co(II)EDTA2−, and (3) 109CdEDTA2−, 57Co(III)EDTA, and H51CrO4. Both single and multiple species experiments were conducted to determine the importance of interaction between the contaminants and competition for surface sites. Flow interruption was used to identify physical and chemical non-equilibrium (PNE and CNE) which were caused by multiple pore-region flow and rate-limited chemical reactions, respectively. Reactive contaminant transport through the fractured, weathered shale was affected by sorption, redox, and dissociation reactions, which were mediated by soil organic matter and surficial oxides of Fe, Mn, and Al. The transport of CdEDTA2− was significantly influenced by ligand-promoted dissolution of subsurface Fe and Al sources, resulting in the liberation of Cd2+, Al(III)EDTA and Fe(III)EDTA. Flow interruption confirmed that the surface-mediated dissociation reaction was time-dependent, with the stability of the CdEDTA2− complex dependent on its residence time within the soil. The migration of Co(II)EDTA2− was dominated by oxidization to the highly stable Co(III)EDTA species, and elevated effluent Mn2+ suggested that surficial Mn(IV) oxides likely catalyzed the redox reaction, though Fe-oxides may have also contributed to the reaction. Dissociation (12%) of the Co(II)EDTA2− complex was first observed during flow interruption, indicating that rate-limited dissociation of the complex by Fe-oxides may be significant under equilibrium conditions. The transport of HCrO4 was significantly altered by the reduction of mobile Cr(VI) to irreversibly bound Cr(III). The reduction reaction was catalyzed by surface-bound natural organic matter and flow interruption confirmed that the reaction was time-dependent. There was little evidence of competitive effects between the various contaminants in the multispecies experiments, since each was influenced by a different geochemical process during transport through the soil. The results of this study further support research findings that suggest anionic toxic metals and radionuclide–organic complexes can be significantly influenced by soil geochemical processes that can both enhance and impede the subsurface migration of these contaminants.  相似文献   

19.
Sonolysis of alkylphenols in aqueous solution with Fe(II) and Fe(III)   总被引:6,自引:0,他引:6  
Yim B  Yoo Y  Maeda Y 《Chemosphere》2003,50(8):1015-1023
The sonolytic degradation of alkylphenols (APs), such as butylphenol, pentylphenol, octylphenol, and nonylphenol (NP), in water was investigated at a sound frequency of 200 kHz with an acoustic intensity of 6 W cm(-2) under argon, oxygen, and air atmospheres. The sonolytic degradation rate of the APs under the conditions of the present study depended upon their alkyl chain length. The decrease in the degradation rate by the radical scavenging effect was in the range of about 48-82% for APs in the presence of 3 mM 2-methyl-2-propanol. The free radicals play a significant role in the sonolytic degradation process of the APs. In the presence of Fe(II) and Fe(III), the pseudo-first-order rate constants for the sonolytic degradation of 30 microM NP as a function of the concentration of Fe(II) and Fe(III) were estimated under argon and oxygen. The maximum rate constants were observed at 50 microM Fe(II) (0.139 +/- 0.008 min(-1)) and 100 microM Fe(III) (0.103 +/- 0.001 min(-1)) under oxygen. The total organic carbon concentration (TOC) was investigated under same conditions. TOC decreased in the range of about 50-70% during the sonication in the presence of Fe(II) and Fe(III) under argon and oxygen. The sonochemical effects by the addition of Fe(II) and Fe(III) as catalyst during the sonication under the proper atmosphere result in a remarkable enhancement of degradation and mineralization.  相似文献   

20.
The influence of dissolved NO2 and iron on the oxidation rate of S(IV) species in the presence of dissolved oxygen is presented. To match the conditions in the real environment, the concentration of iron in the reaction solution and trace gases in the gas mixture was typical for a polluted atmosphere. The time dependence of HSO3, SO42−, NO2 and NO3 and the concentration ratio between Fe(II) and total dissolved iron were monitored. Sulphate formation was the most intensive in the presence of an SO2/NO2/air gas mixture and Fe(III) in solution. The highest contribution to the overall oxidation was from Fe-catalysed S(IV) autoxidation. The reaction rate in the presence of both components was equal to the sum of the reaction rates when NO2 and Fe(III) were present separately, indicating that under selected experimental conditions there exist two systems: SO2/NO2/air and SO2/NO2/air/Fe(III), which are unlikely to interact with each other. The radical chain mechanism can be initiated via reactions Fe(III)–HSO3 and NO2–SO32−/HSO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号