首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The marine phytoplankton Dunaliella tertiolecta, Cachonina niei, Thalassiosira nordenskioldii, Phaeodactylum tricornutum, and Chaetoceros sp. were incubated with a range of molar concentrations of sodium-selenite (Na2-SeIVO3) and sodium-selenate (Na2-SeVIO4) to examine further their role in metabolic cycling of selenium in ocean waters. At low selenium concentrations, approaching those found naturally in seawater (10-10 to 10-9 M), all species distinguished between selenite and selenate, and actively concentrated selenite from the incubating medium while only marginally accumulating selenate. At much higher concentrations (10-8 to 10-6 M), selenate was also taken up. At the highest concentration tested, i.e., 10-5 M with C. niei, after an immediate rapid uptake in the first 24 h, the intracellular selenite and selenate levels dropped to about 35 to 50% of the initial peak values. These observations suggest an uptake mechanism in these algae which, at normal ambient concentrations of selenium (10-9 M), preferentially selects selenite and excludes selenate. At much higher concentrations (10-8 M), the mechanism becomes overloaded and both selenium species enter the cells. Intracellularly, selenite became associated primarily with protein and amino acid fractions, in approximately equal proportions, while only ca. 4% of total intracellular selenium was found in the lipid fraction. Trace amounts of selenate that entered the cells, mainly during the first minutes of exposure, also entered the protein and amino acid components, but over time were increasingly associated with the protein fraction only. At the end of a 10-d incubation of algal cells in selenite-spiked medium, less than 25% of total Se in the medium could in fact be identified analytically as selenite. This suggests the presence of a non-selenite metabolite, possibly released back into the medium from the algae.  相似文献   

2.
When aseptically-cultured sea anemones, Aiptasia pulchella, were incubated with 14C-labelled glucose, aspartate and glutamate, radioactivity was incorporated into animal protein. Radioactivity was recovered from all amino acids in the protein hydrolysates of A. pulchella bearing the symbiotic alga Symbiodinium sp., and from all but seven of the amino acids in A. pulchella experimentally deprived of their algae. These data suggest that these seven amino acids (histidine, isoleucine, leucine, lysine, phenylalanine, tyrosine and valine) may be synthesized by the symbiotic algae and translocated to the sea anemone's tissues; and that methionine and threonine, two amino acids traditionally considered as dietary essentials for animals, are synthesized by A. pulchella. Essential amino acid translocation from the symbiotic algae to the animal host is a core element in symbiotic nitrogen-recycling. Its nutritional value to the animal host is considered in the context of the amino acid biosynthetic capacity of the host. Received: 26 October 1998 / Accepted: 28 June 1999  相似文献   

3.
The objective of this study was to describe the seasonal variations in nucleic acid contents and amino acid profiles in the muscle of juvenile Nephrops norvegicus. RNA and protein contents, and RNA:protein and RNA:DNA ratios varied significantly between seasons, being highest in spring and lowest in autumn/winter ( P<0.05). Though DNA content increased significantly from autumn to summer ( P<0.05), protein:DNA ratio did not show significant seasonal variations ( P=0.05). In respect to protein-bound amino acid content (BAA), a significant increase was observed from winter to summer ( P<0.05). Both essential (EAA) and non-essential amino acids (NEAA) increased significantly (27.6% and 27.8%, respectively; P<0.05), mainly due to the considerable increase in arginine and proline (59.1% and 225.2%, respectively; P<0.05). A significant decrease was observed in the free amino acid content (FAA) from winter to summer ( P<0.05); and a higher percentage decrease occurred in free non-essential (FNEAA; 27.9%) in comparison to free essential amino acids (FEAA; 21.8%). The significant increase in RNA and BAA contents from winter to spring may be related to protein synthesis. On the other hand, the lowest values obtained in winter may be due to a reduction in feeding activity; in this period the muscle protein must be progressively hydrolysed, which is evident with the higher FAA content. The liberated amino acids enter the FAA pool and become available for energy production.  相似文献   

4.
Metal-binding proteins were isolated from ovaries of the spotted seatroutCynoscion nebulosus and the Atlantic croakerMicropogonias undulatus collected in 1988 near Port Aransas, Texas, USA. Gel-filtration analysis of spotted seatrout trout ovarian cytosolic fraction on Sephadex G-75 revealed the presence of three zincbinding protein fractions. A major zinc/calcium-binding protein fraction had a low molecular weight (M r)(6 000 to 10 000), similar to mammalian hepatic metallothionein (MT). All the metals were displaced from this fraction following saturation with exogenous cadmium. After exposure of Atlantic croaker to 2 mg cadmium l–1 seawater for 2 mo, the majority of the cadmium in the ovarian cytosolic fraction was associated with a similar low molecular weight protein fraction. These proteins were further purified by heat treatment and sequential acetone precipitation. Three isoforms were isolated by reversephase high-performance liquid chromatography. All the isoforms were found to be distinct from mammalian MT, based on amino acid composition. The major isoform contained low amounts of cysteine (approximately 5 residues per molecule) and aromatic amino acids, compared to high amounts of cysteine (typically 17 to 20 residues/molecule) and a lack of aromatic amino acids for mammalian MT. All the ovarian protein isoforms contained more glutamate than mammalian MT. The spotted seatrout and Atlantic croaker ovarian isoforms showed a high degree of homology with metal-binding proteins isolated from mammalian gonadal tissues. The results suggest a physiological role for these metal-binding proteins in developing vertebrate ovaries as well as an involvement in the sequestration of cadmium following environmental exposure.  相似文献   

5.
In order to better formulate an artificial shrimp diet, the protein composition of shrimp was assessed and the essential amino acids determined. Penaeus aztecus were treated to remove lipids, carbohydrates and other interfering substances, and the protein was hydrolyzed to its constituent amino acids. The amino acids were then quantitatively analyzed by gasliquid chromatography as their trimethylsilyl derivatives. The essential amino acids were then determined. Shrimp were injected with 14C-labeled glucose and analyses performed to determine which amino acids then exhibited radioactivity, i.e., were synthesized from the labeled glucose. Those amino acids which were not manufactured from the glucose were categorized as essential.  相似文献   

6.
The nutritional pattern for heterotrophic growth of Nitzschia angularis var. affinis (Grun.) Perag. is more complex than for other diatom species studied previously. This species grew slowly in the dark in the presence of single amino acids, either glutamate or alanine; other amino acids when supplied singly were not used as substrates. Carbon from glutamate was converted to cell carbon with an efficiency of 43%. Glutamine was inhibitory both in the light and in the dark, and aspartate inhibited heterotrophic growth on glutamate. Glucose and tryptone supplied singly did not support heterotrophic growth, but when combined, together they allowed for rapid growth of N. angularis (generation time of 16 h). Glucose in combination with glutamate, alanine, aspartate, or asparagine (but not with any other amino acids) also supported growth in the dark, at a rate considerably more rapid than with glutamate alone. In the presence of excess glucose and limiting concentrations of glutamate, approximately 50% of the cell carbon for heterotrophic growth came from glucose, while in combination with tryptone about 25% of the cell carbon came from glucose. Amino acids were taken up by cells grown either photoautrophically or in the dark in the presence or absence of organic substrates; uptake rates were some-what higher for dark-grown than for light-grown cells. Glucose was taken up only by dark-grown cells; induction of a glucose uptake system in the dark required the presence of glutamate but not of glucose. The rates of uptake of glutamate and glucose by cells incubated in the dark with glutamate were sufficiently high to account for the observed rates of growth on these substrates in the dark. The uptake systems of N. angularis have relatively high affinities for glucose (K s =0.03 mM) and glutamate (K s =0.02 mM).Contribution No. 890 from the Department of Oceanography, University of Washington, Seattle, Washington 98195, USA.  相似文献   

7.
Platymonas subcordiformis (UTEX 171) was cultured axenically for 4 d in constant light in a nitrate-containing medium and harvested in the log-phase of cell division. Cells were resuspended in artificial sea water without nutrients and either kept in constant light or placed in constant darkness. High-performance liquid chromatography was used to measure the free amino acid pools of the cells and to determine rates of net entry of each of a mixture of 18 amino acids at daily intervals for 5 d. Free amino acid pools decreased both in light and darkness in the absence of a nutrient sypply. The influx of amino acids in cells maintained in the light increased selectively. Comparison of the rate of entry of 14C-labeled glycine and net disappearance of glycine from the medium indicated extrusion of non-volatile labeled carbon that did not interact with reagents specific for amine groups. Light was required for synthesis of additional transporter protein which was apparently responsible for increased influx in cells maintained in the light. This response was blocked in the presence of cycloheximide. Cells maintained in the dark for prolonged periods retained the capacity to respond to light by synthesis of new transporter protein. Analysis of incorporation of amino acids into macromolecules indicated that both the overall rate and the pattern of amino acid incorporation were modified in the light. Analysis of the kinetics of glycine entry at a series of temperatures indicated that the concentration of glycine at which entry is half the maximum rate is approximately 2.7 M at the cell surface.  相似文献   

8.
Both the activity of phenoloxidases and the availability of phenoloxidase substrates are said to regulate melanotic encapsulation in invertebrates. The delayed induced resistance of mountain birches has been shown to increase the immunity of Epirrita autumnata (Geometridae: Lepidoptera), but the mechanism behind the increased immunity is unknown. The increase in the contents of aromatic amino acids as a response to herbivory in plants can in theory be one explanation for this carry-over effect. To test this hypothesis that an increase in the substrate availability increases also the melanotic encapsulation rate and the immunity of E. autumnata, we supplied excess levels of two aromatic amino acids, tyrosine (l-Tyr) and phenylalanine (l-Phe), to the diet of moth larvae. Surprisingly, the supply of both aromatic amino acids down-regulated PO activity, whereas the melanotic encapsulation rate was maintained at an unchanged level. PO activity was traded-off with body size and thus the cost of resistance is a probable explanation for the down-regulation of PO activity in the presence of surplus substrates. Our results suggest that both aromatic amino acids act as substrates of melanin, and an increase in substrate contents allows insects to decrease their PO activity without affecting the encapsulation rate.  相似文献   

9.
The present paper studied the influence of different food regimes on the free amino acid (FAA) pool, the rate of protein turnover, the flux of amino acids, and their relation to growth of larval turbot (Scophthalmus maximus L.) from first feeding until metamorphosis. The amino acid profile of protein was stable during the larval period although some small, but significant, differences were found. Turbot larvae had proteins which were rich in leucine and aspartate, and poor in glutamate, suggesting a high leucine requirement. The profile of the FAA pool was highly variable and quite different from the amino acid profile in protein. The proportion of essential FAA decreased with development. High contents of free tyrosine and phenylalanine were found on Day 3, while free taurine was present at high levels throughout the experimental period. Larval growth rates were positively correlated with taurine levels, suggesting a dietary dependency for taurine and/or sulphur amino acids. Reduced growth rates in Artemia-fed larvae were associated with lower levels of free methionine, indicating that this diet is deficient in methionine for turbot larvae. Leucine might also be limiting turbot growth as the different diet organisms had lower levels of this amino acid in the free pool than was found in the larval protein. A previously presented model was used to describe the flux of amino acids in growing turbot larvae. The FAA pool was found to be small and variable. It was estimated that the daily dietary amino acid intake might be up to ten times the larval FAA pool. In addition, protein synthesis and protein degradation might daily remove and return, respectively, the equivalent of up to 20 and 10 times the size of the FAA pool. In an early phase (Day 11) high growth rates were associated with a relatively low protein turnover, while at a later stage (Day 17), a much higher turnover was observed. Received: 19 March 1997 / Accepted: 14 April 1997  相似文献   

10.
Under conditions of new nitrogen availability and low light intensities, light quality (blue, green, or red light) was not found to affect carbon fixation patterns into major metabolic fractions (total ethanol soluble, carbohydrate, and protein) in preconditioned nitrogen enriched or limited apical tips of Gracilaria verrucosa Papenfuss. Within the ethanol soluble fractions of both nitrogen enriched and limited tips, blue light treatment led to a greater percentage of 14 carbon in amino acids as compared to non-ninhydrin reactive metabolites. A lesser effect was observed with red light, and green light did not appear to stimulate amino acid synthesis appreciably. The low intensity blue light effect in G. verrucosa appears to be an enhancement of nonphotosynthetic carbon incorporation into amino acids, possibly through some form of the urea-ornithine cycle.Harbor Branch Foundation Contribution No. 237  相似文献   

11.
Sodium-dependent transport of alanine and serine by Platymonas subcordiformis was demonstrated by evaluating the kinetics of entry of these substrates over a range of concentrations of ambient sodium. The reciprocal of the concentration at which entry rate was half maximal (K t ) was linearly related to ambient sodium concentration; maximum entry (V max) was not affected. Entry of labeled amino acids as measured by determining radioactivity in the medium was close to but slightly less than rates of net entry as determined by high-performance liquid chromatography. This difference presumably reflects extrusion of labeled carbon by the cells in a form not detectable by the chromatographic techniques employed. The coupling coefficient (sodium ions per amino acid molecule) for entry of alanine and serine was evaluated and determined to be 2. Methylaminoisobutyric acid was not taken up by P. subcordiformis and had no inhibitory effect on uptake of alanine or serine. B-2-aminobicycloheptane-2-carboxylic acid competitively inhibited uptake of both substrates. The internal sodium concentration of P. subcordiformis was measured, and the maximum gradient energetically favorable for amino acid transport was calculated from data in the present work and drawn from the literature. Assuming that uptake of amino acids is strictly sodium-dependent, an amino acid concentration gradient of the order of 106 (cell:medium) can be achieved. This concentration differential permits net uptake of amino acids by P. subcordiformis from ambient amino acid levels in the nanomolar range.  相似文献   

12.
Using the starvation technique, changes in protein and free amino acids were examined in Penaeus esculentus Haswell collected from Moreton Bay, Australia, by trawling in 1985. Prawns of 17.7±0.26 g wet weight were held at 25°C until 2 d after moulting. Groups of seven or eight were then starved fro 5, 10, or 15 d, with appropriate control groups. At the end of each period, ecreted amino acids were collected for 24 h and whole-muscle amino acids and free amino acids (FAA) g-1 in each prawn were analysed. Concentrations of whole-muscle amino acids showed only minor changes with starvation, but concentrations of many of the FAA changed significantly. Total FAA averaged 1 182±45 mol g-1 dry weight. Individual FAA, in order of abundance, were glycine, arginine, proline, taurine, threonine, hydroxyproline, alanine, glutamic acid, valine, aspartic acid and lysine; the remaining FAA each contributed <0.2% of the total. Only taurine and alanine did not show significant changes with starvation. Concentrations of glycine, arginine, hydroxyproline, glutamic and aspartic acid increased, while those of proline, threonine, valine and lysine decreased with starvation, that of proline approaching zero after 15 d starvation. Excreted amino acid-nitrogen represented <2% of excreted ammonianitrogen ornithine being the most abundant (35%), followed by leucine (22%) and lysine (17%). The relative abundance of excreted amino acids did not correspond with those of the FAA. It is suggested that, as starvation progresses, the muscle protein is progressively hydrolysed, but with the remaining muscle maintaining its amino acid composition. The liberated amino acids enter the FAA pool and become available for energy production. Proline may have an important role as an energy source, but the ability to synthesise proline may be limited, and thus the artificial food of penaeid prawns may be improved by its addition.  相似文献   

13.
Summary Planthopper (Insecta: Homoptera) feeding stress induces a senesence-like response in the leaves ofSpartina alterniflora characterized by decreased soluble protein, an increased total amino acid pool, and elevated levels of 10 individual amino acids. Increased proline and tryptophan in response to planthopper feeding could not be fully explained by protein degradation. Low degrees of soil salinity stress resulted in an increased total free amino acid pool and elevated levels of 7 amino acids. Anaerobic soil stress resulted in decreased glutamic acid and increased asparagine. Low salinity and anaerobic stress had no effect on soluble protein levels. Glycinebetaine was not affected by the stresses examined in this study.  相似文献   

14.
Individual blue mussels, Mytilus edulis L., can express at least 20 variants of a small protein known as M. edulis foot protein 3 or Mefp3. Mefp3 has been shown to be a component of the adhesive plaque of the byssus, the structure securing mussels to solid substrata. The cDNAs and deduced fp3 protein sequences display more variation at the carboxy-terminus than at the N-terminus, although there is some variation present throughout the protein. This indicates that there most likely are multiple copies of the gene encoding this protein. Each protein sequence contains a signal peptide, 24 to 25 residues in length, and a mature protein sequence of 44 to 54 residues. Gly is the most common amino acid in the mature protein at 20 to 25 mol%. Tyr and Arg follow closely at 20 to 23 and 16 to 21 mol%, respectively. Both of these amino acids were previously shown to be post-translationally modified to 3,4-dihydroxyphenylalanine (Dopa) and 4-hydroxyarginine, respectively, in this protein. MALDI-TOF (matrix-assisted laser desorption ionization with time-of-flight) mass spectrometric analysis of the underside of adhesive plaques reveals the presence of Mefp3-like proteins. Curiously, only four or five out of 20 possible fp3 variants are detectable in plaques deposited on glass or plastic. This would suggest that selection of protein variants for deposition onto surfaces is determined at the level of translation. Received: 11 August 1998 / Accepted: 15 April 1999  相似文献   

15.
Two actin genes named actinT1 and actinT2 were isolated and sequenced from the Pacific white shrimp, Litopenaeus vannamei, by screening from a shrimp eyestalk cDNA library. L. vannamei actinT1 cDNA has a 1,128-bp open reading frame encoding for 376 amino acids while L. vannamei actinT2 cDNA has a 1,131-bp open reading frame coding for 377 amino acids. Alignment of the actinT1 and actinT2 cDNA sequences showed that these two actin genes share a sequence identity of 86% at amino acid residues. When compared with actins of several other invertebrate and vertebrate species, the nucleotide sequence of actinT1 is highly homologous (97–100%) with beta-actins, while actinT2 shares 86–95% identity with alpha-actins on the nucleotide level. Phylogenetic analysis and BLAST searches indicated that the ActinT1 protein is identical to crustacean beta-actins, while the ActinT2 protein is highly homologous to crustacean alpha-actins. Constitutive expression of the actinT1 and actinT2 genes were detected by RT-PCR in all adult shrimp organs, including brain, eye-stalk, gill, heart, hemolymph, hepatopancreas, muscle, swimming legs, and stomach, as well as in the shrimp zygote, nauplius, and mysis life stages. These data will facilitate attempts to clone and identify more shrimp genes and constitutive shrimp promoters.  相似文献   

16.
Changes in the chemical composition of developing dolphin (Coryphaena hippurus) eggs and prefeeding yolksac larvae were determined in order to estimate probable dietary requirements of first-feeding larvae. Daily dry matter, protein nitrogen (PN), non-protein nitrogen (NPN), lipid, gross energy content, fatty acid and amino acid profiles from Day 1 to Day 2 eggs and Day 1 to Day 3 larvae were compared. Lipid was the primary endogenous energy source accounting for the daily caloric deficit through both the egg and larval stages, except over the day of hatching. The catabolism of lipid by embryos (0.078 cal d–1) was greater than that by yolksac larvae (0.036 cal d–1). The higher demand for energy by embryos was related to a greater rate of protein synthesis during the egg stage. The ratio of PN:NPN increased during egg development without change in total nitrogen content, but was constant throughout the yolksac larvae period. The lipid content per embryo did not decrease over the hatching period (Day 2 to 3, postspawning). However, there was a loss in amino acid content not totally accounted for by sloughing of the chorion at hatching. This loss, as protein, accounted for 0.053 cal of gross energy, which represented 70% of the total estimated energy needs of the fish over this period. Loss of non-essential amino acids (25%) was higher than that of essential amino acids (13%). Proline and tyrosine accounted for 32% of the total loss of amino acids at this time. The only preferential use of fatty acids over any period was a small but significant drop in the content of C22:6n-3 prior to the onset of feeding (Day 5, postspawning). It is speculated that the pattern of energy-substrate use of first-feeding dolphin larvae will reflect the pattern of endogenous energy use during the egg and prefeeding yolksac larval stages. Diets or feeding regimens with lipid as the primary energy source, and containing a fatty acid profile similar to that of eggs or yolksac larvae, should be useful in culturing this species, at least during the early feeding stages.  相似文献   

17.
Summary. The nutritive value of tree foliage for herbivores decreases rapidly with leaf maturation, due in particular to the decline in leaf nitrogen content. Since the amino acid content of plants differs from the need of herbivores for individual amino acids, we examined developmental changes in the contents of amino acids throughout the growth season of mountain birch. The contents of free and protein-bound amino acids, as well as essential and nonessential ones, displayed different patterns with leaf maturation, suggesting that total nitrogen or protein levels are poor predictors of the nutritive status of leaves. The contents of protein-bound amino acids were 100 times higher than those of free amino acids, indicating that the role of free amino acids in nutrition of herbivores is probably less important than that of protein-bound amino acids. Among protein-bound amino acids, both the absolute and the relative contents of two nitrogen-rich essential amino acids, lysine and arginine, decreased during early leaf growth, presumably reducing nitrogen availability in developing leaves. Essential amino acids were mainly positively related to each other, suggesting the co-ordinated regulation of their synthesis. Changes in correlations among individual free amino acids reflected developmental changes in allocation preferences between biosynthesis pathways with leaf growth. Received 31 January 2003; accepted 17 March 2003. R1D=" Correspondence to: Teija Ruuhola, e-mail: teiruu@utu.fi  相似文献   

18.
Contents of free amino acids (FAA), protein and ammonium ions together with rates of ammonia excretion and oxygen consumption were measured in order to study the role of FAA as an energy substrate in developing eggs and larvae of seabass (Lates calcarifer) maintained in seawater (30 ppt) at 28 °C without feeding. Initially eggs contained 25.3 nmol ind−1 of FAA of which 21.5 nmol was rapidly utilised by the developing eggs and larvae during the period up to 40 h post spawning (PS) when nearly all the yolk had been resorbed. During the same period, a net increase in protein content of 1.7 μg ind−1 was observed, indicating that the major part of the amino acids lost from the free pool had been polymerised into body proteins. Assuming that the balance of the FAA after protein synthesis was used entirely for energy metabolism, FAA appeared to be an important energy substrate during the embryonic stages (2 to 16 h PS); after hatching, the contribution of FAA to energy metabolism was less significant. From 50 h PS until the end of the study period at 100 h PS, amino acids derived from somatic protein were used for energy metabolism. For the overall period from just after spawning up to 100 h PS, the data indicate that ca. 14% of the total aerobic energy metabolism was derived from amino acid catabolism. Received: 26 September 1997 / Accepted: 1 April 1998  相似文献   

19.
Reciprocal inhibition experiments concerning the simultaneous absorption of acidic, basic and neutral amino acids give evidence that Anemonia sulcata Pennant (Coelenterata: Anthozoa) possess at least three distinct uptake systems for amino acids. The absorption of amino acids belonging to the same class is mutually inhibited. Increasing inhibitor concentrations reduce the uptake of the substrate successively, indicating that the receptors are saturated only at high substrate concentrations; this is not the case under natural conditions. The uptake system for acidic amino acids is highly specific; uptake is not inhibited by either basic or neutral amino acids. The specificity for basic amino acids is lower; uptake is influenced by neutral amino acids. Neutral amino acids are absorbed either by one single system with broad specificity or by several systems with overlapping specificity. D- and L-isomers seem to be absorbed by the same system, as the uptake is reciprocally inhibited. The restricted specificity of the amino-acid uptake systems, especially those for neutral amino acids, could be explained as an adaptation to avoid accumulation of certain amino acids in a most economic way. Moreover, a broad spectrum of various dissolved organic materials can thus be utilized. The experiments also give evidence that anemones are able to supply their metabolism completely with the necessary substances by absorbing dissolved organic material. The absorbed substances may, furthermore, be vital for the metabolism, although their individual energy content may be negligible. Anemones display optimum fitness to an important environmental factor-dissolved organic material — on a macromolecular level, in addition to structural and physiological adaptations.  相似文献   

20.
Porphyra perforata J. Ag. was collected from a rocky land-fill site near Kitsilano Beach, Vancouver, British Columbia, Canada and was grown for 4 d in media with one of the following forms of inorganic nitrogen: NO 3 - , NH 4 + and NO 3 - plus NH 4 + and for 10 d in nitrogen-free media. Internal nitrogen accumulation (nitrate, ammonium, amino acids and soluble protein), nitrate and ammonium uptake rates, and nitrate reductase activity were measured daily. Short initial periods (10 to 20 min) of rapid ammonium uptake were common in nitrogen-deficient plants. In the case of nitrate uptake, initial uptake rates were low, increasing after 10 to 20 min. Ammonium inhibited nitrate uptake for only the first 10 to 20 min and then nitrate uptake rates were independent of ammonium concentration. Nitrogen starvation for 8 d overcame this initial suppression of nitrate uptake by ammonium. Nitrogen starvation also resulted in a decrease in soluble internal nitrate content and a transient increase in nitrate reductase activity. Little or no decrease was observed in internal ammonium, total amino acids and soluble protein. The cultures grown on nitrate only, maintained high ammonium uptake rates also. The rate of nitrate reduction may have limited the supply of nitrogen available for further assimilation. Internal nitrate concentrations were inversely correlated with nitrate uptake rates. Except for ammonium-grown cultures, internal total amino acids and soluble protein showed no correlation with uptake rates. Both internal pool concentrations and enzyme activities are required to interpret changes in uptake rate during growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号