首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The benefits of flue gas recirculation in waste incineration   总被引:1,自引:0,他引:1  
Flue gas recirculation in the incinerator combustion chamber is an operative technique that offers substantial benefits in managing waste incineration. The advantages that can be obtained are both economic and environmental and are determined by the low flow rate of fumes actually emitted if compared to the flue gas released when recirculation is not conducted. Simulations of two incineration processes, with and without flue gas recirculation, have been carried out by using a commercial flowsheeting simulator. The results of the simulations demonstrate that, from an economic point of view, the proposed technique permits a greater level of energy recovery (up to +3%) and, at the same time, lower investment costs as far as the equipment and machinery constituting the air pollution control section of the plant are concerned. At equal treatment system efficiencies, the environmental benefits stem from the decrease in the emission of atmospheric pollutants. Throughout the paper reference is made to the EC legislation in the field of environmental protection, thus ensuring the general validity in the EU of the foundations laid and conclusions drawn henceforth. A numerical example concerning mercury emission quantifies the reported considerations and illustrates that flue gas recirculation reduces emission of this pollutant by 50%.  相似文献   

2.
Operation parameters such as waste feed rate, air supply, and temperature of the gas in incineration plants should be carefully determined for various situations, which include seasonal and annual changes in fuel characteristics, and performance change of the hardware. These changes may cause off-design point operation of the incinerators, which results in many problems in operation of the flue gas treatment system, low-oxygen in the combustion chamber, thermal damage of the incinerator wall, and so on. In this study, an engineering approach using computational tools along with field tests and observation is presented. For computational tools, a 0-dimensional model for heat and mass balance, computational fluid dynamics (CFD), and a global prediction model for dioxin are employed. They play a key role in diagnosing incineration systems and evaluating changes in operating conditions. The typical results of each tool are reported, and examples of improvement in operating performance are described.  相似文献   

3.
When using catalytic flue gas cleaning, several flue gas compounds may influence oxidation reactions of hazardous volatile organic compounds, possibly leading to lower reaction rates and, thus, to an incomplete destruction. Experimental investigations were performed with regard to the influence of selected flue gas compounds, like hydrogen chloride, sulfur dioxide, oxygen, and water vapour, on the catalytic destruction behavior of chlorobenzenes under flue gas cleaning conditions of an incineration plant. For this purpose, a metal oxide catalyst was operated at different temperatures at a space velocity of 3600 h-1 in a laboratory-scale fixed bed reactor with model flue gases, and with real flue gases generated from the TAMARA waste incineration plant. The results obtained from the studies with model flue gas were analyzed with respect to reaction kinetics. These kinetics were applied for comparison with the experimental data gained in the real flue gas.  相似文献   

4.
Waste incineration is a politically sensitive issue in the UK. The major current technology is based on direct combustion of wastes in a moving-grate furnace. However, general public opinion prefers non-direct burning technologies. Waste gasification is one of those nearest technologies available. By reducing the primary air-flow rate through the grate of a packed-bed system, operation of the existing solid-waste incineration equipment can be easily converted from combustion mode to gasification mode without major modification of the hardware. The potential advantages of this are lower dust carry-over in the flue gases, lower bed temperature (and therefore lower NO(x) formation in the bed), simplified gas-treatment procedures and lower running cost, among other benefits. The major disadvantages are, however, reduced throughput of the wastes and possibly higher carbon in the ash at exit. In this study, numerical simulation of both combustion and gasification of municipal solid wastes in a full-scale moving grate furnace is carried out employing advanced mathematical models. Burning characteristics, including burning rate, gas composition, temperature and burning efficiency as a function of operating parameters are investigated. Detailed comparisons between the combustion mode and gasification mode are made. The study helps to explore new incineration technology and optimise furnace operating conditions.  相似文献   

5.
A model for life-cycle assessment of waste incinerators is described and applied to a case study for illustrative purposes. As life-cycle thinking becomes more integrated into waste management, quantitative tools for assessing waste management technologies are needed. The presented model is a module in the life-cycle assessment model EASEWASTE. The module accounts for all uses of materials and energy and credits the incinerator for electricity and heat recovered. The energy recovered is defined by the user as a percentage of the energy produced, calculated on the lower heating value of the wet waste incinerated. Emissions are either process-specific (related to the amount of waste incinerated) or input-specific (related to the composition of the waste incinerated), while mass transfer to solid outputs are governed by transfer coefficients specified by the user. The waste input is defined by 48 material fractions and their chemical composition. The model was used to quantify the environmental performance of the incineration plant in Aarhus, Denmark before and after its upgrading in terms of improved flue gas cleaning and energy recovery. It demonstrated its usefulness in identifying the various processes and substances that contributed to environmental loadings as well as to environmental savings. The model was instrumental in demonstrating the importance of the energy recovery system not only for electricity but also heat from the incinerator.  相似文献   

6.
At international level LCA is being increasingly used to objectively evaluate the performances of different Municipal Solid Waste (MSW) management solutions. One of the more important waste management options concerns MSW incineration. LCA is usually applied to existing incineration plants.In this study LCA methodology was applied to a new Italian incineration line, to facilitate the prediction, during the design phase, of its potential environmental impacts in terms of damage to human health, ecosystem quality and consumption of resources. The aim of the study was to analyse three different design alternatives: an incineration system with dry flue gas cleaning (without- and with-energy recovery) and one with wet flue gas cleaning. The last two technological solutions both incorporating facilities for energy recovery were compared. From the results of the study, the system with energy recovery and dry flue gas cleaning revealed lower environmental impacts in relation to the ecosystem quality.As LCA results are greatly affected by uncertainties of different types, the second part of the work provides for an uncertainty analysis aimed at detecting the extent output data from life cycle analysis are influenced by uncertainty of input data, and employs both qualitative (pedigree matrix) and quantitative methods (Monte Carlo analysis).  相似文献   

7.
SUWIC's unique mobile metals emissions monitoring laboratory has been used to measure metal pollutant spikes in the flue gas from a municipal solid waste incinerator, prior to gas clean-up. The laboratory has a heated sampling probe that extends into the plant, allowing the simultaneous on-line measurement of the concentrations of more than 30 metals by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). As little is known about temporal variation in metal concentrations, this capability is seen as a major advance. The graphs of continuous measurements show that the elemental loading is far from uniform, and that concentrations fluctuate far more than may have been conventionally expected. There are occasional significant spikes in the emission profiles for cadmium and mercury, which are believed to be due to specific items in the waste feed material. Continuous monitoring measurements are of significant value for those seeking to model metal behaviour in combustion and in pollution control devices.  相似文献   

8.
The characterization of PCDD/Fs and heavy metals in the flue gas and fly ash of Harbin municipal solid waste (MSW) incineration plant, located in the northeast of China, was investigated in this study. The MSW was treated in a twin internal fluidized (TIF) bed incinerator. The results indicate that the emission of PCDD/Fs into the environment is 0.02 ng I-TEQ/m3 and the level of PCDD/Fs in the fabric filter fly ash is 0.7982 ng I-TEQ/g. The leachability levels of Pb, Cd and Hg in the fly ash are below the limits of environmental protection standard in China. However, the contents of Cu, Zn, and Hg are high in the fly ash. This suggests that the fly ash is a hazardous waste that requires special treatment and disposal. The practice of more than four years of operation shows that the TIF bed incinerator is very suitable and practical for China.  相似文献   

9.
A pilot scale test facility of a circulating fluidized bed incinerator was established to generate design and operation data and help assess the technical feasibility for industrial applications. The use of high turbulence in the combustion zone and feeding an acid-capturer directly into the incinerator to absorb acid gases eliminates the costly afterburner and scrubber. This paper presents some systematic incineration tests of uniform industrial wastes such as paper mill sludge cake, rubber waste and petroleum coke. Sludge cakes with high moisture and low heating values can be treated to a low emission level by co-firing with coal. The high superficial gas velocity has improved combustion efficiency but increases NOx emissions. However, sulphur content has almost no influence on sulphur retention. The problems of CO/NOx emissions and circulation stability are also discussed.  相似文献   

10.
The objective of this paper is to evaluate the combustion process of municipal solid waste combustion in a grate furnace both experimentally and numerically by using data of a reference experiment with over-stoichiometric primary air supply. Measurements were carried out inside the combustion chamber of a pilot plant by monitoring temperatures and sampling gaseous combustion products along the bed surface. The data were assessed using elemental and energy balances. Experimental data of the axial temperature profiles of the flue gas, the fuel bed and the grate bars, as well as local gas flows and the flue gas composition measured above the fuel bed along the grate were used to describe the conversion process, including drying and carbon burnout. These data served as input to model the thermo- and fluid dynamic processes of the gas phase above the bed inside the combustion chamber. For this purpose the commercial code FLUENT was employed to carry out the simulations. Thus, the turbulent temperature, flow and species distributions in the combustion chamber of the pilot waste incinerator TAMARA were predicted. The results of the FLUENT modeling showed that under the prevailing conditions the flue gas burnout is almost completed before entering the first flue due to high temperatures, effective mixing and sufficient residence times of the flue gas inside the combustion chamber. This agrees well with the experimental results inside the first flue. On the basis of the above mentioned results, design and parametric studies can be carried out in a more efficient way by saving cost and time.  相似文献   

11.
Sludge as dioxins suppressant in hospital waste incineration   总被引:1,自引:0,他引:1  
Nitrogen containing compounds such as ammonia, urea and amines can effectively inhibit the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Sewage sludge accumulates both sulfur and nitrogen during wastewater treatment so it could be used to reduce PCDD/Fs formation. Indeed, it is observed in this study that the gas evolving from the sludge drying process can significantly suppress chlorobenzene (CBz) and PCDD/Fs formation from fly ash collected from a hospital waste incinerator. For instance, the reduction of hexachlorobenzene (HxCBz) and PCDD/Fs amount was 92.1% and 78.7%, respectively, when the drying gas evolving from 2g sludge flew through 2g fly ash. These tests were conducted in the frame of projects devoted to hospital waste incineration. The disposal technology for hospital waste (HW), developed in this institute, features rotary kiln pyrolysis combined with post-combustion followed by flue gas cleaning. Hence, some preliminary tests were devoted to investigate dioxins suppression by co-pyrolysis and co-combustion of polyvinyl chloride (PVC) and sludge in lab scale. More experimental research will be conducted to appropriately assess these effects of sludge on PCDD/Fs emissions during co-pyrolysis/combustion of HW and sludge.  相似文献   

12.
参考国内外已有的危险废物焚烧工程相关设计和研究资料,针对国内具有代表性的危险废物成分,采用设计计算得到危险废物焚烧烟气的污染物初始浓度,分析成熟的烟气净化工艺,对适合中国危险废物特点的危险废物焚烧厂烟气净化工艺进行了设计和探讨,为危险废物焚烧厂建设单位及设计单位等提供参考。  相似文献   

13.
The rising popularity of incineration of municipal solid waste (MSW) calls for detailed mathematical modeling and accurate prediction of pollutant emissions. In this paper, mathematical modeling methods for both solid and gaseous phases were employed to simulate the operation of a 450 t/d MSW-burning incinerator to obtain detailed information on the flow and combustion characteristics in the furnace and to predict the amount of pollutant emissions. The predicted data were compared to on-site measurements of gas temperature, gas composition and SNCR de-NOX system. The major operating conditions considered in this paper were grate speed and oxygen concentration. A suitable grate speed ensures complete waste combustion. The predictions are as follows: volatile release increases with increasing grate speed, and the maximal value is within the range of 700–800 kg/m2 h; slow grate speeds result in incomplete combustion of fixed carbon; the gas temperature at slow grate speeds is higher due to adequate oxygenation for fixed carbon combustion, and the deviation reaches 200 K; NOX emission decreases, but CO emission and O2 concentrations increase, and the deviation is 63%, 34% and 35%, respectively. Oxygen-enriched atmospheres promote the destruction of most pollutants due to the high oxygen partial pressure and temperature. The furnace temperature, NO production and CO emission increase as the oxygen concentration increases, and the deviation of furnace exit temperature, NO and CO concentration is 38.26%, 58.43% and 86.67%, respectively. Finally, oxygen concentration is limited to below 35% to prevent excessive CO and NOX emission without compromising plant performance. The current work greatly helps to understand the operating characteristics of large-scale MSW-burning plants.  相似文献   

14.
This paper presents the experimental research process and results about flue gas purifying of municipal solid wastes (MSW) incineration using in-pipe jet adsorption techniques. MSW incineration was carried out in a fluidized bed test rig, and the flue gas purifying was carried out in an in-pipe jet adsorption test rig. The experimental results are as follows: when the feedstock of activated carbon is 1.6g/Nm(3), the desulfurization efficiency is 83%, the denitrification efficiency is 41%, and the dechlorination efficiency is 27%. The order of purifying effect of the three kinds of adsorbents on acidic gases from MSW incineration is activated carbon>activated bauxite>kaolin. Comparison of adsorption capabilities of the three kinds of adsorbents to heavy metals shows that activated carbon is the best additive to remove Cd, Pb and Cu, kaolin is inferior, and activated bauxite is the worst one. However, activated bauxite is the best additive to remove Hg, and it can remove Cd effectively. PAHs in fly ash are dominated by three-, four-, and five-ringed PAHs, and PAHs in the flue gas mainly include three- and four-ringed PAHs. When the injected quantity of additive is constant, the order of cleaning effect on PAHs is kaolin>activated carbon>activated bauxite. These three kinds of adsorbents have different purifying effects on acidic gases, heavy metals and PAHs in the flue gas from MSW incineration. In general, activated carbon has a better adsorption capability.  相似文献   

15.
A new iron oxide catalyst, which has a superior oxidation activity in carbon monoxide and polyethylene (PE) combustion, was synthesized by an aqueous solution reaction. Catalytic oxidation of carbon monoxide over six kinds of hematite obtained from the goethite was done using a microcatalytic pulse reactor, and the composition of the hematite with the highest oxidation activity was determined. With the aim of suppressing dioxin formation on combustion, incineration tests of solid wastes in PE refuse bags with and without the goethite were carried out using a commercial semibatch-type incinerator with a combustion chamber of 6.2 m3. The result confirmed that the concentration of dioxins in the flue gas decreased considerably when the refuse was incinerated in PE bags manufactured with goethite. Received: July 24, 2000 / Accepted: October 18, 2000  相似文献   

16.
介绍了两种垃圾焚烧电厂烟气净化处理工艺,分析了垃圾焚烧烟气净化处理装置工艺流程及出口排放参数,提出目前适合的处理工艺及发展方向。  相似文献   

17.
Since the mid-1980s, TPS Termiska Processer AB has been working on the development of an atmospheric-pressure gasification process. A major aim at the start of this work was the generation of fuel gas from indigenous fuels to Sweden (i.e. biomass). As the economic climate changed and awareness of the damage to the environment caused by the use of fossil fuels in power generation equipment increased, the aim of the development work at TPS was changed to applying the process to heat and power generation from feedstocks such as biomass and solid wastes. Compared with modern waste incineration with heat recovery, the gasification process will permit an increase in electricity output of up to 50%. The gasification process being developed is based on an atmospheric-pressure circulating fluidised bed gasifier coupled to a tar-cracking vessel. The gas produced from this process is then cooled and cleaned in conventional equipment. The energy-rich gas produced is clean enough to be fired in a gas boiler (and, in the longer term, in an engine or gas turbine) without requiring extensive flue gas cleaning, as is normally required in conventional waste incineration plants. Producing clean fuel gas in this manner, which facilitates the use of efficient gas-fired boilers, means that overall plant electrical efficiencies of close to 30% can be achieved. TPS has performed a considerable amount of pilot plant testing on waste fuels in their gasification/gas cleaning pilot plant in Sweden. Two gasifiers of TPS design have been in operation in Grève-in-Chianti, Italy since 1992. This plant processes 200 tonnes of RDF (refuse-derived fuel) per day. It is planned that the complete TPS gasification process (including the complete fuel gas cleaning system) be demonstrated in several gas turbine-based biomass-fuelled power generating plants in different parts of the world. It is the aim of TPS to prove, at commercial scale, the technical feasibility and economic advantages of the gasification process when it is applied to solid waste fuels. This aim shall be achieved, in the short-term, by employing the cold clean product gas in a gas boiler and, in the longer-term, by firing the gas in engines and gas turbines. A study for a 90 MWth waste-fuelled co-generation plant in Sweden has shown that, already today, gasification of solid waste can compete economically with conventional incineration technologies.  相似文献   

18.
概述了二恶英、重金属、酸性气体、灰渣等垃圾焚烧的主要污染物,以二段式(往复)焚烧炉为例,介绍了炉排炉焚烧处理工艺和污染控制设备。提出通过控制垃圾焚烧条件、尾气处理以及吸附等方法,可以有效控制二恶英类污染物的排放;重金属的控制可以用除尘器或使用相应的吸附剂处理;采用较为成熟的烟气处理技术,可以控制处理酸性气体;灰渣可采用固化稳定化或酸提取法处置。  相似文献   

19.
Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion of the waste, but also the energy recovery efficiency has a large importance.The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85–174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control technologies of today (2010).The importance of efficient energy recovery was studied through seven different combinations of heat and electricity recovery, which were modelled to substitute energy produced from either coal or natural gas. The best air pollution control technology was used at the incinerator. It was found that when substituting coal based energy production total net savings were obtained in both the standard and toxic impact categories. However, if the substituted energy production was based on natural gas, only the most efficient recovery options yielded net savings with respect to the standard impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during the last 35 years and that these impacts can be partly or fully offset by recovering energy which otherwise should have been produced from fossil fuels like coal or natural gas.  相似文献   

20.
The incinerator at the T.Z. Osborne Plant in Greensboro, North Carolina burns sludge from its own waste water treatment plant and sludge pumped from the nearby North Buffalo plant. The two plants have a combined capacity of 36 million gallons per day of wastewater. Because of the age of and increasing high maintenance on the existing multiple hearth incinerator, and the need to increase treatment capacity, the Osborne plant concluded a study in 1992 evaluating its options for future municipal sewage sludge disposal. Options which were evaluated during the study included; (i) rehabilitation of the existing eight-year old multiple hearth unit; (ii) addition of a new multiple hearth; (iii) addition of a new fluid bed system; (iv) drying, composting, or land application. The chosen option, based on both economic and environmental considerations, was a new fluid bed system with a capacity of 2.55 tons per hour, approximately double that of the existing multiple hearth. Design of the new fluid bed system began in December 1994 and equipment delivery for the incineration system was begun in April 1995. Initial operation occurred in August 1996. Primary and secondary sludge, dewatered to 28% dry solids by centrifuge, is delivered by piston pumps to the twenty-foot freeboard ID incinerator. A shell and tube heat exchanger recuperates heat from the exhaust gas and preheats the combustion air to 1250°F, resulting in minimal auxiliary fuel use. The air pollution control device is a high-energy Tandem Nozzle® scrubber. Greensboro was the initial installation of this scrubber design on a fluid bed incinerator and its characteristics and performance are discussed. Ash is dewatered in an ash thickener/belt press system prior to disposal to landfill. The system includes a state of the art Programmable Logic Controller (PLC) system for computer control of the operation. The unit was commissioned in August 1996 and has been in continuous operation since that time except for a one week inspection and maintenance shutdown in February 1999. The plant operates 24 h/day, 7 days per week. The initial performance test showed the system to readily meet federal and state air emission standards. Particulate released was 0.002 grains per dry standard cubic foot, carbon monoxide was 22.5 parts per million volumetric (ppmv) and opacity was 0.4%. These results show a significant emission reduction with the fluid bed when compared to the multiple hearth. Annual tests conducted since then and continuous emission monitoring have shown the unit to be in consistent compliance. Since the fluid bed system became operational, the old multiple hearth system has been maintained on standby as a backup, but its use has not been required. Operational experience is discussed, the most interesting of which is the relatively trouble-free operation. The minor problems which occurred and their solutions are detailed. Also included is a comparison of operation and maintenance experience of the fluid bed and the multiple hearth. Current sludge disposal actual cost data are also provided including the average cost per ton of dry solids treated. The almost three years of operational experience to date has shown that the decision to install a new fluid bed system was the correct one on both an environmental and economic basis. It has provided benefits to all interested parties — the wastewater treatment plant, the regulators, the taxpayers, and the surrounding community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号