首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An ecosystem approach to fisheries management is a widely recognized goal, but describing and measuring the effects of a fishery on an ecosystem is difficult. Ecological information on the entire catch (all animals removed, whether retained or discarded) of both species targeted by the fishery and nontarget species (i.e., bycatch) is required. We used data from the well-documented purse-seine fishery for tunas (Thunnus albacares, T. obesus, and Katsuwonus pelamis) in the eastern tropical Pacific Ocean to examine the fishery's ecological effects. Purse-seine fishing in the eastern tropical Pacific is conducted in 3 ways that differ in the amount and composition of target species and bycatch. The choice of method depends on whether the tunas are swimming alone (unassociated sets), associated with dolphins (dolphin sets), or associated with floating objects (floating-object sets). Among the fishing methods, we compared catch on the basis of weight, number of individuals, trophic level, replacement time, and diversity. Floating-object sets removed 2-3 times as much biomass as the other 2 methods, depending on how removal was measured. Results of previous studies suggest the ecological effects of floating-object sets are thousands of times greater than the effects of other methods, but these results were derived from only numbers of discarded animals. Management of the fishery has been driven to a substantial extent by a focus on reducing bycatch, although discards are currently 4.8% of total catch by weight, compared with global averages of 7.5% for tuna longline fishing and 30.0% for midwater trawling. An ecosystem approach to fisheries management requires that ecological effects of fishing on all animals removed by a fishery, not just bycatch or discarded catch, be measured with a variety of metrics.  相似文献   

2.
Although optimal fishery policy has been derived from different kinds of economic and biological models, the interaction of fishing policy with artificial stocking policy has not been explicitly considered. We here determine optimal size limits, fishing effort, and stocking rate for three cases of interest: (1) recruitment-limited population, pre-recruitment stocking; (2) adult biomass-limited population, post-recruitment stocking; and (3) adult biomass-limited and recruitment-limited population, post-recruitment stocking. Results show that lower size limits should be set at the size at which the current market value exceeds the total future value of an individual, both to the fishery and to reproduction. Imposition of upper size limits is rarely optimal. Stocking is advisable when the hatchery cost times the relative contribution of stocking to recruitment is less than the contribution to the value of the catch. Optimal policy ranges from infinite effort at a specific size limit with maximum stocking when the cost of stocking is zero, to lower values of size limit and effort as stocking costs increase, the amount of stocking decreases, and more natural reproduction is optimal. Thus, as hatchery costs decline (or value of captured fish increases), optimal stocking/fishery policy varies from an unstocked fishery to a “put and take” fishery. The results are applied to the sturgeon fishery in the San Francisco Bay Estuary as an example. They imply that a reduced lower size limit and greater fishing mortality together with stocking would be optimal, but that current levels are conservative. The stocking decision depends critically on the values of parameters that are currently poorly known, such as: hatchery costs, survival to the fishery and the mechanisms controlling the sturgeon population.  相似文献   

3.
Abstract:  Bycatch—the incidental catch of nontarget species—is a principal concern in marine conservation and fisheries management. In the eastern Pacific Ocean tuna fishery, a large fraction of nonmammal bycatch is captured by purse-seine gear when nets are deployed around floating objects. We examined the spatial distribution of a dominant species in this fishery's bycatch, the apex predator silky shark ( Carcharhinus falciformis ), from 1994 to 2005 to determine whether spatial closures, areas where fishing is prohibited, might effectively reduce the bycatch of this species. We then identified candidate locations for fishery closures that specifically considered the trade-off between bycatch reduction and the loss of tuna catch and evaluated ancillary conservation benefits to less commonly captured taxa. Smoothed spatial distributions of silky shark bycatch did not indicate persistent small areas of especially high bycatch for any size class of shark over the 12-year period. Nevertheless, bycatch of small silky sharks (<90 cm total length) was consistently higher north of the equator during all years. On the basis of this distribution, we evaluated nearly 100 candidate closure areas between 5°N and 15°N that could have reduced, by as much as 33%, the total silky shark bycatch while compromising only 12% of the tuna catch. Although silky sharks are the predominant species of elasmobranchs caught as bycatch in this fishery, closures also suggested reductions in the bycatch of other vulnerable taxa, including other shark species and turtles. Our technique provides an effective method with which to balance the costs and benefits of conservation in fisheries management. Spatial closures are a viable management tool, but implementation should be preceded by careful consideration of the consequences of fishing reallocation.  相似文献   

4.
A numerical approach involving dynamic programming and computer simulation is used to examine the socially optimal exploitation of a single-cohort fishery under risk, with specific reference to the Exmouth Gulf Prawn Fishery in Western Australia. Best management strategies for given investment levels are sought before optimizing investment. The results for this industry show that time of year is much more important then level of biomass in determining best fishing policies, and that the timing of the catch is sensitive to natural fluctuations in some biological variables. Employing a “closed season” policy for part of the year appears an attractive way of reconciling private and social objectives under commonality. Under or overcapitalization does not reduce benefits markedly.  相似文献   

5.
Can Eco-Labels Tune a Market? Evidence from Dolphin-Safe Labeling   总被引:1,自引:0,他引:1  
In this paper we test whether the dolphin-safe labels altered consumer purchases of tuna. We also provide a partial measure of the total welfare effects of the dolphin-safe labeling policy. The results confirm our hypothesis that the dolphin–tuna controversy and the subsequent implementation of dolphin-safe labeling affected consumer behavior. Further, the paper provides market-based evidence that consumers can respond to eco-labels; the dolphin-safe label increased the market share of canned tuna. The welfare analysis provides a partial measure of society's willingness to pay to avoid personally contributing to dolphin mortality as a result of tuna fishing.  相似文献   

6.
The deterministic models applied in economics of fisheries are extended to comprise price uncertainty and risk aversion among the fishing units. It is proved that in the open-access fishery both the total fishing effort and the number of fishing units are reduced as the variance of the price increases; that the total fishing effort may be smaller in the open-access fishery than in the optimal fishery at a high variance; that only a fixed producer price system can create a first-best optimum, and that a tax on revenue is more efficient than both fishing unit quotas or tax on catch.  相似文献   

7.
Harvest restrictions and stock enhancement are commonly proposed management responses for sustaining degraded fisheries, but comparisons of their relative effectiveness have seldom been considered prior to making policy choices. We built a population model that incorporated both size-dependent harvest restrictions and stock enhancement contributions to explore trade-offs between minimum length limits and stock enhancement for improving population sustainability and fishery metrics (e.g., catch). We used a Murray cod Maccullochella peelii peelii population as a test case, and the model incorporated density-dependent recruitment processes for both hatchery and wild fish. We estimated the spawning potential ratio (SPR) and fishery metrics (e.g., angler catch) across a range of minimum length limits and stocking rates. Model estimates showed that increased minimum length limits were much more effective than stock enhancement for increasing SPR and angler catches in exploited populations, but length limits resulted in reduced harvest. Stocking was predicted to significantly increase total recruitment, population sustainability, and fishery metrics only in systems where natural reproduction had been greatly reduced via habitat loss, fishing mortality was high, or both. If angler fishing effort increased with increased fish abundance from stocking efforts, fishing mortality was predicted to increase and reduce the benefits realized from stocking. The model also indicated that benefits from stock enhancement would be reduced if reproductive efficiency of hatchery-origin fish was compromised. The simulations indicated that stock enhancement was a less effective method to improve fishery sustainability than measures designed to reduce fishing mortality (e.g., length limits).  相似文献   

8.
We provided a classification tree modeling framework for investigating complex feeding relationships and illustrated the method using stomach contents data for yellowfin tuna (Thunnus albacares) collected by longline fishing gear deployed off eastern Australia between 1992 and 2006. The non-parametric method is both exploratory and predictive, can be applied to varying size datasets and therefore is not restricted to a minimum sample size. The method uses a bootstrap approach to provide standard errors of predicted prey proportions, variable importance measures to highlight important variables and partial dependence plots to explore the relationships between explanatory variables and predicted prey composition. Our results supported previous studies of yellowfin tuna feeding ecology in the region. However, the method provided a number of novel insights. For example, significant differences were noted in the prey of yellowfin tuna sampled north of 20°S in summer where oligotrophic waters dominate. The analysis also identified that sea-surface temperature, latitude and yellowfin size were the most important variables associated with dietary differences. The methodology is appropriate for delineating ecosystem-level trophic dynamics, as it can easily incorporate large datasets comprising multiple predators to explore trophic interactions among members of a community. Broad-scale relationships among explanatory variables (environmental, biological, temporal and spatial) and prey composition elucidated by this method then serve to focus and lend validity to subsequent fine-scale analyses of important parameters using standard diet methods and chemical tracers such as stable isotopes.  相似文献   

9.
Abstract: Changes in the management of the fin fish fishery of the Great Barrier Reef motivated us to investigate the combined effects on economic returns and fish biomass of no‐take areas and regulated total allowable catch allocated in the form of individual transferable quotas (such quotas apportion the total allowable catch as fishing rights and permits the buying and selling of these rights among fishers). We built a spatially explicit biological and economic model of the fishery to analyze the trade‐offs between maintaining given levels of fish biomass and the net financial returns from fishing under different management regimes. Results of the scenarios we modeled suggested that a decrease in total allowable catch at high levels of harvest either increased net returns or lowered them only slightly, but increased biomass by up to 10% for a wide range of reserve sizes and an increase in the reserve area from none to 16% did not greatly change net returns at any catch level. Thus, catch shares and no‐take reserves can be complementary and when these methods are used jointly they promote lower total allowable catches when harvest is relatively high and encourage larger no‐take areas when they are small.  相似文献   

10.
This paper describes the catch composition in the rapido trawl fishery and the direct effects on non-target species. All data were collected on commercial fishing vessels so as to reflect commercial rapido-trawling practice. The effects on non-target species were measured using two different damage scales (three- and seven-level scales) depending on the morphology of the taxa. Damage assessment was performed taking into account the whole fishing process by collecting individuals that passed through the cod-end, individuals that were retained in the cod-end and dropped onto the deck and individuals that were collected at the end of the sorting operation just before their return to the sea. Due to differences in the habitat and spatial distribution of target species, discard/commercial ratio was very different among the three different target species fisheries: 1:6 in the queen scallop (Aequipecten opercularis) fishery, 2:1 in the flatfish (Solea spp., Platichthys flesus, Psetta maximus and Scophthalmus rhombus) fishery and 9:1 in the scallop (Pecten jacobaeus) fishery. Damage sustained by non-target species was species-specific and related to the morphology of different organisms. The sorting operation produced similar levels of injury to those of the gear itself: all discarded animals showed higher levels of damage after the sorting than before. Damage to animals that had passed through the cod-end followed the same pattern, and these data could give an estimate of the "unobserved mortality". Our observations indicated a higher impact on non-target species caused by the queen scallop fishery than that caused by the flatfish fishery. This could be due to the total amount of hard-shelled species (in the queen scallop fishery, A. opercularis accounted for 87% of the total catch biomass) in any given haul, since shells macerated the catch during towing. Discarded animals from the queen scallop fishery showed higher levels of damage than those collected in the flatfish fishery. The rapido trawl fishery seemed to exert a strong selective pressure on the macrobenthic community, being able to modify the epibenthic fauna structure which, in heavily exploited fishing grounds, was dominated by bivalves, gastropods, crabs, starfish and brittlestars.  相似文献   

11.
Spatial closures like marine protected areas (MPAs) are prominent tools for ecosystem-based management in fisheries. However, the adaptive behavior of fishermen, the apex predator in the ecosystem, to MPAs may upset the balance of fishing impacts across species. While ecosystem-based management (EBM) emphasizes the protection of all species in the environment, the weakest stock often dominates management attention. We use data before and after the implementation of large spatial closures in a North Pacific trawl fishery to show how closures designed for red king crab protection spurred dramatic increases in Pacific halibut bycatch due to both direct displacement effects and indirect effects from adaptations in fishermen's targeting behavior. We identify aspects of the ecological and economic context of the fishery that contributed to these surprising behaviors, noting that many multispecies fisheries are likely to share these features. Our results highlight the need either to anticipate the behavioral adaptations of fishermen across multiple species in reserve design, a form of implementation error, or to design management systems that are robust to these adaptations. Failure to do so may yield patterns of fishing effort and mortality that undermine the broader objectives of multispecies management and potentially alter ecosystems in profound ways.  相似文献   

12.
Abstract: The largest existing hunt for marine mammals is Canada's commercial hunt for Northwest Atlantic harp seals ( Pagophilus groenlandicus ). From 1995 to 1998, the total allowable catch was set at a level that the Canadian Department of Fisheries and Oceans calculated would not cause the population to decline, consistent both with its stated management objectives of maintaining stable seal populations while allowing a sustainable harvest and with its stated policy of taking a precautionary approach to management. During those years, Canada's total allowable catch was progressively increased from 186,000 harp seals per year (1995) to 250,000 (1996) to 275,000 (1997 & 1998). We examined whether the government's management objectives were achieved using the conventional approach of comparing landed catches with the replacement yield estimated from a biological population model. We then conducted a second assessment, using a more modern and precautionary approach recently implemented for marine mammal management in the United States which incorporates uncertainty into management models to estimate sustainable "potential biological removal levels." From 1996 to 1998, landed catches from Canada and Greenland exceeded Canada's estimated replacement yield. Over the same period, estimated total human-caused mortality exceeded potential biological removal levels by 1.5 to 5.9 times. Given such levels of reported catches and estimated total human-caused mortality, Canada's management of its harp seal hunt did not achieve its objectives. It is likely, therefore, that the population is now declining and, if recent levels of killing continue, the population will stabilize only at levels below (and possibly far below) its maximum net productivity level. Viewed from this perspective, Canada's approach to harp seal management between 1996 and 1998 cannot be deemed precautionary or risk-averse.  相似文献   

13.
Our research aims to identify longline fishing gear modifications that can improve fishing selectivity and reduce incidental capture of non-target species. Catch rates and anatomical hook locations (AHL) were compared when using a 14/0 standard ??control?? circle hook with a 0° offset and an experimental ??appendage?? hook in a Costa Rican longline fishery. With the appendage, the maximum dimension of the appendage hook was increased by 10% and the minimum dimension of the hook by 19%. A total of 1,811 marine animals were captured during five fishing trips. By taxonomic groups, sea turtles represented the largest total catch (27%), followed by sharks (26%), rays (25%), mahimahi (Coryphaena hippurus) (12%), and tunas and billfish (10%). Non-target and discard species, such as rays and sea turtles, accounted for over half of the total catch. Catch per unit effort (CPUE; number of individuals per 1,000 hooks) was higher with control hooks compared to appendage hooks for all species?? categories except rays; appendage hooks caught 52% fewer sea turtles and 23% fewer tunas and billfish than standard hooks, which represents a significant reduction in bycatch of endangered and other species. No differences were found in the AHL for sea turtles, suggesting use of the appendage may not incur additional advantages regarding turtles?? post-release survivorship. Despite lower catch rates for marketable species, such as sharks and mahimahi, use of the appendage resulted in dramatic reductions in catch rates of sea turtles. The results suggest that large scale adoption of hooks with a significantly wider hook dimension could be an effective conservation measure to maintain marine biodiversity while allowing for continued fishing.  相似文献   

14.
Ten separate experiments monitoring the simultaneous behaviors of 26 skipjack (Katsuwonus pelamis), 26 bigeye (Thunnus obesus), and 33 yellowfin (T. albacares) tunas within large multi-species aggregations associated with drifting fish aggregating devices (FADs) were investigated using ultrasonic telemetry in the equatorial eastern Pacific Ocean. Experiments were conducted during a research cruise aboard a chartered purse seine vessel. Purse seine sets were made on the tuna aggregations associated with FADs at the termination of six of the ten experiments. Seventeen of the 44 tagged tunas were not recaptured indicating the transient nature of the associative behavior of tunas with FADs. Although there was considerable overlap in the depths of the three species, by day and night, there were some species-specific differences and diel differences within species. While we documented spatial and temporal differences in the schooling behavior of the three tuna species, the differences do not appear sufficient such that modifications in purse seine fishing practices could effectively avoid the capture of small bigeye and yellowfin tunas, while optimizing the capture of skipjack tuna in purse seine sets on FADs.  相似文献   

15.
We hypothesize that the morpho-physiological adaptations that permit tunas to achieve maximum metabolic rates (MMR) that are more than double those of other active fishes should result in high water and ion flux rates across the gills and concomitant high osmoregulatory costs. The high standard metabolic rates (SMR) of tunas and dolphin fish may, therefore, be due to the elevated rates of energy expenditure for osmoregulation (i.e. teleosts capable of achieving exceptionally high MMR necessarily have SMR). Previous investigators have suggested a link between activity patterns and osmoregulatory costs based on Na+-K+ ATPase activity in the gills of active epipelagic and sluggish deep-sea fishes. Based on these observations, we conclude that high-energy-demand fishes (i.e. tunas and dolphin fish) should have exceptionally elevated gill and intestinal Na+-K+ ATPase activity reflecting their elevated rates of salt and water transfer. To test this idea and estimate osmoregulatory costs, we measured Na+-K+ ATPase activity (V max) in homogenates of frozen samples taken from the gills and intestines of skipjack and yellowfin tunas, and the gills of dolphin fish. As a check of our procedures, we made similar measurements using tissues from hybrid red tilapia (Oreochromis mossambicus ×O. niloticus). Contrary to our supposition, we found no difference in Na+-K+ ATPase activity per unit mass of gill or intestine in these four species. We estimate the cost of osmoregulation to be at most 9% and 13% of the SMR in skipjack tuna and yellowfin tuna, respectively. Our results, therefore, do not support either of our original suppositions, and the cause(s) underlying the high SMR of tunas and dolphin fish remain unexplained. Received: 7 September 2000 / Accepted: 4 December 2000  相似文献   

16.
Assessments of the conservation and fisheries effects of marine reserves typically focus on single reserves where sampling occurs over narrow spatiotemporal scales. A strategy for broadening the collection and interpretation of data is collaborative fisheries research (CFR). Here we report results of a CFR program formed in part to test whether reserves at the Santa Barbara Channel Islands, USA, influenced lobster size and trap yield, and whether abundance changes in reserves led to spillover that influenced trap yield and effort distribution near reserve borders. Industry training of scientists allowed us to sample reserves with fishery relevant metrics that we compared with pre-reserve fishing records, a concurrent port sampling program, fishery effort patterns, the local ecological knowledge (LEK) of fishermen, and fishery-independent visual surveys of lobster abundance. After six years of reserve protection, there was a four- to eightfold increase in trap yield, a 5-10% increase in the mean size (carapace length) of legal sized lobsters, and larger size structure of lobsters trapped inside vs. outside of three replicate reserves. Patterns in trap data were corroborated by visual scuba surveys that indicated a four- to sixfold increase in lobster density inside reserves. Population increases within reserves did not lead to increased trap yields or effort concentrations (fishing the line) immediately outside reserve borders. The absence of these catch and effort trends, which are indicative of spillover, may be due to moderate total mortality (Z = 0.59 for legal sized lobsters outside reserves), which was estimated from analysis of growth and length frequency data collected as part of our CFR program. Spillover at the Channel Islands reserves may be occurring but at levels that are insufficient to influence the fishery dynamics that we measured. Future increases in fishing effort (outside reserves) and lobster biomass (inside reserves) are likely and may lead to increased spillover, and CFR provides an ideal platform for continued assessment of fishery-reserve interactions.  相似文献   

17.
A generalized bioeconomic simulation model of annual-crop marine fisheries is described and its use in marine fisheries management is demonstrated. The biological submodel represents the recruitment of new organisms into the fishery, the movement of organisms from one fishing area to another and from one depth to another, the growth of organisms and the mortality of organisms resulting both from natural causes and from fishing. The economic submodel represents the fishing effort exerted on each resource species, the monetary costs of fishing, the value of the harvest and the rent (or excess profits) to the fishery.Basic dynamics of the model results from changes in the number of organisms in the fishery over time, which can be summarized as a set of difference equations of the general form ΔN/Δt = R + I ? E ? M ? F where ΔN/Δt is the net change in number of organisms in the fishery over time, R is recruitment, I is immigration, E is emigration, M is natural mortality and F is fishing mortality. R is a driving variable, whereas I, E, M and F are functions of the state of the system at any given point in time. The model can be run in a deterministic or stochastic mode. Values for parameters affecting rates of recruitment, movement, growth, natural mortality and fishing mortality can be selected from uniform, triangular or normal distributions.Use of the model within a fisheries-management framework is demonstrated by evaluating several management alternatives for the pink shrimp (Penaeus duorarum) fishery on the Tortugas grounds in the Gulf of Mexico. Steps involved in use of the model, including parameterization, validation, sensitivity analysis and stochastic simulations of management policies, are explained.  相似文献   

18.
Within the tropical and subtropical oceans, tuna forage opportunistically on a wide variety of prey. However, little is known about the trophic ecology of the smallest size classes which play an important role in stock assessments and fisheries management. The foraging behavior of yellowfin tuna, Thunnus albacares (23.5–154.0 cm FL), collected from nearshore Fish Aggregating Devices (FADs) around Oahu was studied using stable isotope and stomach contents analyses. Emphasis was placed on small juveniles. Yellowfin tuna changed their diets significantly between 45 and 50 cm forklength (ca. 1.5 kg). Smallest size classes fed on planktonic organisms inhabiting the shallow mixed layer, primarily larval stomatopod and decapod crustaceans, whereas larger tuna fed on teleosts and adult Oplophorus gracilirostris, a vertically migrating mesopelagic species of shrimp. When interpreting the variation in prey δ 15N values, we considered both their relative trophic position and δ 15N values of the nitrogen at the base of the food web. Based on the distinct diet shift of the yellowfin tuna, demonstrated by both isotope and stomach content analyses, we propose a critical mass threshold was reached at about 45 cm FL that enabled sufficient endothermic capability to allow tuna to access prey dwelling in deeper, colder water. These ontogenetic changes in foraging range and commensurate shift in diet of small tunas would affect their vulnerability to fishing pressure.  相似文献   

19.
Several lines of evidence indicate that aggregations of yellowfin tuna associated with floating objects are more frequently composed of small animals than larger ones. Also, the diet of small yellowfin tuna caught at anchored fish aggregating devices (FADs) around Oahu, Hawaii, was found to shift quite rapidly when these fish reached approximately 50 cm FL. In order to test for ontogenetic changes in aggregation behavior, we tagged and released two distinct size classes of yellowfin tuna in an array of anchored FADs around Oahu, Hawaii. Twenty-four yellowfin tuna 30–39 cm FL and 16 yellowfin tuna 63–83 cm FL were tagged with acoustic transmitters and released near anchored FADs equipped with automated acoustic receivers. Fish in the smaller size class stayed about 2.5 times longer at individual FADs than the larger fish (mean 4.05 days vs. 1.65 days) and displayed larger horizontal movements within the array. However, the durations of unassociated phases, residence times in the entire FAD array, percentage of time spent associated with FADs and numbers of movements between FADs did not show any difference between the two size groups. The observed size-dependent behavior is discussed in terms of physiological abilities, diet segregation and anti-predator behavior.  相似文献   

20.
A major objective of analyzing multiple year tag return data in fisheries is to estimate fishing and natural mortality rates which may vary by age class and calendar year. To do this one needs to be able to estimate the reporting rates for the tags recovered. Some fisheries such as that for Southern Bluefin Tuna (Thunnus maccoyii) have multiple components with potentially different reporting rates for the tag returns. In this paper we develop a general model for multi-cohort, multi-year tag return analyses where there are multiple components to the fishery with potentially different reporting rates. We require the assumption that one component has a reporting rate of 100% (i.e., this could be the component of a boat based fishery where scientific observers are present). We show further how it is possible to partition the overall likelihood developed into two conditionally independent components. The first component of the likelihood is the standard multinomial likelihood that allows estimation of fishing and natural mortality rates. It uses the tag return matrix summed over all the components of the fishery. It requires an average reporting rate for the tag returns (where the average reporting rate is a weighted average of the individual reporting rates of the different components). The second component is also multinomial for the individual component tag returns and allows us to estimate individual component reporting rates. However, this requires that we augment our second component tag return likelihood with a catch data likelihood for the corresponding components. The methodology is illustrated on some Southern Bluefin Tuna tagging and catch data. We also discuss important model assumptions and give suggestions for future research including the integration of tag-return and catch at age data analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号