首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Removal of arsenic from groundwater by granular titanium dioxide adsorbent   总被引:8,自引:0,他引:8  
Bang S  Patel M  Lippincott L  Meng X 《Chemosphere》2005,60(3):389-397
A novel granular titanium dioxide (TiO2) was evaluated for the removal of arsenic from groundwater. Laboratory experiments were carried out to investigate the adsorption capacity of the adsorbent and the effect of anions on arsenic removal. Batch experimental results showed that more arsenate [As(V)] was adsorbed on TiO2 than arsenite [As(III)] in US groundwater at pH 7.0. The adsorption capacities for As(V) and As(III) were 41.4 and 32.4 mgg(-1) TiO2, respectively. However, the adsorbent had a similar adsorption capacity for As(V) and As(III) (approximately 40 mgg(-1)) when simulated Bangladesh groundwater was used. Silica (20 mgl(-1)) and phosphate (5.8 mgl(-1)) had no obvious effect on the removal of As(V) and As(III) by TiO2 at neutral pH. Point-of-entry (POE) filters containing 3 l of the granular adsorbent were tested for the removal of arsenic from groundwater in central New Jersey, USA. Groundwater was continuously passed through the filters at an empty bed contact time (EBCT) of 3 min. Approximately 45,000 bed volumes of groundwater containing an average of 39 microgl(-1) of As(V) was treated by the POE filter before the effluent arsenic concentration increased to 10 microgl(-1). The total treated water volumes per weight of adsorbent were about 60,000 l per 1 kg of adsorbent. The field filtration results demonstrated that the granular TiO2 adsorbent was very effective for the removal of arsenic in groundwater.  相似文献   

2.
Arsenic oxidation (As(III) to As(V)) and As(V) removal from water were assessed by using TiO2 immobilized in PET (polyethylene terephthalate) bottles in the presence of natural sunlight and iron salts. The effect of many parameters was sequentially studied: TiO2 concentration of the coating solution, Fe(II) concentration, pH, solar irradiation time; dissolved organic carbon concentration. The final conditions (TiO2 concentration of the coating solution: 10%; Fe(II): 7.0 mg l−1; solar exposure time: 120 min) were applied to natural water samples spiked with 500 μg l−1 As(III) in order to verify the influence of natural water matrix. After treatment, As(III) and total As concentrations were lower than the limit of quantitation (2 μg l−1) of the voltammetric method used, showing a removal over 99%, and giving evidence that As(III) was effectively oxidized to As(V). The results obtained demonstrated that TiO2 can be easily immobilized on a PET surface in order to perform As(III) oxidation in water and that this TiO2 immobilization, combined with coprecipitation of arsenic on Fe(III) hydroxides(oxides) could be an efficient way for inorganic arsenic removal from groundwaters.  相似文献   

3.
Removal of arsenic from water by electrocoagulation   总被引:16,自引:0,他引:16  
In the present study electrocoagulation (EC) has been evaluated as a treatment technology for arsenite [As(III)] and arsenate [As(V)] removal from water. Laboratory scale experiments were conducted with three electrode materials namely, iron, aluminum and titanium to assess their efficiency. Arsenic removal obtained was highest with iron electrodes. EC was able to bring down aqueous phase arsenic concentration to less than 10 microgl(-1) with iron electrodes. Current density was varied from 0.65 to 1.53 mAcm(-2) and it was observed that higher current density achieved rapid arsenic removal. Experimental results at different current densities indicated that arsenic removal was normalized with respect to total charge passed and therefore charge density has been used to compare the results. Effect of pH on arsenic removal was not significant in the pH range 6-8. Comparative evaluation of As(III) and As(V) removal by chemical coagulation (with ferric chloride) and electrocoagulation has been done. The comparison revealed that EC has better removal efficiency for As(III), whereas As(V) removal by both processes was nearly same. The removal mechanism of As(III) by EC seems to be oxidation of As(III) to As(V) and subsequent removal by adsorption/complexation with metal hydroxides generated in the process.  相似文献   

4.
Accumulation, transformation and toxicity of arsenic compounds to Japanese Medaka, Oryzias latipes were investigated. For sodium arsenite [As(II)] and disodium arsenate [As(V)], the mean value for 7-day lethal concentration LC50 for O. latipes were 14.6 and 30.3 mg As/l, respectively. Direct accumulation of arsenic in O. latipes increased as a function of As(III) concentration in water. A small proportion of accumulated arsenic was transformed to methylated arsenic. As much as 70% of the total arsenic accumulated in tissue was depurated. Accumulation and transformation of As(III) by O. latipes in a simple freshwater food chain were also investigated. The transformation of As(III) to As(V) by organisms was more prevalent than biomethylation of accumulated arsenic in organisms of the three steps of the food chain.  相似文献   

5.
A simple HG-AAS technique has been evaluated and standardised for rapid speciation of As(III) and As(V) in a number of contaminated groundwater samples of West Bengal, India. Citric acid has been used for selective hydride formation of As(III). The sensitivity of the evaluated HG-AAS method is 7.91 mg(-1)l, standard deviation, 0.001 and detection limit, 0.4 microg l(-1). As(III) sensitivity remains constant in the sample pH range of 2.3-10.6. Concomitant mineral matrix of the water samples did not interfere with arsenic determination. Eight out of ten groundwater samples analysed for As(IlI)and As(V) contain more As(III), which lies in the range of 54-350 ppb. As(III) estimation in drinking water along with total arsenic should be invoked as a policy for a realistic risk assessment of the contaminated water.  相似文献   

6.
Aquifers in the Región Lagunera in northern Mexico are heavily contaminated with arsenic. The range of total arsenic concentrations in 128 water samples analyzed was 0.008 to 0.624 mg litre(-1), and concentrations greater than 0.05 mg litre(-1) were found in 50% of them. Approximately 400 000 people living in rural areas were exposed to high As concentrations. Most of the As was in inorganic form and pentavalent arsenic [As(V)] was the predominant species in 93% of the samples. In 36% of the samples, however, variable percentages (20-50) of trivalent As [As(III)] were found. Organic arsenicals were present in very small amounts. Since As(III) is several times more toxic than As(V), we suggest that periodic studies be performed on the As(III)/As(V) ratio in wells whose total As concentrations are above 0.05 mg litre(-1), in combination with epidemiological studies to evaluate possible differences in health effects produced by different As species.  相似文献   

7.
混凝沉淀法处理含砷选矿废水   总被引:1,自引:0,他引:1  
某钨矿含砷选矿废水砷含量高且砷以As(V)为主要存在形态,采用混凝沉淀法处理,详细考察了生石灰、硫酸亚铁和六水三氯化铁3种混凝剂对废水中砷的去除效果。实验结果表明,在PAM投加量40 mg/L,静沉时间60 min条件下,比较分析3种混凝剂对砷的去除效果,三氯化铁为最佳除砷混凝剂。三氯化铁最佳除砷工艺条件为:pH 7.5,三氯化铁投加量986.67 mg/L,混凝反应时间25 min,PAM投加量为40 mg/L,静沉60 min,含砷选矿废水经该工艺处理后,砷去除率可达99.14%,出水砷浓度降至0.361 mg/L,达到国家污水综合排放标准(GB8978-1996)。  相似文献   

8.
ICP-MS was used to investigate the uptake of As(III) and As(V) from hydroponics growth media by corn seedlings. It was found that arsenic uptake by the plant roots for the arsenic(V) and arsenic(III) treatments were 95 and 112 ppm, respectively. However, in the shoots of the arsenic (V) treatments had 18 ppm whereas arsenic(III) treatments had 12 ppm. XANES studies showed that As for both treatments arsenic was present as a mixture of an As(III) sulfur complex and an As(V) oxygen complex. The XANES data was corroborated by the EXAFS studies showing the presence of both oxygen and sulfur ligands coordinated to the arsenic. Iron concentrations were found to increase by 4 fold in the As(V) contaminated growth media and 7 fold in the As(III) treatment compared to the control iron concentration of 500 ppm. Whereas, the total iron concentration in the shoots was found to decrease by approximately the same amount for both treatments from 360 ppm in the control to approximately 125 ppm in both arsenic treatments. Phosphorus concentrations were found to decrease in both the roots and shoots compared to the control plants. The total sulfur in the roots was found to increase in the arsenic(III) and arsenic(V) treatments to 560 ppm and 800 ppm, respectively, compared to the control plants 358 ppm. In addition, the total sulfur in shoots of the plants was found to remain relatively constant at approximately 1080 ppm. The potassium concentrations in the plants were found to increase in the roots and decrease in the shoots.  相似文献   

9.
The aim of this study is to evaluate and understand the electrocoagulation/flocculation (ECF) process to remove arsenic from both model and natural waters with low mineral content and to compare its performances to the coagulation/flocculation (CF) process already optimized. Experiments were thus conducted with iron electrodes in the same specific treatment conditions (4≤current density (mAcm(-2))≤33) to study the influence of organic matter on arsenic removal in conditions avoiding the oxidation step usually required to improve As(III) removal. The process performance was evaluated by combining quantification of arsenic residual concentrations and speciation and dissolved organic carbon residual concentrations with zeta potential and turbidity measurements. When compared to CF, ECF presented several disadvantages: (i) lower As(V) removal yield because of the ferrous iron dissolved from the anode and the subsequent negative zeta potential of the colloidal suspension, (ii) higher residual DOC concentrations because of the fractionation of high molecular weight compounds during the treatment leading to compounds less prone to coagulate and (iii) higher residual turbidities because of the charge neutralization mechanisms involved. However, during this process, As(III) was oxidized to As(V) improving considerably its removal whatever the matrix conditions. ECF thus allowed to improve As(III) removal without applying an oxidation step that could potentially lead to the formation of toxic oxidation by-products.  相似文献   

10.
Iron oxide-loaded slag for arsenic removal from aqueous system   总被引:5,自引:0,他引:5  
Zhang FS  Itoh H 《Chemosphere》2005,60(3):319-325
An effective adsorbent for arsenic removal from aqueous system was synthesized by loading iron(III) oxide on municipal solid waste incinerator melted slag. The loading was accomplished via chemical processes and thermal coating technique. The key point of the technique was the simultaneous generation of amorphous FeOOH sol and silica sol in-situ and eventually led to the formation of Fe-Si surface complexes which combined the iron oxide with the melted slag tightly. The surface morphology of the iron oxide-loaded slag was examined and the loading mechanisms were discussed in detail. The adsorbent was effective for both arsenate and arsenite removal and its removal capabilities for As(V) and As(III) were 2.5 and 3 times of those of FeOOH, respectively. Both affinity adsorption and chemical reactions contributed to arsenic removal. The effects of solution pH, contact time, arsenic concentration and adsorbent dosage on arsenic removal were examined and the optimum removal conditions were established. Furthermore, leaching of hazardous elements such as Cr(VI), As, Se, Cd and Pb from the adsorbent at a pH range of 2.5-12.5 was below the regulation values. Accordingly, it is believed that the iron oxide-loaded slag developed in this study is environmentally acceptable and industrially applicable for wastewater treatment.  相似文献   

11.
Electrochemical peroxidation (ECP), an emerging remediation technology, with direct electric current applied to steel electrode and small addition of H2O2, was used to remove As(III) from contaminated aqueous solutions. Bench scale experiments were conducted to evaluate the sorption and distribution of arsenic between the soluble and solid state hydrous ferric oxides (HFO) formed as part of the ECP process. ECP was effective in removing arsenic from the aqueous solution, with >98% of the applied As(III) adsorbed on HFO. Removal was complete within 3 min of ECP treatment and apparently independent of the initial pH of the water (3.5-9.5). In the absence of H2O2 more As(III) was adsorbed by solid state iron at pH 9.5 than at 3.5 (2600 vs. 1750 microg l(-1)). Thus H2O2 was crucial to oxidize As(III) to As(V) which is more strongly retained by HFO. Removal of As was not significantly affected by the concentration of H2O2 or by current processing time. The optimal operating conditions were pH < 6.5, H2O2 concentration of 10 mg l(-1) and current process time not exceeding 3 min. X-ray diffraction (XRD), diffuse-reflectance infrared Fourier transform (DRIFT) spectroscopy and transmission electron microscopy (TEM) were applied to study the HFO deposits. The XRD data indicated the prevalence of poorly ordered Fe minerals in the suspended ECP solids with a dominance of 5 line ferrihydrite in the absence of H2O2. At pH 3.5 and with 100 mg H2O2 l(-1), akaganeite was formed, whereas an incipient hematitic phase, reflection at 0.39 nm, occurred at pH 6.5. DRIFT data indicate that both As(III) and As(V) were specifically adsorbed onto HFO at acid and neutral pH. TEM observations indicated the presence of spherical shape ferrihydrite and provided evidence for possible formation of subrounded hematite and acicular shape goethite.  相似文献   

12.

Introduction  

The nano-scale zero-valent iron (NZVI) was used for the removal of arsenite (As(III)) and arsenate (As(V)) in aqueous solution. Batch experiments were conducted to investigate the effects of initial pH, initial arsenic concentration, dissolved oxygen (DO), and ratio of As(III)/As(V) on arsenic removal.  相似文献   

13.
Excessive application of lead arsenate pesticides in apple orchards during the early 1900s has led to the accumulation of lead and arsenic in these soils. Lead and arsenic bound to soil humic acids (HA) and soil arsenic species in a western Massachusetts apple orchard was investigated. The metal-humate binding profiles of Pb and As were analyzed with size exclusion chromatography-inductively coupled plasma mass spectrometry (SEC-ICP-MS). It was observed that both Pb and As bind "tightly" to soil HA molar mass fractions. The surface soils of the apple orchard contained a ratio of about 14:1 of water soluble As (V) to As (III), while mono-methyl (MMA) and di-methyl arsenic (DMA) were not detectable. The control soil contained comparatively very low levels of As (III) and As (V). The analysis of soil core samples demonstrated that As (III) and As (V) species are confined to the top 20 cm of the soil.  相似文献   

14.
High-level arsenite removal from groundwater by zero-valent iron   总被引:15,自引:0,他引:15  
Lien HL  Wilkin RT 《Chemosphere》2005,59(3):377-386
The objectives of this study were to conduct batch and column studies to (i) assess the effectiveness of zero-valent iron for arsenic remediation in groundwater, (ii) determine removal mechanisms of arsenic, and (iii) evaluate implications of these processes with regard to the stability of arsenic and long-term remedial performance of the permeable reactive barrier (PRB) technology. A high concentration arsenic solution (50 mg l(-1)) was prepared by using sodium arsenite (arsenic (III)) to simulate groundwater at a heavily contaminated Superfund site in the USA. Batch studies indicate that the removal of arsenic is a two-step reaction with fast initial disappearance of arsenite followed by a slow subsequent removal process. Flow-through columns were conducted at a flow rate of 17 ml h(-1) under reducing conditions for 6.6 mo. Kinetic analysis suggested that arsenic removal behaves as a zero-order reaction at high arsenic concentrations. Arsenic removal rate constants decreased with time and arsenic breakthrough was observed in the column study. Arsenic removal capacity of zero-valent iron was determined to be approximately 7.5 mg As/g Fe. Carbonate green rust was identified from the analysis of surface precipitates; arsenite uptake by green rust may be a major mechanism responsible for arsenic remediation by zero-valent iron. Analysis of HCl-extractable arsenic from iron samples indicated that approximately 28% of arsenic was in the form of arsenate suggesting that a surface oxidation process was involved in the arsenic removal with zero-valent iron.  相似文献   

15.
The aim of this investigation was to obtain the hybrid material precursor to the naturally and abundantly available sericite, a mica-based clay; the materials were further employed in the remediation of arsenic from aqueous solutions. The study was intended to provide a cost-effective and environmentally benign treatment technology. The hybrid organo-modified sericite was obtained using hexadecyltrimethylammonium bromide (HDTMA) and alkyldimethylbenzylammonium chloride (AMBA) organic surfactants by introducing regulated doses of HDTMA or AMBA. The materials were characterized using infrared and X-ray diffraction analytical data, whereas the surface morphology was discussed by taking its SEM images. These materials were employed to assess the pre-concentration and speciation of As(III) and As(V) from aqueous solutions. The batch reactor data showed that increasing the sorptive concentration (from 1.0 to 15.0 mg/L) and pH (i.e., pH 2.0 to 10.0) caused the percent uptake of As(III) and As(V) to decrease significantly. The kinetic data showed that a sharp initial uptake of arsenic reached its equilibrium state within about 50 min of contact time, and the sorption kinetics followed a pseudo-second-order rate law both for As(III) and As(V) sorption. A 1,000 times increase in the background electrolyte concentration, i.e., NaNO3, caused a significant decrease in As(III) removal, whereas As(V) was almost unaffected, which inferred that As(III) was adsorbed, mainly by the van der Waals or even by the electrostatic attraction, whereas As(V) was adsorbed chemically and formed “inner-sphere” complexes at the solid/solution interface. The equilibrium state modeling studies indicated that the sorption data fitted well the Freundlich and Langmuir adsorption isotherms. Henceforth, the removal capacity was calculated under these equilibrium conditions. It was noted that organo-modified sericite possessed a significantly higher removal capacity compared to its virgin sericite. Between these two organo-modified sericite, the HDTMA-modified sericite possessed a higher removal capacity compared to the AMBA-modified sericite.  相似文献   

16.
Arsenic represents a threat to all living organisms due to its toxicity which depends on its speciation. This element is carcinogenic, teratogenic and is certainly one of the most important contaminants affecting millions of people around the world. Abiotic and biotic processes control its speciation and distribution in the environment. We have previously shown that a new bacterial strain named ULPAs1 performed oxidation of As(III) (1.33 mM) to As(V) in batch cultures. In order to develop new methods to remove arsenic from contaminated effluents or waste, by bacterial oxidation of As(III) to As(V) followed by its sorption, the conservation of oxidative properties of ULPAs1 was investigated when cultivated in batch reactors in the presence of two solid phases, chabazite and kutnahorite, already used as microorganisms immobilizing materials in biological remediation processes. In parallel, the retention efficiency of these solid phases toward arsenic ions and particularly arsenate was studied. Pure quartz sand was used as a reference material. Kutnahorite efficiently sorbed As(V), chabazite alone performed As(III) oxidation and pure quartz sand did not sorb arsenic at all. The arsenite oxidative properties of ULPAs1 were conserved when cultivated in the presence of quartz or chabazite.  相似文献   

17.
Bioaccumulation and biotransformation of arsenic (As) compounds in freshwater Tilapia mossambica was investigated. The direct accumulation of As by T mossambica was proportional to the concentration of arsenicals in water. Small amounts of accumulated As were transformed to methylated As, including trimethylarsenic (TMA) species. Accumulation and transformation of As(III) by T. mossambica via freshwater food chain results in the transformation of As(III) to As(V) with little biomethylation of accumulated As. Approximately 90% of accumulated As was depurated to water.  相似文献   

18.
Zr-Fe双组分复合除砷吸附剂的优化制备及性能评价   总被引:1,自引:0,他引:1  
实验发现,铁氧化物或铁的羟基氧化物对As(V)有较好的吸附性能,而锆氧化物或锆水合氧化物则对As(Ⅲ)有优异的吸附选择性,但其使用的pH通常要在9的条件下。通过简单的共沉淀法制备了Zr-Fe双组分复合吸附剂,在制备过程中通过优化制备条件如:沉淀剂浓度、金属离子总浓度、金属离子配比、反应温度、反应时间及吸附剂价格等因素,最终合成出了对As(V)和As(Ⅲ)都具有良好吸附能力的吸附剂。这种吸附剂在中性条件下对As(V)和As(Ⅲ)的最大吸附量为62 mg/g和118 mg/g。  相似文献   

19.

Background

This work focuses on the accumulation and mobility properties of arsenic (As) and the effects of phosphate (P) on its movement in Pennisetum clandestinum Hochst (kikuyu grass), grown hydroponically under increasing arsenate (As(V)) concentrations. The uptake of both ions and the relative kinetics show that phosphate is an efficient competitive inhibitor of As(V) uptake. The P/As uptake rate ratios in roots indicate that P is taken up preferentially by P/As transporters. An arsenite (As(III)) efflux from roots was also found, but this decreased when the arsenate concentration in the solution exceeded 5???M.

Methods

Increases in both arsenite and arsenate concentrations in roots were observed when the arsenate concentration in the solution was increased, and the highest accumulation of As(III) in roots was found when plants were grown at 5???M As(V). The low ratios of As accumulated in shoots compared to roots suggest limited mobility of the metalloid within Kikuyu plants.

Results

The results indicate that arsenic resistance in kikuyu grass in conditions of moderate exposure is mainly dependent on the following factors: 1) phosphate nutrition: P is an efficient competitive inhibitor of As(V) uptake because of the higher selectivity of membrane transporters with respect to phosphate rather than arsenate; and 2) a detoxification mechanism including a reduction in both arsenate and arsenite root efflux.

Conclusions

The As tolerance strategy of Kikuyu limits arsenate uptake and As translocation from roots to shoots; therefore, this plant cannot be considered a viable candidate for use in the phytoextraction of arsenic from contaminated soils or water.  相似文献   

20.
The fractionation and speciation of As in a contaminated soil were investigated, and a remediation strategy was tested. Regarding speciation, we found that As(V) prevails over As(III) whereas more than 40% of total arsenic is in organic form. The fractionation of As was investigated with two sequential extraction methods: a low mobility was found. Then we tested the possibility of using phosphoric acid to extract As from the soil and cleaning the washing effluents by sorption onto montmorillonite. The efficiency of the extraction and of the adsorption onto the clay were also investigated for Cr, Cu, Fe, Mn, Ni, Pb and Zn, whose total concentrations and fractionation in the soil are reported here. The extraction percentages for As and metals ranged from 30 to 65%; the residual proportions in the soil are presumably in very unreactive forms. Montmorillonite showed a good uptake capacity towards the investigated pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号