首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Landfills are some of the major anthropogenic sources of methane emissions worldwide. The installation and operation of gas extraction systems for many landfills in Europe and the US, often including technical installations for energy recovery, significantly reduced these emissions during the last decades. Residual landfill gas, however, is still continuously produced after the energy recovery became economically unattractive, thus resulting in ongoing methane emissions for many years. By landfill in situ aeration these methane emissions can be widely avoided both, during the aeration process as well as in the subsequent aftercare period. Based on model calculations and online monitoring data the amount of avoided CO2-eq. can be determined. For an in situ aerated landfill in northern Germany, acting as a case study, 83–95% (depending on the kind and quality of top cover) of the greenhouse gas emission potential could be reduced under strictly controlled conditions. Recently the United Nations Framework Convention on Climate Change (UNFCCC) has approved a new methodology on the “Avoidance of landfill gas emissions by in situ aeration of landfills” (UNFCCC, 2009). Based on this methodology landfill aeration projects might be considered for generation of Certified Emission Reductions (CERs) in the course of CDM projects. This paper contributes towards an evaluation of the potential of landfill aeration for methane emissions reduction.  相似文献   

2.
Emissions from old landfills via leachate and the gas phase are influenced by state and stability of the organic matter in the solid waste and by environmental conditions within the landfill. Remediation of landfills by means of in-situ aeration is one possibility to reduce these emissions. By establishing aerobic conditions, biological processes in the landfill are accelerated. To investigate the effects of this remediation technology, lab-scale experiments with column tests have been carried out. The main goal of the present work is to characterize the changes of the carbon and nitrogen compounds in the aerated solid waste, the leachate and the gas phase under varying conditions. The results demonstrate a clear reduction of emissions and a stabilization of the organic matter. Furthermore, it is shown that both the intensity of aeration and the amount of water affect biological processes to a certain extent. Even when columns were operated under anaerobic conditions after a long running period of aeration, the emissions remained low.  相似文献   

3.
Sustainable landfilling has become a fundamental objective in many modern waste management concepts. In this context, the in situ aeration of landfills has been recognised for its potential to convert conventional anaerobic landfills into biological stabilised state, whereby both current and potential (long-term) emissions of the landfilled waste are mitigated. In recent years, different in situ aeration concepts have been successfully applied in Europe, North America and Asia, all pursuing different objectives and strategies.In Austria, the first full-scale application of in situ landfill aeration by means of low pressure air injection and simultaneous off-gas collection and treatment was implemented on an old, small municipal solid waste (MSW) landfill (2.6 ha) in autumn 2007. Complementary laboratory investigations were conducted with waste samples taken from the landfill site in order to provide more information on the transferability of the results from lab- to full-scale aeration measures. In addition, long-term emission development of the stabilised waste after aeration completion was assessed in an ongoing laboratory experiment. Although the initial waste material was described as mostly stable in terms of the biological parameters gas generation potential over 21 days (GP21) and respiration activity over 4 days (RA4), the lab-scale experiments indicated that aeration, which led to a significant improvement of leachate quality, was accompanied by further measurable changes in the solid waste material under optimised conditions. Even 75 weeks after aeration completion the leachate, as well as gaseous emissions from the stabilised waste material, remained low and stayed below the authorised Austrian discharge limits. However, the application of in situ aeration at the investigated landfill is a factor 10 behind the lab-based predictions after 3 years of operation, mainly due to technical limitations in the full-scale operation (e.g. high air flow resistivity due to high water content of waste and temporarily high water levels within the landfill; limited efficiency of the aeration wells). In addition, material preparation (e.g. sieving, sorting and homogenisation) prior to the emplacement in Landfill Simulation Reactors (LSRs) must be considered when transferring results from lab- to full-scale application.  相似文献   

4.
Modern landfill understanding points out controlled operation of landfills. Emissions from landfills are caused mainly by anaerobic biodegradation processes which continue for very long time periods after landfill closure. In situ landfill stabilization aims controlled reduction of emissions towards reduced expenditures as well as aftercare measures. Since April 2010, a new in situ stabilization technique is being applied at a pilot scale landfill (BAIV) within Landfill Konstanz Dorfweiher. This new method utilizes intermittent aeration and leachate recirculation for waste stabilization. In this study, influence of this technique on leachate quality is investigated. Among many other parameters, leachate analyses were conducted for COD, BOD5, NH4–N, NO2–N, NO3–N, TKN and chloride besides continuously on site recorded pH, electrical conductivity and oxidation–reduction potential (ORP). Results from leachate quality analyses showed that biological activity in the landfill was accelerated resulting in initial higher leachate strength and reduced emission potential of landfill. During full scale in situ aeration, ambient conditions differ from optimized laboratory scale conditions which mainly concern temperature increase and deficient aeration of some landfill parts (Ritzkowski and Stegmann, 2005). Thus, as a field application results of this study have major importance on further process optimization and application.  相似文献   

5.
Results of investigations from many old landfills in Germany and Europe indicate that significant emissions occur under conventional landfill operating conditions (i.e., anaerobic conditions). Significant emissions via the gas phase are predicted to last at least three decades after landfill closure, while leachate emissions are predicted to continue for many decades, potentially even lasting for centuries. When considering the specific type and quality, and quite often lack of, protection barriers associated with old landfills, these leachate and gas emissions may result in a significant negative impact on the environment. However, complete sealing of the landfill only temporarily reduces emissions because dry-conservation of the biodegradable waste fraction results, thus not allowing any severe reduction in the emission and hazardous potential of the landfill to occur. If noticeable damage of the surface capping system occurred in these landfills, infiltrating water would restart the interrupted emission formation. In contrast, aerobic in situ stabilization by means of low pressure aeration attempts to stabilize and modify the inventory of organic matter inside the landfill, acting to reduce the emission potential in a more sustainable manner. By enabling faster and more extensive aerobic degradation processes in the landfill (compared with anaerobic processes), the organics (e.g., hydrocarbons) are degraded significantly faster, resulting in an increased carbon discharge via the gas phase, as well as reduced leachate concentrations. Because carbon dioxide (CO(2)) is the main compound in the extracted off-gas (instead of methane (CH(4)), which dominated under anaerobic landfill conditions), the negative impact of diffuse LFG emissions towards an increased global warming effect may be significantly lowered. With respect to leachate quality, a reduction of organic compounds as well as ammonia-nitrogen can be expected. In addition to these positive ecological effects, aerobic in situ stabilization is associated with significant cost savings potential due to both quantitative and qualitative reductions in the aftercare period. This paper describes the fundamental processes and implications of in situ landfill aeration. Additionally, possible criteria for defining an endpoint of the active aeration process are presented and discussed.  相似文献   

6.
Recently, roofed landfills have been gaining popularity in Japan. Roofed landfills have several advantages over non-roofed landfills such as eliminating the visibility of waste and reducing the spread of offensive odours. This study examined the moisture balance and aeration conditions, which promote waste stabilisation, in a roofed landfill that included organic waste such as food waste. Moisture balance was estimated using waste characterization and the total amount of landfilled waste. Internal conditions were estimated based on the composition, flux, and temperature of the landfill gas. Finally, in situ aeration was performed to determine the integrity of the semi-aerobic structure of the landfill.With the effects of rainfall excluded, only 15% of the moisture held by the waste was discharged as leachate. The majority of the moisture remained in the waste layer, but was less than the optimal moisture level for biodegradation, indicating that an appropriate water spray should be administered. To assess waste degradation in this semi-aerobic landfill, the concentration and flow rate of landfill gas were measured and an in situ aeration test was performed. The results revealed that aerobic biodegradation had not occurred because of the unsatisfactory design and operation of the landfill.  相似文献   

7.
The potential for aeration of MSW landfills to accelerate completion   总被引:4,自引:0,他引:4  
Landfilling is a popular waste disposal method, but, as it is practised currently, it is fundamentally unsustainable. The low short-term financial costs belie the potential long-term environmental costs, and traditional landfill sites require long-term management in order to mitigate any possible environmental damage. Old landfill sites might require aftercare for decades or even centuries, and in some cases remediation may be necessary. Biological stabilisation of a landfill is the key issue; completion criteria provide a yardstick by which the success of any new technology may be measured. In order for a site to achieve completion it must pose no risk to human health or the environment, meaning that attenuation of any emissions from the site must occur within the local environment without causing harm. Remediation of old landfill sites by aerating the waste has been undertaken in Germany, the United States, Italy and The Netherlands, with considerable success. At a pilot scale, aeration has also been used in newly emplaced waste to accelerate stabilisation. This paper reviews the use of aerobic landfill worldwide, and assesses the ways in which the use of aerobic landfill techniques can decrease the risks associated with current landfill practices, making landfill a more sustainable waste disposal option. It focuses on assessing ways to utilise aeration to enhance stabilisation. The results demonstrated that aeration of old landfill sites may be an efficient and cost-effective method of remediation and allow the date of completion to be brought forward by decades. Similarly, aeration of newly emplaced waste can be effective in enhancing degradation, assisting with completion and reducing environmental risks. However, further research is required to establish what procedure for adding air to a landfill would be most suitable for the UK and to investigate new risks that may arise, such as the possible emission of non-methane organic compounds.  相似文献   

8.
The current food waste leachate (FWL) disposal practice in Korea warrants urgent attention and necessary action to develop an innovative and sustainable disposal strategy, which is both environmentally friendly and economically beneficial. In this study, methane production by FWL injection into a municipal solid waste landfill with landfill gas (LFG) recovery facility was evaluated for a period of more than 4 months. With the target of recovering LFG with methane content ~50%, optimum LFG extraction rate was decided by a trial and error approach during the field investigation in five different phases. The results showed that, upon FWL injection, LFG extraction rate of ~20 m(3)/h was reasonable to recover LFG with methane content ~58%. Considering the estimated methane production potential of 31.7 m(3) CH(4) per ton of FWL, methane recovery from the landfill was enhanced by 14%. The scientific findings of this short-term investigation indicates that FWL can be injected into the existing sanitary landfills to tackle the present issue and such landfills with efficient liner and gas collection facility can be utilized as absolute and sustainable environmental infrastructures.  相似文献   

9.
The time frame required for post-closure care of Municipal Solid Waste (MSW) landfills is often assessed over several decades or centuries. One possibility to significantly shorten this period and, at the same time, improve the emission behavior exists with in situ aeration. Positive effects in connection with this method for biological stabilization have been investigated and published elsewhere. However, until today neither generally accepted monitoring guidelines nor completion criteria have been defined. With the paper on hand the authors propose a methodology for the assessment of both, total and remaining stabilization periods for aerated landfills. The central component of this methodology is a carbon balance. The latter is based on a detailed waste characterization in combination with online monitoring of the emissions (gas and leachate). The methodology is exemplarily demonstrated by means of data derived from a full scale project in Northern Germany. Here it could be shown that the predicted aeration period of approximately 6.4 years was sufficient to bio-stabilize the landfill.Furthermore, proposals for the completion of landfill aeration are presented. In this connection, carbon balance is of particular importance since the amount of biodegradable organic carbon mainly determines the emission potential. Additional parameters, aiming at a validation of the state of biological stabilization achieved during aeration are proposed and described.  相似文献   

10.
Solid waste disposal in Sri Lanka has been assessed using environmental, economic, and social indicators, based on a life cycle approach. The existing situation of open dumping in Sri Lanka was compared with that of a sanitary landfill with gas recovery, since the latter is anticipated to constitute an initial step towards sustainable development. The results revealed the extent to which sanitary landfills with gas recovery systems could contribute to reducing environmental impacts such as global warming potential, acidification potential, and eutrophication potential. Assessment of life cycle cost and damage to human health also showed results in favour of sanitary landfills with gas recovery system. The results obtained quantify the sustainability benefits of the proposed option for solid waste management, and can be useful for justifying policy measures that encourage the replacement of open dumping with sanitary landfills.  相似文献   

11.
A methodology for estimating the methane emissions from waste landfills in Hanoi, Vietnam, as part of a case study on Asian cities, was derived based on a survey of documents and statistics related to waste management, interviews with persons in charge, and field investigations at landfill sites. The waste management system in Hanoi was analyzed to evaluate the methane emissions from waste landfill sites. The quantity of waste deposited into the landfill was evaluated from an investigation of the waste stream. The composition of municipal waste was surveyed in several districts in the Hanoi city area, and the quantities of degradable organic waste that had been deposited into landfill for the past 15 years were estimated. Field surveys on methane emissions from landfills of different ages (0.5, 2, and 8 years) were conducted and their methane emissions were estimated to be 120, 22.5, and 4.38 ml/min/m2, respectively. The first-order reaction rate of methane generation was obtained as 0.51/year. Methane emissions from waste landfills were calculated by a first-order decay model using this emission factor and the amount of landfilled degradable waste. The estimates of methane emissions using the model accorded well with the estimates of the field survey. These results revealed that methane emissions from waste landfills estimated by regional-specific and precise information on the waste stream are essential for accurately determining the behavior of methane emissions from waste landfills in the past, present, and future.  相似文献   

12.
Municipal solid waste landfills represent the dominant option for waste disposal in many parts of the world. While some countries have greatly reduced their reliance on landfills, there remain thousands of landfills that require aftercare. The development of cost-effective strategies for landfill aftercare is in society’s interest to protect human health and the environment and to prevent the emergence of landfills with exhausted aftercare funding. The Evaluation of Post-Closure Care (EPCC) methodology is a performance-based approach in which landfill performance is assessed in four modules including leachate, gas, groundwater, and final cover. In the methodology, the objective is to evaluate landfill performance to determine when aftercare monitoring and maintenance can be reduced or possibly eliminated. This study presents an improved gas module for the methodology. While the original version of the module focused narrowly on regulatory requirements for control of methane migration, the improved gas module also considers best available control technology for landfill gas in terms of greenhouse gas emissions, air quality, and emissions of odoriferous compounds. The improved module emphasizes the reduction or elimination of fugitive methane by considering the methane oxidation capacity of the cover system. The module also allows for the installation of biologically active covers or other features designed to enhance methane oxidation. A methane emissions model, CALMIM, was used to assist with an assessment of the methane oxidation capacity of landfill covers.  相似文献   

13.
Landfills at various stages of development, depending on their age and location, can be found throughout Europe. The type of facilities goes from uncontrolled dumpsites to highly engineered facilities with leachate and gas management. In addition, some landfills are designed to receive untreated waste, while others can receive incineration residues (MSWI) or residues after mechanical biological treatment (MBT). Dimension, type and duration of the emissions from landfills depend on the quality of the disposed waste, the technical design, and the location of the landfill. Environmental impacts are produced by the leachate (heavy metals, organic loading), emissions into the air (CH(4), hydrocarbons, halogenated hydrocarbons) and from the energy or fuel requirements for the operation of the landfill (SO(2) and NO(x) from the production of electricity from fossil fuels). To include landfilling in an life-cycle assessment (LCA) approach entails several methodological questions (multi-input process, site-specific influence, time dependency). Additionally, no experiences are available with regard to mid-term behaviour (decades) for the relatively new types of landfill (MBT landfill, landfill for residues from MSWI). The present paper focuses on two main issues concerning modelling of landfills in LCA: Firstly, it is an acknowledged fact that emissions from landfills may prevail for a very long time, often thousands of years or longer. The choice of time frame in the LCA of landfilling may therefore clearly affect the results. Secondly, the reliability of results obtained through a life-cycle assessment depends on the availability and quality of Life Cycle Inventory (LCI) data. Therefore the choice of the general approach, using multi-input inventory tool versus empirical results, may also influence the results. In this paper the different approaches concerning time horizon and LCI will be introduced and discussed. In the application of empirical results, the presence of data gaps may limit the inclusion of several impact categories and therefore affect the results obtained by the study. For this reason, every effort has been made to provide high-quality empirical LCI data for landfills in Central Europe.  相似文献   

14.
The magnitude of annual global emissions of methane from municipal solid waste landfills without landfill gas control systems implies that these landfills are significant contributors to the atmospheric load of greenhouse gases. There have been a number of field studies undertaken internationally to measure actual fluxes of methane and carbon dioxide from landfills, with a view to corroborating modelled predictions of the contribution of landfills to the global greenhouse gas budget. The vast majority of these studies have been undertaken in more temperate climates and in developed countries. This paper reports a study of landfill gas emissions from four large landfills located in the semi-arid interior of South Africa. A static accumulation chamber was used and measurements were made at each site over a period of two to three days. The results were analysed by three different methods, all of them leading to the same general conclusion that landfill gas emission rates were lower than expected. A common conclusion based on results from all four sites was that capping of landfills in semi-arid climates with low permeability covers would probably significantly retard the already low rate of waste degradation and thus gas generation. While this may be regarded as advantageous in the short term, it cannot be relied upon in perpetuity as clayey landfill covers will inevitably desiccate and crack in a semiarid environment. In addition, reasonable after-care periods for such landfills are likely to extend well beyond the currently stipulated 30-year period, and efforts to encourage energy recovery from landfills may be hampered because gas generation rates decrease as the waste dries out under conditions of minimal recharge from precipitation. A landfill cover that allows small amounts of percolation of rainfall into the waste may therefore in fact be beneficial in semiarid climates, although care would need to be taken to carefully regulate this infiltration.  相似文献   

15.
Entombed waste in current sanitary landfills will generate biogas and leachate when physical barriers fail in the future, allowing the intrusion of moisture into the waste mass contradicting the precepts of the sustainability concept. Bioreactor landfills are suggested as a sustainable option to achieve Final Storage Quality (FSQ) status of waste residues; however, it is not clear what characteristics the residues should have in order to stop operation and after-care monitoring schemes. An experiment was conducted to determine the feasibility to achieve FSQ status (Waste Acceptance Criteria of the European Landfill Directive) of residues in a pilot scale bioreactor landfill. The results of the leaching test were very encouraging due to their proximity to achieve the proposed stringent FSQ criterion after 2 years of operation. Furthermore, residues have the same characteristics of alternative waste stabilisation parameters (low BMP, BOD/COD ratio, VS content, SO4(2-)/Cl- ratio) established by other researchers. Mass balances showed that the bioreactor landfill simulator was capable of practically achieving biological stabilisation after 2 years of operation, while releasing approximately 45% of the total available (organic and inorganic) carbon and nitrogen into the liquid and gas phases.  相似文献   

16.
Uncontrolled leachate emissions are one of the key factors in the environmental impact of municipal solid waste (MSW) landfills. The concentration of ammonium, given the anaerobic conditions in traditional landfills, can remain significantly high for a very long period of time, as degradation does not take place and volatilisation is not significant (the pH is not high enough to considerably shift the equilibrium towards un-ionised ammonia). Recent years have witnessed a continuous enhancement of landfill technology in order to minimize uncontrolled emissions into the environment; bottom lining systems have been improved and more attention has been devoted to the study of the attenuation of the different chemicals in leachate in case of migration through the mineral barrier. Different natural materials have been considered for use as components of landfill liners in the last years and tested in order to evaluate the performance of the different alternatives. Among those materials, bentonite is often used, coupled with other materials in two different ways: in addition to in situ soil or in geocomposite clay liner (GCL). A lab-scale test was carried out in order to further investigate the influence of bentonite on the attenuation of ammonium in leachate passing through a landfill liner. Two different tests were conducted: a standardized batch test with pulverized bentonite and a batch test with compacted bentonite. The latter was proposed in order to better simulate the real conditions in a landfill liner. The two tests produced values for the partition coefficient K(d) higher than the average measured for other natural materials usually utilized as components of landfill liners. Moreover, the two tests showed similar results, thus providing a further validation of the suitability of the standard batch test with pulverized bentonite. A thorough knowledge of attenuation processes of ammonium in landfill liners is the basis for the application of risk analysis models for the evaluation of the failure of bottom liners or their components.  相似文献   

17.
Leachability and metal-binding capacity in ageing landfill material   总被引:1,自引:0,他引:1  
In order to study the stability of landfilled heavy metals, landfill material from a combined household and industrial waste landfill was aerated for 14 months to simulate the natural ageing processes as air slowly begins to penetrate the landfill mass. During aeration, the pH of the landfill material decreased from around 8.6 to 8.1 and the carbon content also decreased. In order to investigate the possible fate of metals in ageing landfills, a four-stage sequential extraction technique was applied. The ability of the materials to bind metal ions by electrostatic attractions and to form stronger complexes was studied separately. The amount of exchangeable cations, the capacity to bind metal ions by electrostatic attraction and the capacity of the landfill material to complex copper ions were increased by the aeration process. However, results from the sequential analysis showed an increased solubility of sulphur and some metals (Cd, Co, Cu, Ni and Zn). Equilibrium speciation models (Medusa) indicated that the organic matter deposit had a significant capacity to bind metal ions provided that pH was sufficiently high. However, as carbonates are consumed over time, the risk for metal mobility increases. Therefore, the landfills can become an environmental risk, depending on variations in the solubility of metal ions due to changes in pH, redox status and the availability of organic material.  相似文献   

18.
In situ aeration by means of the Airflow technology was proposed for landfill conditioning before landfill mining in the framework of a reclamation project in Northern Italy. A 1-year aeration project was carried out on part of the landfill with the objective of evaluating the effectiveness of the Airflow technology for landfill aerobization, the evolution of waste biological stability during aeration and the effects on leachate and biogas quality and emissions.The main outcomes of the 1-year aeration project are presented in the paper.The beneficial effect of the aeration on waste biological stability was clear (63% reduction of the respiration index); however, the effectiveness of aeration on the lower part of the landfill is questionable, due to the limited potential for air migration into the leachate saturated layers.During the 1-year in situ aeration project approx. 275 MgC were discharged from the landfill body with the extracted gas, corresponding to 4.6 gC/kgDM. However, due to the presence of anaerobic niches in the aerated landfill, approx. 46% of this amount was extracted as CH4, which is higher than reported in other aeration projects. The O2 conversion quota was lower than reported in other similar projects, mainly due to the higher air flow rates applied.The results obtained enabled valuable recommendations to be made for the subsequent application of the Airflow technology to the whole landfill.  相似文献   

19.
Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of δ13C, δ2H and δ18O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25 year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration.We found significant differences in the δ13C-value of the dissolved inorganic carbon (δ13C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of δ13C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a δ13C-DIC of ?20‰ to ?25‰. The production of methane under anaerobic conditions caused an increase in δ13C-DIC up to values of +10‰ and higher depending on the actual reactivity of the MSW. During aeration of a landfill the aerobic degradation of the remaining organic matter caused a decrease to a δ13C-DIC of about ?20‰. Therefore carbon isotope analysis in leachates and groundwater can be used for tracing the oxidation–reduction status of MSW landfills.Our results indicate that monitoring of stable isotopic signatures of landfill leachates over a longer time period (e.g. during in situ aeration) is a powerful and cost-effective tool for characterising the biodegradability and stability of the organic matter in landfilled municipal solid waste and can be used for monitoring the progress of in situ aeration.  相似文献   

20.
Municipal solid waste (MSW) landfills worldwide are experiencing the consequences of conventional landfilling techniques, whereby anaerobic conditions are created within the landfilled waste. Under anaerobic conditions within a landfill site slow stabilization of the waste mass occurs, producing methane, (an explosive 'green house' gas) and leachate (which can pollute groundwater) over long periods of time. As a potential solution, it was demonstrated that the aerobic degradation of MSW within a landfill can significantly increase the rate of waste decomposition and settlement, decrease the methane production and leachate leaving the system, and potentially increase the operational life of the site. Readily integrated into the existing landfill infrastructure, this approach can safely and cost-effectively convert a MSW landfill from anaerobic to aerobic degradation processes, thereby effectively composting much of the organic portions (one of the potentially polluting elements in a conventional landfill site) of the waste. This paper summarizes the successful results of two separate aerobic landfill projects located in Georgia (USA) and discusses the potential economic and environmental impacts to worldwide solid waste management practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号