首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hazardous waste incineration (HWI) in rotary kilns and the disposal of the residual slag on landfills play an important role in German waste treatment. In order to save disposal costs the elution behaviour of HWI-slag should be further optimised. Quality-improved slag may be disposed off on cheaper landfill sites still applying to landfill regulations. In a new process-integrated approach hazardous waste is mixed with limestone, which initiates chemical reactions with heavy metals in the rotary kiln yielding new compounds of different solubility. In this work HWI-slag/limestone mixtures are thermally treated and then examined by elution tests. Experimental data indicate that the heavy metals pertinent to landfill class assignment of a HWI-slag share a solubility minimum at a CaO-content of about 15%. Such improved HWI-slags are allowed to be disposed off on cheaper landfill sites. Furthermore, a new combination of thermodynamic calculation methods is applied to predict heavy metal solubility for different process conditions. Used models hold the opportunity to explain the tendencies of heavy metal leaching and propose plausible chemical reactions. With it, a new tool to examine the impact of temperature treatment and slag composition on heavy metal elution from HWI-slag is presented.  相似文献   

2.
Accelerated carbonation of municipal solid waste incineration fly ashes   总被引:3,自引:0,他引:3  
As a result of the EU Landfill Directive, the disposal of municipal solid waste incineration (MSWI) fly ash is restricted to only a few landfill sites in the UK. Alternative options for the management of fly ash, such as sintering, vitrification or stabilization/solidification, are either costly or not fully developed. In this paper an accelerated carbonation step is investigated for use with fly ash. The carbonation reaction involving fly ash was found to be optimum at a water/solid ratio of 0.3 under ambient temperature conditions. The study of ash mineralogy showed the disappearance of lime/portlandite/calcium chloride hydroxide and the formation of calcite as carbonation proceeded. The leaching properties of carbonated ash were examined. Release of soluble salts, such as SO4, Cl, was reduced after carbonation, but is still higher than the landfill acceptance limits for hazardous waste. It was also found that carbonation had a significant influence on lead leachability. The lead release from carbonated ash, with the exception of one of the fly ashes studied, was reduced by 2-3 orders of magnitude.  相似文献   

3.
Ordinary Portland cement blended with blast furnace slag and pulverised fuel ash was used to solidify two industrial wastes containing large amounts of metals. The solidified mixes were carbonated using an accelerated regime previously established and compared for strength development, leaching characteristics and phase development against their non-carbonated analogues. A significant difference in the immobilisation of metals such as Zn, Ni and As was recorded for samples in which carbonation was optimised. The work has shown that by controlling mix parameters it is possible to improve the immobilisation of specific metals. Electron microanalysis showed that this is partly due to the precipitation of calcite in the solidified waste pore structure. Carbonation was also found to accelerate C3S hydration in all carbonated samples and to modify the morphology of residual cement grains through the formation of a calcite coating over de-calcified hydration rims. Some metals appear to be incorporated in both of these zones.  相似文献   

4.
In Flanders, the northern part of Belgium, about 31% of the produced amount of MSWI bottom ash is recycled as secondary raw material. In view of recycling a higher percentage of bottom ash, a particular bottom ash fraction (Ø 0.1–2 mm) was studied. As the leaching of this bottom ash fraction exceeds some of the Flemish limit values for heavy metals (with Cu being the most critical), treatment is required.Natural weathering and accelerated carbonation resulted in a significant decrease of the Cu leaching. Natural weathering during 3 months caused a decrease of Cu leaching to <50% of its original value, whereas accelerated carbonation resulted in an even larger decrease (to ca. 13% of its initial value) after 2 weeks, with the main decrease taking place within the first 48 h.Total organic carbon decreased to ca. 70% and 55% of the initial concentration in the solid phase, and to 40% and 25% in the leachate after natural weathering and after accelerated carbonation, respectively. In the solid material the decrease of the Hy fraction was the largest, the FA concentration remained essentially constant. The decrease of FA in the leachate can be attributed partly to an enhanced adsorption of FA to Fe/Al (hydr)oxides, due to the combined effect of a pH decrease and the neoformation of Al (hydr)oxides (both due to carbonation). A detailed study of adsorption of FA to Fe/Al (hydr)oxides showed that significant adsorption of FA occurs, that it increases with decreasing pH and started above pH 12 for Fe (hydr)oxides and around 10 for Al (hydr)oxides. Depending whether FA or Hy are considered the controlling factor in enhanced Cu leaching, the decreasing FA or Hy in the leachate explains the decrease in the Cu leaching during carbonation.  相似文献   

5.
6.
Cement-based waste forms (solidified wastes) are used for the long-term land disposal of industrial hazardous wastes. A cement-based waste form can be prepared by mixing a hydraulic cement and, if needed, a bulking agent with an aqueous waste to cause it to solidify.This article presents eight long-term leaching scenarios based on various properties of waste forms and contaminants as well as different hydraulic regimes and characteristics of groundwater. Each scenario takes the form of a simplified mathematical model used to predict leaching rates for periods of up to 100 years.The analysis demonstrates the importance of chemically fixing the contaminants in the matrix and illustrates the advantages of avoiding situations where ground-water flows through the waste. In situations where advective transport is negligible, leaching rates are limited by pore diffusion and tend to decrease with time.  相似文献   

7.
In this study, we propose a process making calcium carbonate and calcium sulfate and recovering absorbent using ammonia absorbent, carbon dioxide, and industrial waste. The main objective of this study is to confirm the possibility of carbon capture and utilization based on waste materials. We assumed desulfurization gypsum and construction waste (ready mixed concrete washing water, waste concrete, etc.) are CaSO4, Ca(OH)2, respectively. And concentration of simulated carbon dioxide gas was 15 vol% similar to flue gas. Calcium carbonate was produced by combination reaction between ionic CO2 in absorbent and metal ion in the solid waste. Experiments were conducted at normal temperature and pressure. Furthermore, the generated products were characterized by X-ray diffraction, and scanning electron microscope.  相似文献   

8.
Evaluation of leaching and extraction procedures for soil and waste   总被引:1,自引:1,他引:0  
Laboratory leaching tests may be used for source term determination as a basis for risk assessment for soil-groundwater pathways on contaminated sites. In order to evaluate different leaching procedures, batch extraction tests and percolation tests were performed using three reference materials produced from contaminated soil, demolition waste and municipal solid waste incinerator bottom ash. Emphasis was placed on the investigation of the leachability of the heavy metals copper and chromium, polycyclic aromatic hydrocarbons (PAHs) and the anions chloride and sulfate. Significant discrepancies between column experiments and batch/extraction tests were found for the release of PAHs and to a lesser extent for the heavy metals Cu and Cr. Additionally interlaboratory comparisons were conducted based on different leaching tests with the reference materials and evaluated using the criteria of comparability and reproducibility. The best reproducibility was achieved for all investigated substances in column tests. The reproducibility of batch tests was acceptable except for PAHs. The results from the experimental work will help establish standardized and feasible laboratory procedures as fundamental for substance specific risk assessment of contaminated sites.  相似文献   

9.
Accelerated carbonation of municipal solid waste incineration residues is effective for immobilizing heavy metals. In this study, the contribution of the physical containment by carbonation to immobilization of some heavy metals was examined by some leaching tests and SEM–EDS analysis of untreated, carbonated, and milled bottom ash after carbonation that was crushed with a mortar to a mean particle size of approximately 1 μm. The surface of carbonated bottom ash particles on SEM images seemed mostly coated, while there were uneven micro-spaces on the surface of the untreated bottom ash. Results of Japan Leaching Test No. 18 (JLT18) for soil pollution showed that milling carbonated bottom ash increased the pH and EC. The leaching concentration of each element tended to be high for untreated samples, and was decreased by carbonation. However, after the milling of carbonated samples, the leaching concentration became high again. The immobilization effect of each element was weakened by milling. The ratio of physical containment effect to immobilization effects by accelerated carbonation was calculated using the results of JLT18. The ratio for each element was as follows: Pb: 13.9–69.0 %, Cu: 12.0–49.1 %, Cr: 24.1–99.7 %, Zn: 20.0–33.3 %, and Ca: 28.9–63.4 %.  相似文献   

10.
Vitrification is an attractive approach for treatment of the borate waste from nuclear power plants. SL-1 glass is a suitable borosilicate glass form to solidify the borate waste containing relatively high quantities of B and Na. The leaching behavior of SL-1 glass in deionized water has been investigated. Compared to the HLW-glass, the network structure of SL-1 glass is weak. It was found that the ion-exchange reactions dominated the glass corrosion process with water in low temperature leaching conditions (⩽70°C). The ion-exchange and network hydrolysis reactions together controlled the glass dissolution in high temperature leaching conditions (>70°C). There was a peak in leach rate at about 70°C and a valley at about 110°C. The surface layer thickness was about 25 μm (MCC-1, 90°C for 28 days in deionized water). Na was almost totally depleted in the surface layer. At low temperature, the glass corrosion increases with leaching time. The glass corrosion remains about constant with leaching time at 90°C. The surface layer formed at 90°C is protective, which is less porous than the surface layer formed at 40 and 70°C.  相似文献   

11.
Assessment of long-term leaching from MSWI air-pollution-control (APC) residues is discussed with respect to use in environmental impact assessment, such as life-cycle assessment (LCA). A method was proposed for estimating leaching as a function of the liquid-to-solid (L/S) ratio in a long-term perspective (L/S 5000l/kg). Data for changes in residue pH as a function of L/S was used in combination with pH dependent leaching data to predict leachate concentrations of Al, Ca, Cd, Ba, Mg, Ni, Pb, S, Pb, V and Zn as a function of L/S. Mass balance calculations were used to determine the element fractions leached with respect to L/S. The estimated long-term leaching from a semi-dry residue and a fly ash was compared with short-term leaching determined by batch tests at L/S 10l/kg, both carbonated and non-carbonated versions of the residues were investigated. Generally, very high L/S ratios above 2000l/kg were required to leach 20-30% of the solid contents. However, Ca and S were depleted at L/S 200-900l/kg. The long-term leachate concentrations were found to either remain at the same level as the initial leaching determined by the L/S 10 batch test, or to significantly decrease compared with the initial leaching. Only Al and Zn were found to show higher leachate concentrations at L/S ratios above 3000-5000l/kg. Carbonation generally prolonged the time needed for depletion from the solid residues; however, Ca and S were depleted faster than in the case of non-carbonated residues. This study shows that uncritical use of batch leaching data for assessing the potential leaching is highly problematic, and evaluations of residue disposal should include scenario specific quantification of the long-term leaching.  相似文献   

12.
Two equilibrium-based characterization protocols were applied to ground samples of a cement-based material containing metal oxide powders in both noncarbonated and carbonated states. The effects of carbonation were shown through comparison of (i) material buffering capacity, (ii) constituent equilibrium as a function of leachate pH, and (iii) constituent solubility and release as a function of liquid-to-solid (LS) ratio. As expected, the material alkalinity was significantly neutralized during carbonation. In addition, carbonation of the cement material led to the formation of calcium carbonate and a corresponding increase in arsenic release across the entire pH range. The solubility as a function of pH for lead and copper was lower in the alkaline pH range (pH>9) for carbonated samples compared with the parent material. When solubility and release as a function of LS ratio was compared, carbonation was observed to decrease calcium solubility, sodium and potassium release, and ionic strength. In response to carbonate solid formation, chloride and sulfate release as a function of LS ratio was observed to increase. Trends in constituent concentration as a function of LS ratio were extrapolated to estimate pore water composition at a 0.06 mL/g LS ratio. Significant differences were observed upon comparison of estimated pore water composition to leachate concentrations extracted at LS ratio of 5 mL/g. These differences show that practical laboratory extractions cannot be assumed directly representative of pore water concentrations.  相似文献   

13.
Waste foundry sand (WFS) can be converted into flowable fill for geotechnical applications. In this study, WFS samples were obtained from 17 independent metal casting facilities with different casting processes, thus representing a good range of WFS properties. The laboratory studies include physical, geotechnical and leaching properties of flowable fills consisting of WFS, cement, and fly ash mixed to different water contents. The main properties measured include WFS physical properties (density, particle gradation, grain shape, and fine content), WFS flowable fill geotechnical properties (unconfined compressive strength, hydraulic conductivity, setting time, and bleeding), and the fill's leaching properties (heavy metals and organics in the bleed water and the leachate extracted from hardened WFS flowable fills). The test results indicate that in terms of the physical properties, most of the data fall within narrow ranges, although data from the copper/aluminum-based WFS samples might fall beyond the ranges. Geotechnical properties of WFS flowable fills in both fresh and hardened phases were verified conforming to the features of specified flowable fills. Material leaching analyses indicate that the toxicity of WFS flowable fills is below regulated criteria. A mix formulation range originated from this study is proposed for the design of WFS made flowable fill.  相似文献   

14.
Steel slag can be applied as substitute for natural aggregates in construction applications. The material imposes a high pH (typically 12.5) and low redox potential (Eh), which may lead to environmental problems in specific application scenarios. The aim of this study is to investigate the potential of accelerated steel slag carbonation, at relatively low pCO2 pressure (0.2 bar), to improve the environmental pH and the leaching properties of steel slag, with specific focus on the leaching of vanadium. Carbonation experiments are performed in laboratory columns with steel slag under water-saturated and -unsaturated conditions and temperatures between 5 and 90 °C. Two types of steel slag are tested; free lime containing (K3) slag and K1 slag with a very low free lime content. The fresh and carbonated slag samples are investigated using a combination of leaching experiments, geochemical modelling of leaching mechanisms and microscopic/mineralogical analysis, in order to identify the major processes that control the slag pH and resulting V leaching. The major changes in the amount of sequestered CO2 and the resulting pH reduction occurred within 24 h, the free lime containing slag (K3-slag) being more prone to carbonation than the slag with lower free lime content (K1-slag). While carbonation at these conditions was found to occur predominantly at the surface of the slag grains, the formation of cracks was observed in carbonated K3 slag, suggesting that free lime in the interior of slag grains had also reacted. The pH of the K3 slag (originally pH ± 12.5) was reduced by about 1.5 units, while the K1 slag showed a smaller decrease in pH from about 11.7 to 11.1. However, the pH reduction after carbonation of the K3 slag was observed to lead to an increased V-leaching. Vanadium leaching from the K1 slag resulted in levels above the limit values of the Dutch Soil Quality Decree, for both the untreated and carbonated slag. V-leaching from the carbonated K3 slag remained below these limit values at the relatively high pH that remained after carbonation. The V-bearing di-Ca silicate (C2S) phase has been identified as the major source of the V-leaching. It is shown that the dissolution of this mineral is limited in fresh steel slag, but strongly enhanced by carbonation, which causes the observed enhanced release of V from the K3 slag. The obtained insights in the mineral transformation reactions and their effect on pH and V-leaching provide guidance for further improvement of an accelerated carbonation technology.  相似文献   

15.
Metallic phases in slags and their influence on the leaching characteristics were investigated. The proportions of metallic phase in four slags were 0.028%, 0.24%, 1.87%, and 3.05% by weight. The lead content was 10–248 mg/kg in bulk slag after metal removal, while in the metallic phase it was 579–7390 mg/kg. Lead concentrations in the metallic phase were more than ten times higher than in slags after metal removal. Lead was distributed in the metallic phase at 2.0%, 8.3%, 10.3%, and 47.4%. The concentrations of all metallic elements in metallic phases were much higher than in bulk slag. Iron, copper, and nickel had accumulated in magnetic metals, while aluminum and zinc were found in nonmagnetic metals. As regards chromium, manganese, lead, and tin, the proportion of metallic phases depended on the slag samples. By removing metallic phases, both water and pH 4 leachable lead decreased. The basic principles of melting residues containing lead are the separation of lead as a metal in reductive melting, and the containment of lead ions into uniform glassy particles in oxidization melting. Melting slag can be seen to contribute to environmental preservation by facilitating the recycling of materials through the separation of metals from melting slag. Received: February 21, 2000 / Accepted: July 27, 2000  相似文献   

16.
Multiple-scale dynamic leaching of a municipal solid waste incineration ash   总被引:1,自引:1,他引:0  
Predicting the impact on the subsurface and groundwater of a pollutant source, such as municipal solid waste (MSW) incineration ash, requires a knowledge of the so-called "source term". The source term describes the manner in which concentrations in dissolved elements in water percolating through waste evolve over time, for a given percolation scenario (infiltration rate, waste source dimensions, etc.). If the source term is known, it can be coupled with a model that simulates the fate and transport of dissolved constituents in the environment of the waste (in particular in groundwater), in order to calculate potential exposures or impacts. The standardized laboratory upward-flow percolation test is generally considered a relevant test for helping to define the source term for granular waste. The LIMULE project (Multiple-Scale Leaching) examined to what extent this test, performed in very specific conditions, could help predict the behaviour of waste at other scales and for other conditions of percolation. Three distinct scales of percolation were tested: a laboratory upward-flow percolation column (30cm), lysimeter cells (1-2m) and a large column (5m) instrumented at different depths. Comparison of concentration data collected from the different experiments suggests that for some non-reactive constituents (Cl, Na, K, etc.), the liquid versus solid ratio (L/S) provides a reasonable means of extrapolating from one scale to another; if concentration data are plotted versus this ratio, the curves coincide quite well. On the other hand, for reactive elements such as chromium and aluminium, which are linked by redox reactions, the L/S ratio does not provide a means of extrapolation, due in particular to kinetic control on reactions. Hence extrapolation with the help of coupled chemistry-transport modelling is proposed.  相似文献   

17.
Air-pollution-control (APC) residues from waste incinerators are hazardous waste according to European legislation and must be treated prior to landfilling. Batch and column leaching data determine which type of landfill can receive the treated APC-residues. CEN standards are prescribed for the batch and column leaching test; however, these standards do not specify whether or not the residue samples should be dried prior to the leaching testing. Laboratory tests were performed in parallel (dried/non-dried) on treated APC-residue samples and evaluated with respect to Cr, Cd, Cu, Pb and Zn leaching. The effect of drying of the wet APC-residue samples was particularly dramatic regarding the leaching of Cr. Drying resulted in 10-100 times more Cr leaching in both batch and columns test. Drying also affected the leaching of Cd, Cu and Pb. Initial Cd leaching was up to 100 times higher in column tests with dried APC-residue than in tests with wet residues. The effect of drying appeared to be a combination of decreasing the reduction capacity of the sample (Cr), decreasing pH (Cd, Cu) and in column tests also a wash-out of salts (probably affecting Cd and Pb). If the leaching tests are intended to mimic landfill conditions, the results of this paper suggest that the tests should be done on wet, non-dried residue samples, although this may be less practical than testing dried samples.  相似文献   

18.
利用草酸钴废料协同浸出水钴矿中的钴和铜,考察了工艺条件对浸出率的影响,并推荐了一种二段浸出及后续生产草酸钴的工艺流程。实验结果表明,在草酸钴废料与水钴矿的质量比为20%、反应时间为120 min、反应温度为85 ℃、初始H2SO4浓度为1.00 mol/L、液固比为4 mL/g的最佳工艺条件下,钴和铜的浸出率分别达到98.82%和96.24%。该工艺应用于水钴矿的还原浸出,在回收利用草酸钴废料的同时,降低了还原剂的消耗,且对浸出液后续处理工艺无影响。  相似文献   

19.
Lab synthesized metal-bearing sludge (LSMS) was used in series of designed lab tests to evaluate impacts of ultrasound on selective separation of heavy metals through acid leaching. The tests eliminated the potential of induced bias generated by utilizing field sludge that were produced from different location sources. The results showed that metal pairs of Cu and Fe, Cu and Cr, and Cr and Fe inside LSMS could be practically separated with one metal being contained in a liquid phase and another in a solid phase through acid leaching processes enhanced by ultrasound. With assistance of ultrasound, the acid leaching demonstrated a more efficient segregation between metals within LSMS than a conventional leaching that doesn’t have ultrasonic enhancement, and the tests provided in a generic means that ultrasonically enhanced acid leaching could cost-efficiently recover heavy metals from metal-containing waste sludge.  相似文献   

20.

Incineration is one of the key technologies in disposal of municipal waste, which produces municipal solid waste incineration (MSWI) residues with high valuable metal contents. The recycling strategy for the MSWI residues is typically focused on the recovery of scrap metals yielding processed municipal solid waste incineration residues (PIR) as the main byproduct. However, the PIR still contains valuable metals, particularly gold, which cannot be extracted by conventional methods. Here, we evaluated the feasibility of using the 0.5–2.0 mm grain size fraction of PIR containing 28.82 ± 1.62 mg/kg of gold as raw material for a two-stage extraction process. In the first stage the alkalic fine-grained PIR was acidified with a solution of 20% (v/v) of HCl-containing flue gas cleaning liquid that is obtained by the municipal waste incineration plant itself as a waste product. In the second stage we leached the acidified fine-grained PIR by thiourea with Fe3+ as an oxidant. Application of the thiourea-Fe3+ leaching system resulted in recovery of 16.4 ± 1.56 mg/kg of gold from the fine-grained PIR within 6 h of incubation. Due to high gold market prices, upscaling of the suggested technology can represent a suitable strategy for gold recovery from PIR and other MSWI residues.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号