首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reproduction by worker honey bees (Apis mellifera L.)   总被引:2,自引:0,他引:2  
Summary Genetic markers were used to study the reproductive behavior of worker honey bees. Five experiments were conducted that demonstrate the significance of worker reproduction. Biases were found in the egg-laying success of workers belonging to different subfamilies within queenless colonies, however, members of all subfamilies laid eggs. These biases were probably not a consequence of direct reproductive competition among subfamily members but most likely represent genetic variability for the timing of the onset of oviposition. Workers preferentially oviposit in drone-sized cells, demonstrating a caste-specific adaptation for oviposition behavior. Drone brood production is highly synchronous within colonies and can result in the production of more than 6000 drones before colonies die. Workers reproduce in queenright colonies but at a very low frequency.  相似文献   

2.
 Using electrophoretic markers, eggs laid by workers were identified in honey bee (Apis mellifera) colonies with a queen. Based on extrapolation, these represented about 7% of the unfertilized (male) eggs laid in the colonies. A very small proportion of workers (of the order of 0.01%) lay these eggs. Worker-laid eggs are rapidly removed, so that very few sons of workers are reared. Thus the reproductive cooperation in bee colonies is maintained by ongoing antagonistic interactions among the members of the colony, with worker laying and egg removal policing by other workers being relatively common. Received: 24 November 1995/Accepted after revision: 25 May 1996  相似文献   

3.
Summary. Africanized honey bees (AHBs) of Brazil and Mexico have proven to be tolerant to Varroa destructor mites. In contrast, European honey bees (EHBs: Apis mellifera carnica) at the same tropical study site are highly intolerant to these ectoparasites. A lower attractiveness of Varroa-tolerant AHB larvae has been hypothesised to be an important trait in reducing the susceptibitlity of AHBs to these mites. Thus, selection for EHB brood that is less attractive to mites is thought to be one possibility for limiting mite population growth and thus increase the tolerance of EHBs to the mite.?In Ribeir?o Preto, Brazil, European A. m. carnica bees and AHBs were tested with respect to their rate of brood infestation and brood attractiveness to Varroa mites. For the comparison of brood infestation rates, we introduced combs with pieces of EHB and AHB brood into honey bee colonies (18 repetitions). The relative infestation rate of EHB brood was significantly higher compared to AHB brood.?The preference behaviour of single Varroa mites was tested in a laboratory bioassay where either living host stages were offered or host extracts were presented on dummies. By these tests we could confirm the preference of Varroa females for certain developmental host stages and for their corresponding extracts. In contrast to the within-colony results, Varroa mites in the laboratory bioassay showed a slight preference for AHB compared to EHB larvae.?The gas chromatographic analysis revealed differences in the chemical spectrum of extracts obtained from different larvae. In accord with the results of the bioassays, we could detect stage-specific odour differences in larval cuticular compounds, including methyl esters and hydrocarbons that have been described as kairomones. None of these substances, however, revealed significant race-specific differences. Therefore, the quantity and composition of certain cuticular compounds seem to be responsible only for the recognition of a suitable host stage by Varroa females. The different infestation rates in the colonies, however, seem to be caused neither by race-specific differences in attractiveness of bee larvae nor by an extended attractive period of EHB larvae: both AHB and EHB larvae become attractive approximately 21 h before capping of the brood cell, and thus have the same window of time when they can be parasitised.?Therefore differential Varroa-infestation rates are not related to larval attraction but probably are determined by other race-specific and colony-related factors. Received 11 June 2001; accepted 19 November 2001.  相似文献   

4.
5.
The phenotype of the social group is related to phenotypes of individuals that form that society. We examined how honey bee colony aggressiveness relates to individual response of male drones and foraging workers. Although the natural focus in colony aggression has been on the worker caste, the sterile females engaged in colony maintenance and defense, males carry the same genes. We measured aggressiveness scores of colonies and examined components of individual aggressive behavior in workers and haploid sons of workers from the same colony. We describe for the first time, that males, although they have no stinger, do bend their abdomen (abdominal flexion) in a posture similar to stinging behavior of workers in response to electric shock. Individual worker sting response and movement rates in response to shock were significantly correlated with colony scores. In the case of drones, sons of workers from the same colonies, abdominal flexion significantly correlated but their movement rates did not correlate with colony aggressiveness. Furthermore, the number of workers responding at increasing levels of voltage exhibits a threshold-like response, whereas the drones respond in increasing proportion to shock. We conclude that there are common and caste-specific components to aggressive behavior in honey bees. We discuss implications of these results on social and behavioral regulation and genetics of aggressive response.  相似文献   

6.
Summary Recent studies have shown that differences in patterns of task specialization among nestmate honeybee workers (Apis mellifera) can be explained, in part, as a consequence of genotypic variability. Here, we present evidence supporting the hypothesis that an individual's pattern of task specialization is affected not only by her own genotype, but, indirectly, by the genotypes of her nestmates. Workers from two strains of honey bees, one selected for high pollen hoarding, the other for low pollen hoarding, were observed in colonies of their respective parent strains and in colonies of the other strain. Worker genotype and host-colony type affected foraging activity. Workers from the high strain fostered in low-strain colonies returned with pollen on 75.6% of total foraging trips, while workers from the high strain fostered in high-strain colonies returned with pollen on 53.5% of total trips. Workers from the low strain fostered in low-strain colonies returned with pollen on 34.8% of total foraging trips while workers from the low strain fostered in high-strain colonies returned with pollen on 2.6% of total trips. Similar results were obtained in a second experiment. We suggest that workers influence the behavior of their nestmates indirectly through their effects on the shared colony environment. The asymmetry seen in the response of workers from these strains to the two types of colony environments also suggests that these genotypes exhibit different norms of reaction. Offprint requests to: N.W. Calderone  相似文献   

7.
Summary Two experiments were performed to determine whether worker reproduction in queenless honey bee colonies is influenced by colony genetic structure. In Experiment 1, allozyme analyses of workers and worker-derived drone larvae revealed that in half the colonies, there were genotypic differences in worker egg-laying behavior (presumed to involve actual oviposition), but biases in drone production were not always consistent with biases in egg-laying behavior. In Experiment 2, allozyme analyses again revealed intracolonial differences in egg-laying behavior and in behavior patterns thought to involve oophagy and larval care. Data support the hypothesis of a genetic influence on this intracolonial behavioral variation. Differences in the genotypic distributions of worker-derived drones relative to workers engaged in oviposition behavior in queenless colonies may be a consequence of genetic variability for egg production or for treatment of eggs and larvae (possibly coupled with kin recognition), or both. Offprint requests to: G.E. Robinson  相似文献   

8.
Summary Apis mellifera workers are able to discriminate the degree of relatedness to themselves of larvae and to preferentially rear queens from related larvae. They employ cues of genetic, not environmental origin, and workers which have only experienced unrelated brood nonetheless prefer related (but novel) over unrelated (but familiar) larvae. Thus worker bees possess the sensory capabilities and behavioral responses that would enable them to maximize their individual inclusive fitness through nepotism in queen rearing.  相似文献   

9.
Individual bees often restrict their visits to only a few species out of the multitude of available plants. This flower constancy is likely caused by limitations of memory for motor patterns, sensory stimuli, or reward levels. Here we test the implications of sensori-motor learning and memory for flower constancy. Artificial “flowers” with two distinct “morphologies” were used, so that in each flower type, a different motor pattern was needed to reach the nectar. As in natural flowers, these morphological types were associated with sensory signals (blue and yellow color stimuli). Bees which learned only a single task were more efficient in several ways than those which had learned two: they made fewer errors, had shorter flower handling times, took shorter times to correct errors, and transitions between flowers were initially more rapid. For bees which had learned two tasks, performance depended strongly on the training schedule: if each task was learned with blocked trials, the memory for the second appeared to interfere with that for the first. Interference affected only the association between flower signal and motor pattern, not the motor pattern itself. This was not the case if bees were trained for both tasks with alternating trials. In that case, bees rapidly learned both tasks, albeit with worse saturation levels than bees which had learned only one. Bees transferred the experience gained on one task to a second task: their initial performance on the second task was better than their initial performance on the first. On the other hand, performance on the second task in the saturation level (in which bees no longer improve their efficiency) was worse than on the first task (negative transfer). In the saturation phase, performance did not directly depend on switch frequency, but on whether the bee had one or two options in memory. Thus, while bees would become proficient at two tasks more quickly if their acquisition phase included switches, such switches had no measurable effect in the saturation phase. The implications of these findings for foraging are discussed using modern learning theory. Received: 4 April 1997 / Accepted after revision: 8 August 1997  相似文献   

10.
Honey bee workers exhibit an age-based division of labor (temporal polyethism, DOL). Younger bees transition through sets of tasks within the nest; older bees forage outside. Components of temporal polyethism remain unrevealed. Here, we investigate the timing and pattern of pre-foraging behavior in distinct strains of bees to (1) determine if a general pattern of temporal DOL exists in honey bees, (2) to demonstrate a direct genetic impact on temporal pacing, and (3) to further elucidate the mechanisms controlling foraging initiation. Honey bees selected for differences in stored pollen demonstrate consistent differences in foraging initiation age. Those selected for increased pollen storage (high pollen hoarding strain, HSBs) initiate foraging earlier in life than those selected for decreased pollen storage (low pollen hoarding strain, LSBs). We found that HSBs both initiate and terminate individual pre-foraging tasks earlier than LSBs when housed in a common hive environment. Unselected commercial bees (wild type) generally demonstrated intermediate behavioral timing. There were few differences between genotypes for the proportion of pre-foraging effort dedicated to individual tasks, though total pre-foraging effort differences differed dramatically. This demonstrates that behavioral pacing can be accelerated or slowed, but the pattern of behavior is not fundamentally altered, suggesting a general pattern of temporal behavior in honey bees. This also demonstrates direct genetic control of temporal pacing. Finally, our results suggest that earlier HSB protein (pollen) consumption termination compared to LSBs may contribute to an earlier decline in hemolymph vitellogenin protein titers, which would explain their earlier onset of foraging.  相似文献   

11.
Honey bees, Apis mellifera L., bred for hygienic behavior uncap and remove diseased and mite-infested brood. We hypothesized that within a colony bred for hygienic behavior, there would be differences in olfactory sensitivity among bees of the same age. We predicted that bees that initiate the behavior by perforating and uncapping brood would have greater olfactory sensitivity to the odor of the diseased brood, and would be better able to discriminate between odors of healthy and diseased brood, compared to bees that complete the behavior by removing the uncapped brood from the cells. Electroantennogram recordings of 15- to 21-day-old bees from three colonies demonstrated that bees collected while uncapping dead brood had significantly greater olfactory sensitivity to all concentrations of diseased brood odor compared to bees collected while removing brood. Proboscis-extension reflex discrimination conditioning demonstrated that 15- to 21-day-old bees collected while uncapping discriminated significantly better and generalized significantly less between the odors of diseased and healthy brood compared to bees collected while removing, when the odor of diseased brood was rewarded, but not when the odor of healthy brood was rewarded. Bees collected while uncapping brood that had been pierced with a pin had significantly less olfactory sensitivity than bees collected while uncapping freeze-killed brood, most likely because the pierced brood had greater stimulus intensity. Initiation of hygienic behavior depends on the olfactory sensitivity of the bee and stimulus intensity of the abnormal brood. Differential olfactory sensitivity and responsiveness among hygienic bees could lead to the apparent partitioning of the behavior into uncapping and removing components.Communicated by R.F.A. Moritz  相似文献   

12.
Dancing and trophallactic behaviour of forager honey bees, Apis mellifera ligustica >Spinola, that returned from an automatic feeder with a regulated flow rate of 50% weight-to-weight sucrose solution (range: 0.76–7.65 μl/min) were studied in an observation hive. Behavioural parameters of dancing, such as probability, duration and dance tempo, increased with the nectar flow rate, though with very different response curves among bees. For trophallaxis (i.e. mouth-to-mouth exchange of food), the frequency of giving-contacts and the transfer rate of the nectar increased with the nectar flow rate. After unloading, foragers often approached other nest mates and begged for food before returning to the food source. This behaviour was less frequent at higher nectar flow rates. These results show that the profitability of a food source in terms of nectar flow rate had a quantitative representation in the hive through quantitative changes in trophallactic and dancing behaviour. The role of trophallaxis as a communication channel during recruitment is discussed. Received: 14 January 1995/Accepted after revision: 14 August 1995  相似文献   

13.
Summary The honey bee colony presents a challenging paradox. Like an organism, it functions as a coherent unit, carefully regulating its internal milieu. But the colony consists of thousands of loosely assembled individuals each functioning rather autonomously. How, then, does the colony acquire the necessary information to organize its work force? And how do individuals acquire information about specific colony needs, and thus know what tasks need be performed? I address these questions through experiments that analyze how honey bees acquire information about the colony's need for pollen and how they regulate its collection. The results demonstrate features of the colony's system for regulating pollen foraging: (1) Pollen foragers quickly acquire new information about the colony's need for pollen. (2) When colony pollen stores are supplemented, many pollen foragers respond by switching to nectar foraging or by remaining in the hive and ceasing to forage at all. (3) Pollen foragers do not need direct contact with pollen to sense the colony's change of state, nor do they use the odor of pollen as a cue to assess the colony's need for pollen. (4) Pollen foragers appear to obtain their information about colony pollen need indirectly from other bees in the hive. (5) The information takes the form of an inhibitory cue. The proposed mechanism for the regulation of pollen foraging involves a hierarchical system of information acquisition and a negative feedback loop. By taking advantage of the vast processing capacity of large numbers of individuals working in parallel, such a system of information acquisition and dissemination may be ideally suited to promote efficient regulation of labor within the colony. Although each individual relies on only limited, local information, the colony as a whole achieves a finely-tuned response to the changing conditions it experiences.  相似文献   

14.
High relatedness and low genetic diversity among individuals in a group is generally considered crucial to the evolution of cooperative behaviour. However, in about a third of social insect species, intracolonial genetic diversity is increased because of derived polyandry (multiple mating by queens) and/or polygyny (multiple reproductive queens). Several studies have shown that increased intracolonial genetic diversity can enhance task performance in honey bees, but evidence of such effect in other social insects is still lacking. Why increased genetic diversity has evolved in some, but not all species, is a fundamental question in sociobiology. In this study, we investigated the effect of intracolonial genetic diversity on the task of nest migration, using the facultatively polyandrous and polygynous red ant Myrmica rubra. Genetic diversity significantly affected migration speed, but its effects were context dependent. Migration speed correlated positively with genetic diversity in one experiment in which migrations were into a known nest site, due to quicker transfer of brood into the new nest once consensus was reached. However, in a another experiment in which migration included scouting for new nest sites, migration speed correlated negatively with genetic diversity, due to slower discovery of new nest sites and slower transfer of brood into the new nest. Our results show for the first time that genetic diversity affects task performance in a social insect other than the honeybee, but that it can produce contrasting effects under different conditions.  相似文献   

15.
16.
17.
Many hypotheses attempt to explain why queens of social insects mate multiply. We tested the sex locus hypothesis for the evolution of polyandry in honey bees (Apis mellifera). A queen may produce infertile, diploid males that reduce the viability of worker brood and, presumably, adversely affect colony fitness. Polyandry reduces the variance in diploid male production within a colony and may increase queen fitness if there are non-linear costs associated with brood viability, specifically if the relationship between brood viability and colony fitness is concave. We instrumentally inseminated queens with three of their own brothers to vary brood viability from 50% to 100% among colonies. We measured the colonies during three stages of their development: (1) colony initiation and growth, (2) winter survival, and (3) spring reproduction. We found significant relationships between brood viability and most colony measures during the growth phase of colonies, but the data were too variable to distinguish significant non-linear effects. However, there was a significant step function of brood viability on winter survival, such that all colonies above 72% brood viability survived the winter but only 37.5% of the colonies below 72% viability survived. We discuss the significance of this and other "genetic diversity" hypotheses for the evolution of polyandry.  相似文献   

18.
There has now been an abundance of research conducted to explore genetic bases that underlie learning performance in the honey bee (Apis mellifera). This work has progressed to the point where studies now seek to relate genetic traits that underlie learning ability to learning in field-based foraging problems faced by workers. Accordingly, the focus of our research is to explore the correlation between laboratory-based performance using an established learning paradigm and field-based foraging behavior. To evaluate learning ability, selected lines were established by evaluating queens and drones in a proboscis extension reflex (PER) conditioning procedure to measure learning in a laboratory paradigm—latent inhibition (LI). Hybrid queens were then produced from our lines selected for high and low levels of LI and inseminated with semen from many drones chosen at random. The genetically diverse worker progeny were then evaluated for expression of LI and for preference of pollen and/or nectar during foraging. Foragers from several different queens, and which had resulted from fertilization by any of several different drone fathers, were collected as they returned from foraging flights and analyzed for pollen and nectar contents. They were subsequently evaluated for expression of LI. Our research revealed that pollen foragers exhibited stronger learning, both in the presence (excitatory conditioning) and absence (LI) of reinforcement. The heightened overall learning ability demonstrated by pollen foragers suggests that pollen foragers are in general more sensitive to a large number of environmental stimuli. This mechanism could contribute toward explanations of colony-level regulation of foraging patterns among workers.Communicated by R. Page  相似文献   

19.
Summary A model of colony growth and foraging in the honey bee (Apis mellifera L.) is presented. It is assumed that summer workers choose a foraging strategy that maximizes colony population by the end of the season subject to the constraint that enough nectar has been stored to sustain the adult population overwinter. The optimal foraging strategy is derived with respect to the number of flowers visited during one foraging trip. A forager that visits many flowers collects a substantial amount of nectar but the probability that the worker returns alive from the excursion decreases accordingly. Using dynamic modelling, I explore the effects on colony growth of colony population, colony energy requirements and mortality rate while foraging. The model shows that when the expected rate of increase in nectar reserves is low, for instance in small colonies or when mortality rate rises rapidly with foraging intensity, workers collect more nectar during each foraging trip. The increase in foraging activity is realized at the expense of colony growth. The main finding is that depending on colony status the foraging strategy that maximizes worker population implies visits to almost any number of flowers. This is in sharp contrast to predictions from traditional foraging models where foraging intensity is assumed to cluster around values that maximize net rate or efficiency. The model suggests that strategies that cluster around rate and efficiency maximization should be viewed as particular solutions to a more general problem.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号