共查询到15条相似文献,搜索用时 79 毫秒
1.
基于QAA算法的巢湖悬浮物浓度反演研究 总被引:2,自引:0,他引:2
QAA(quasi-analytical algorithm)算法基于辐射传输原理,估算水体后向散射系数,是目前较为成熟的半分析模型方法.2009年6月对巢湖水体进行野外实测,在获得遥感反射率、吸收衰减系数、悬浮物浓度(cTSM)等数据的基础上,构建了巢湖水体cTSM的近红外双波段反演模型,并将QAA算法计算得到的后向散射概率作为输入,以期提高cTSM的反演精度.结果表明,①对巢湖水体而言,807 nm和834 nm是构建近红外双波段模型的最佳波段,807 nm处的单位散射系数为0.411 m2.g-1,834 nm处的单位散射系数为0.395 m2.g-1;②利用QAA算法计算得到的巢湖水体的后向散射概率为0.029,将该值输入反演模型后,cTSM的反演精度与输入其他经验值相比得到明显提高,反演值与实测值的均方根误差RMSE和平均相对误差绝对值MAPE分别达到12.143 mg.L-1和24.378%;③在cTSM较高的站点(近似高于30 mg.L-1),利用近红外双波段模型反演的悬浮物浓度结果更为稳定和可靠. 相似文献
2.
太湖、巢湖水体总悬浮物浓度半分析反演模型构建及其适用性评价 总被引:3,自引:2,他引:3
总悬浮物浓度是水体重要的水质参数.本研究利用太湖春季、秋季和巢湖夏季多期野外实测数据,通过对生物光学模型进行合理的简化构建适用于太湖、巢湖水体总悬浮物浓度反演的半分析模型,并将该模型应用于MERIS和环境一号卫星高光谱卫星影像上以验证该方法的适用性.结果表明:①针对太湖和巢湖水体,总悬浮物浓度最优反演波段范围为730~832nm(氧气吸收带除外);②针对MERIS数据,波段10(中心波长754 nm)和波段12(中心波长779 nm)均适用于太湖总悬浮物浓度反演,而波段11(中心波长761 nm)由于氧气吸收带的影响不适用于总悬浮物浓度反演;③针对太湖MERIS数据,模型反演结果的相对误差基本上呈现出随距离卫星过境时间增大而逐渐增加的趋势,在卫星过境时间正负3 h内测量的样点,模型反演结果的相对误差均在50%以内,而时间差超过3 h,相对误差则逐渐增大到50%以上;④环境一号卫星高光谱数据17个波段(B83~B99)均能够对巢湖总悬浮物浓度进行较好的反演,其反演效果要好于MERIS数据在太湖的反演结果. 相似文献
3.
4.
结合水体光学分类反演太湖总悬浮物浓度 总被引:6,自引:0,他引:6
本研究利用2008年11月、2009年4月、2010年5月及2010年8月的太湖水体原位观测数据,在对光学复杂水体进行光学分类的基础上,分别建立了针对各个类别水体的总悬浮物浓度高光谱反演模型.通过对每类水体中各个模型的性能比较,分别得到各类水体的最优模型:第一类水体,比值模型为最优模型;第二类水体,半分析模型2为最优模型;第三类水体,一阶微分模型为最优模型.同时,比较分类前后模型的精度和稳定性,结果表明分类后,两者均表现出不同程度的提高,并且分析了光学分类导致半分析模型精度下降的原因.最后针对本研究的结果在遥感数据上的适用性进行了探讨,表明在高光谱遥感数据上有很大的应用潜力.本研究结论对光学复杂湖泊水体的水色遥感具有积极重要的意义. 相似文献
5.
6.
7.
基于实测光谱的杭州湾悬浮物浓度遥感反演模式 总被引:3,自引:1,他引:3
悬浮物是我国近海水质遥感监测的主要参数之一.利用ASD地物光谱仪测量杭州湾水体的反射光谱,同步采集表层水样获取悬浮物浓度,模拟水色卫星MODIS和MERIS的波段设置提取遥感反射率,基于人工神经网络分别建立2种悬浮物浓度的遥感反演模式.实测结果表明,杭州湾水体中悬浮物浓度较高,泥沙含量远远大于叶绿素浓度,平均值分别为705 mg/L和1.164 mg/m3;2个监测站位的悬浮物浓度表现出时空上的差异,尤其是随潮汐变化的短周期变异十分显著;实测水体反射率光谱曲线在650~700 nm之间与800 nm附近分别出现峰值,光谱曲线一阶微分结果显示第一反射峰的位置随着悬浮物浓度增大向长波方向移动.基于神经网络建立的模拟算法充分利用了卫星不同通道的光谱信息,可以同时模拟水体中色素与非色素悬浮物的浓度,模型取得了较好的拟合效果,R2均大于0.95,可以应用于实际卫星遥感反演,尤其是MERIS数据,因其具有相对较高的空间分辨率,在近海水环境遥感监测中的应用前景更为广阔. 相似文献
8.
黄河口悬浮物浓度Landsat8 OLI多波段反演研究 总被引:2,自引:0,他引:2
黄河口海域悬浮物浓度,是研究黄河输沙和近岸水体生态环境的重要水质参数.之前的浓度反演模型主要采用一元二次函数或幂函数等单参数形式,利用2011年夏冬两季同步观测的遥感反射率和悬浮物浓度,本文给出了一种针对Landsat8 OLI传感器的两参数线性模型.该模型需两个输入参数,每个参数都是两个波段的光谱比值.结果表明:OLI传感器的近红外(波段5)光谱、以及它与蓝绿波段(波段1,2或3)的光谱比值,是黄河口海域悬浮物浓度反演的敏感波段,可用于建立单参数经验模型;除了敏感波段外,本研究的模型还用到红绿波段的光谱比值(波段4与波段3的比值),因而能够更好地表征光谱随悬浮物浓度的变化关系;其决定系数,均方根误差和平均相对误差分别为0.98,43.53mg·L~(-1)和20.97%,优于单参数经验模型,而且受误差影响小,因而更适合黄河口海域悬浮物浓度反演. 相似文献
9.
为了建立以生物光学模型为基础的河流悬浮物遥感估算方法,以福建晋江为例,对福建晋江下游河段的光学特性和悬浮物浓度进行了测定,探讨了水面下反射率R(O-)与悬浮物浓度之间的响应关系.结果表明,绿光波长的反射率与悬浮物浓度的相关性最强,因此,用R(O-)TM2与悬浮物浓度建立了遥感估算模型,并将其应用于2008年2月28日的Landsat TM影像,反演出晋江的悬浮物浓度分布.精度分析说明,平均相对误差RE为11.93%,该模型可以有效地应用于Landsat TM反演悬浮物浓度. 相似文献
10.
悬浮物(TSM)是评估水质的重要指标,也是水色遥感反演的核心参数之一.海陆色度仪(OLCI)是新一代海洋水色传感器,具有良好的光谱及时空分辨率.为有效监测福建近海悬浮物浓度的时空变化,本文结合OLCI遥感数据和现场实测悬浮物浓度数据,使用CatBoost、随机森林和多元回归方法,分别构建悬浮物浓度反演模型,最后使用验证集对比分析不同模型的反演精度.结果表明,CatBoost模型估算精度最高,均方根误差(RMSE)为2.76 mg·L-1,平均绝对百分比误差(MAPE)为23.67%,决定系数R2为0.89.使用CatBoost模型对2017—2018年多时相OLCI影像进行TSM浓度遥感反演,结果发现,福建近海TSM浓度变化显著,但总体呈现近岸高于远岸、北部高于南部、江河入海口和港湾处高于周围其他海域、春季高于夏季的时空分布特征.本研究可为福建近海的悬浮物浓度监测提供一种有效的方法,也进一步证明了OLCI影像良好的水色反演能力,可作为水质监测的有效遥感数据源. 相似文献
11.
12.
巢湖周围池塘氮、磷和有机质研究 总被引:6,自引:1,他引:6
巢湖周围池塘众多,根据池塘位置和地表径流补给差异,池塘可以分为村庄内池塘、毗邻村庄池塘和农田区域池塘(远离村庄的池塘).本研究采集了巢湖周围136口池塘上覆水和沉积物样品,调查巢湖周围池塘中氮、磷以及有机质污染现状.结果表明,池塘上覆水中总氮、氨氮、硝态氮、亚硝态氮、总磷、溶解态磷和COD平均含量分别为2.53、0.65、0.18、0.02、0.97、0.38和51.58mg·L-1;池塘沉积物中总氮、氨氮、硝态氮、亚硝态氮、总磷、无机磷、有机磷和烧失量平均含量分别为1575.36、35.73、13.30、2.88、933.19、490.14、414.75mg·kg-1和5.44%;90%以上的池塘总氮、总磷含量达到或超过富营养化水平.位于村庄内的池塘上覆水和沉积物中总氮和氨氮的含量显著高于位于农田区域的池塘.上覆水和沉积物中无机氮表现为:氨氮硝态氮亚硝态氮.池塘上覆水和沉积物中有机质与总氮、总磷之间存在显著的正相关性.池塘中氮、磷和有机物质主要为陆源性输入,池塘位置和径流补给方式明显影响其中的氮、磷和有机质含量.通过截留径流中的氮、磷和有机质,池塘能够有效减少进入巢湖的营养盐含量. 相似文献
13.
SPOM(suspended particulate organic matter,悬浮颗粒物中的有机质)是地表水体中有机质的重要组分之一,在全球碳循环和水体富营养化过程中发挥着重要作用.采用连续提取法、δ13C(碳稳定同位素)、三维荧光光谱和平行因子分析技术对呼伦湖夏季SPOM的含量、组分、荧光特性、污染来源及生物有效性进行系统研究.结果表明:①SPOM(以碳质量计)在14.4~31.5 g/kg之间,其中HM(提取残渣)为SPOM的主要组分,占SPOM总量的61.2%.②SPOM中WEOM(水提态有机质)含有类富里酸组分(C1)、类腐殖酸组分(C2)和类色氨酸组分(C3)3个荧光组分,类腐殖质组分(C1+C2)和类蛋白质组分(C3)对总荧光强度的贡献分别为70.4%和29.6%.③SPOM的C/N〔总有机碳(TOC)浓度与总氮(TN)浓度的比值〕和δ13C的值分别在7.53~15.2和-27.2‰~-26.1‰之间.利用C/N和δ13C端元混合模型计算陆源对SPOM的平均贡献率分别为67.2%和68.9%,结果相近.④WEOM的HIX值在4.09~7.40之间,腐殖化程度较高,生物可利用性较差.研究显示,呼伦湖中SPOM以难降解的腐殖质组分为主,腐殖化程度较强,生物可利用性较低,但随着温度升高,预估自生源SPOM的贡献将增大,可能导致其生物可利用性升高,需引起足够的重视. 相似文献
14.
为研究枯水期巢湖水体悬浮颗粒物(SPM)营养元素组成及其潜在环境效应,分析了2020年1月巢湖18个采样点表层水体SPM含量、颗粒有机质(SPOM)含量及氮磷组成,并利用颗粒有机碳、氮同位素组成及C/N研究了冬季巢湖SPOM的来源及其空间变化. 结果表明,悬浮颗粒物总磷(PP)浓度为0.032~0.065 mg/L,平均值为0.049 mg/L;悬浮颗粒物无机磷(PIP)浓度为0.018~0.046 mg/L,平均值为0.032 mg/L,是PP的主要组分,二者浓度均呈西湖区>东湖区>中湖区的空间分布特征. 悬浮颗粒物总氮(PN)浓度为0.254~0.424 mg/L,平均值为0.342 mg/L,其中悬浮颗粒物有机氮(PON)占比较高,表明颗粒态氮以湖泊内源性有机来源为主. 巢湖表层水体SPOM的δ13C范围在?28.72‰~?26.68‰之间,δ15N为3.34‰~9.97‰,C/N为2.51±0.95,指示冬季枯水期水体SPOM主要来自内源水生生物碎屑,而陆源径流输入对湖泊颗粒物影响较小. 研究显示:冬季巢湖悬浮颗粒有机质主要来自湖泊内源,具有潜在的营养盐效应,污染控制需要相应的策略. 相似文献
15.
浅水湖泊水动力过程对藻型湖区水体生物光学特性的影响 总被引:1,自引:2,他引:1
基于2010年7月底至8月初对太湖藻型湖区梅梁湾沿岸带水域不同风速条件下水下光场的原位连续高频观测,通过对水下辐照度、光束衰减系数、吸收系数、相关理化参数及气象水文参数的测定与分析,揭示了该区域水体的生物光学特性变化及其与水动力过程的关系.结果表明,总颗粒物吸收系数ap(440)、非色素颗粒物吸收系数ad(440)、浮游植物吸收系数aph(440)及有色可溶性有机物吸收系数aCDOM(440)在小风(30 min内平均风速<3 m.s-1)、中风(3 m.s-1<风速<5 m.s-1)和大风(风速>5 m.s-1)作用下分别为3.97、3.97、6.58 m-1;1.69、2.17、4.20 m-1;2.28、1.80、1.33 m-1;1.05、1.04、1.08 m-1,其中变幅最大的为非色素颗粒物,CDOM吸收系数在不同风速条件下差别不大.水体各组分在PAR波段积分值的贡献率的变化规律为:小风速下浮游植物吸收系数的贡献最大(达42.5%),随着风速的增大,CDOM、浮游植物、纯水吸收系数的贡献率均有降低的趋势,而非色素颗粒物的贡献率则显著增大,分别为33.0%、41.7%、52.0%.PAR漫射衰减系数与10min平均风速呈显著线性相关,风速引起的沉积物再悬浮对PAR漫射衰减系数的影响显著,从小风到大风,PAR漫射衰减系数增加了80.0%,对应真光层深度降低了42.2%.PAR漫射衰减系数、750 nm波长处的光束衰减系数、总悬浮物浓度与风速、波高、波切应力均存在显著正相关,其中又以PAR漫射衰减系数的相关性最为显著.高频观测结果揭示了浅水湖泊藻型湖区水动力过程通过引起沉积物再悬浮、浮游植物的混合及迁移显著改变水体生物光学特性短期变化. 相似文献