共查询到18条相似文献,搜索用时 81 毫秒
1.
QAA(quasi-analytical algorithm)算法基于辐射传输原理,估算水体后向散射系数,是目前较为成熟的半分析模型方法.2009年6月对巢湖水体进行野外实测,在获得遥感反射率、吸收衰减系数、悬浮物浓度(cTSM)等数据的基础上,构建了巢湖水体cTSM的近红外双波段反演模型,并将QAA算法计算得到的后向散射概率作为输入,以期提高cTSM的反演精度.结果表明,①对巢湖水体而言,807 nm和834 nm是构建近红外双波段模型的最佳波段,807 nm处的单位散射系数为0.411 m2.g-1,834 nm处的单位散射系数为0.395 m2.g-1;②利用QAA算法计算得到的巢湖水体的后向散射概率为0.029,将该值输入反演模型后,cTSM的反演精度与输入其他经验值相比得到明显提高,反演值与实测值的均方根误差RMSE和平均相对误差绝对值MAPE分别达到12.143 mg.L-1和24.378%;③在cTSM较高的站点(近似高于30 mg.L-1),利用近红外双波段模型反演的悬浮物浓度结果更为稳定和可靠. 相似文献
2.
总悬浮物浓度是水体重要的水质参数.本研究利用太湖春季、秋季和巢湖夏季多期野外实测数据,通过对生物光学模型进行合理的简化构建适用于太湖、巢湖水体总悬浮物浓度反演的半分析模型,并将该模型应用于MERIS和环境一号卫星高光谱卫星影像上以验证该方法的适用性.结果表明:①针对太湖和巢湖水体,总悬浮物浓度最优反演波段范围为730~832nm(氧气吸收带除外);②针对MERIS数据,波段10(中心波长754 nm)和波段12(中心波长779 nm)均适用于太湖总悬浮物浓度反演,而波段11(中心波长761 nm)由于氧气吸收带的影响不适用于总悬浮物浓度反演;③针对太湖MERIS数据,模型反演结果的相对误差基本上呈现出随距离卫星过境时间增大而逐渐增加的趋势,在卫星过境时间正负3 h内测量的样点,模型反演结果的相对误差均在50%以内,而时间差超过3 h,相对误差则逐渐增大到50%以上;④环境一号卫星高光谱数据17个波段(B83~B99)均能够对巢湖总悬浮物浓度进行较好的反演,其反演效果要好于MERIS数据在太湖的反演结果. 相似文献
3.
4.
本研究利用2008年11月、2009年4月、2010年5月及2010年8月的太湖水体原位观测数据,在对光学复杂水体进行光学分类的基础上,分别建立了针对各个类别水体的总悬浮物浓度高光谱反演模型.通过对每类水体中各个模型的性能比较,分别得到各类水体的最优模型:第一类水体,比值模型为最优模型;第二类水体,半分析模型2为最优模型;第三类水体,一阶微分模型为最优模型.同时,比较分类前后模型的精度和稳定性,结果表明分类后,两者均表现出不同程度的提高,并且分析了光学分类导致半分析模型精度下降的原因.最后针对本研究的结果在遥感数据上的适用性进行了探讨,表明在高光谱遥感数据上有很大的应用潜力.本研究结论对光学复杂湖泊水体的水色遥感具有积极重要的意义. 相似文献
5.
6.
7.
基于实测光谱的杭州湾悬浮物浓度遥感反演模式 总被引:3,自引:1,他引:3
悬浮物是我国近海水质遥感监测的主要参数之一.利用ASD地物光谱仪测量杭州湾水体的反射光谱,同步采集表层水样获取悬浮物浓度,模拟水色卫星MODIS和MERIS的波段设置提取遥感反射率,基于人工神经网络分别建立2种悬浮物浓度的遥感反演模式.实测结果表明,杭州湾水体中悬浮物浓度较高,泥沙含量远远大于叶绿素浓度,平均值分别为705 mg/L和1.164 mg/m3;2个监测站位的悬浮物浓度表现出时空上的差异,尤其是随潮汐变化的短周期变异十分显著;实测水体反射率光谱曲线在650~700 nm之间与800 nm附近分别出现峰值,光谱曲线一阶微分结果显示第一反射峰的位置随着悬浮物浓度增大向长波方向移动.基于神经网络建立的模拟算法充分利用了卫星不同通道的光谱信息,可以同时模拟水体中色素与非色素悬浮物的浓度,模型取得了较好的拟合效果,R2均大于0.95,可以应用于实际卫星遥感反演,尤其是MERIS数据,因其具有相对较高的空间分辨率,在近海水环境遥感监测中的应用前景更为广阔. 相似文献
8.
黄河口海域悬浮物浓度,是研究黄河输沙和近岸水体生态环境的重要水质参数.之前的浓度反演模型主要采用一元二次函数或幂函数等单参数形式,利用2011年夏冬两季同步观测的遥感反射率和悬浮物浓度,本文给出了一种针对Landsat8 OLI传感器的两参数线性模型.该模型需两个输入参数,每个参数都是两个波段的光谱比值.结果表明:OLI传感器的近红外(波段5)光谱、以及它与蓝绿波段(波段1,2或3)的光谱比值,是黄河口海域悬浮物浓度反演的敏感波段,可用于建立单参数经验模型;除了敏感波段外,本研究的模型还用到红绿波段的光谱比值(波段4与波段3的比值),因而能够更好地表征光谱随悬浮物浓度的变化关系;其决定系数,均方根误差和平均相对误差分别为0.98,43.53mg·L~(-1)和20.97%,优于单参数经验模型,而且受误差影响小,因而更适合黄河口海域悬浮物浓度反演. 相似文献
9.
为了建立以生物光学模型为基础的河流悬浮物遥感估算方法,以福建晋江为例,对福建晋江下游河段的光学特性和悬浮物浓度进行了测定,探讨了水面下反射率R(0-)与悬浮物浓度之间的响应关系.结果表明,绿光波长的反射率与悬浮物浓度的相关性最强,因此,用R(0-)TM2与悬浮物浓度建立了遥感估算模型,并将其应用于2008年2月28日的LandsatTM影像,反演出晋江的悬浮物浓度分布.精度分析说明,平均相对误差RE为11.93%,该模型可以有效地应用于LandsatTM反演悬浮物浓度. 相似文献
10.
11.
12.
巢湖周围池塘氮、磷和有机质研究 总被引:6,自引:1,他引:6
巢湖周围池塘众多,根据池塘位置和地表径流补给差异,池塘可以分为村庄内池塘、毗邻村庄池塘和农田区域池塘(远离村庄的池塘).本研究采集了巢湖周围136口池塘上覆水和沉积物样品,调查巢湖周围池塘中氮、磷以及有机质污染现状.结果表明,池塘上覆水中总氮、氨氮、硝态氮、亚硝态氮、总磷、溶解态磷和COD平均含量分别为2.53、0.65、0.18、0.02、0.97、0.38和51.58mg·L-1;池塘沉积物中总氮、氨氮、硝态氮、亚硝态氮、总磷、无机磷、有机磷和烧失量平均含量分别为1575.36、35.73、13.30、2.88、933.19、490.14、414.75mg·kg-1和5.44%;90%以上的池塘总氮、总磷含量达到或超过富营养化水平.位于村庄内的池塘上覆水和沉积物中总氮和氨氮的含量显著高于位于农田区域的池塘.上覆水和沉积物中无机氮表现为:氨氮硝态氮亚硝态氮.池塘上覆水和沉积物中有机质与总氮、总磷之间存在显著的正相关性.池塘中氮、磷和有机物质主要为陆源性输入,池塘位置和径流补给方式明显影响其中的氮、磷和有机质含量.通过截留径流中的氮、磷和有机质,池塘能够有效减少进入巢湖的营养盐含量. 相似文献
13.
14.
巢湖富营养化对轮虫的影响研究 总被引:4,自引:0,他引:4
从2002年8月至2003年7月对富营养化的巢湖轮虫进行调查研究。结果表明,巢湖轮虫有48种,轮虫密度为520ind./L,生物量为0.4778mg/L;夏季种类最多,春冬季次之,秋季最少。春、夏季密度较高,生物量春季最高,冬季次之,秋季最低。西区密度是东区的5.2倍,生物量是东区的10.1倍;自东向西,随着富营养化程度的加深,轮虫种类逐渐增多,其现存量与富营养化水平密切相关。该研究将为巢湖水域的污染控制和综合治理提供科学依据。 相似文献
15.
引江济巢对巢湖的水环境影响分析 总被引:4,自引:0,他引:4
建立了巢湖一维水质模型DYRESM-CAEDYM,并利用2005年的实测水质、水文、气象等数据对模型进行了参数率定,确立了适用于巢湖水环境特征的水质模型参数. 应用该模型模拟了调水对巢湖TN,TP和Chl-a指标的影响,结果表明,年调水量为9.57×108 m3时可使巢湖的ρ(TN)和ρ(TP)下降约16%和19%,ρ(Chl-a)峰值从51.42 μg/L降至38.96 μg/L,ρ(Chl-a)超过30 μg/L的天数从26 d减少到16 d,对巢湖夏季蓝藻暴发具有一定的缓解作用. 对比分析了流域污染综合治理对巢湖水环境的改善效果,结果显示,如果各支流的入湖污染负荷能够削减5%,同时开展底泥清淤工作,可使巢湖的ρ(TN)和ρ(TP)得到较大程度的改善,与没有治理的情况相比分别降低约24.9%和33.3%,使巢湖夏季的ρ(Chl-a)峰值从51.42 μg/L降至32.72 μg/L,ρ(Chl-a)超过30 μg/L的天数从26 d减少到7 d. 相似文献
16.
Effect of the pollution on the Chaohu Lake ecosystem has been described based on the results obtained by analysis of water samples and field survey. The environmental behavior of pollutants and their toxicity is discussed in relation to biological effects. Most of the chemicals identified by GC/MS are biodegradable in the water environment except for some organochlorinated hydrocarbons and PAHs. The pollution of the water body particularly cutrophication has led not only to disruption of natural scenic beauty, but also to changes of biotic communities and extinction of certain species. Deterioration of water quality, eutrophication in particular have certainly had an impact on aquatic organisms and on the human health in this region. 相似文献
17.
风浪扰动下的太湖悬浮物实验与模拟 总被引:8,自引:1,他引:8
采用太湖湖区底泥,根据波浪水槽实验总结了各种扰动强度下太湖底泥的起动切应力.波浪水槽可以系统地模拟太湖常见的波浪强度.通过实验确定了太湖底泥的临界切应力为0.050 Pa,采用国外先进的FVCOM模型计算模拟了太湖流场和悬浮物分布并和太湖实测资料进行了对比,结果较为合理,证明了模型的有效性.由于目前太湖的野外监测资料存在较明显的时空不一致性.模型参数率定的精度受到了较大影响,太湖悬浮物与太湖底泥的内源释放以及水体的透明度有较大关系,因此通过室内实验研究太湖的悬浮物规律对太湖的富营养化治理具有重要意义. 相似文献
18.
在巢湖采集泥样进行加藻培养实验,监测培养过程中的藻剩余量、上覆水及间隙水氮和磷浓度、沉积物各胞外酶活性、亚铁和总铁含量及各形态磷含量等相关指标的变化。结果表明,随着培养时间的增加,藻剩余量下降,藻剩余量与时间的关系符合公式:y=2.301 1×e~(-0.054 6x)(R~2=0.898 1,P0.01)。与对照组相比,加藻组间隙水和上覆水氨氮(NH_4~+-N)浓度大幅度上升,说明巢湖蓝藻水华衰亡初期,藻类自身矿化及沉积物均大量释放NH_4~+-N。加藻培养后第4天开始,间隙水溶解反应性磷明显低于对照组相应值,主要是由于微生物已获得充足的碳源和氮源,为了提高微生物生产力需要与之匹配的磷含量而吸收间隙水中的磷。加入藻类碎屑培养后,沉积物碱性磷酸酶活性明显高于对照组相应值,说明藻类有机质和高浓度NH_4~+-N均可诱导微生物分泌碱性磷酸酶,但加藻组酸提取有机磷(磷酸酶的底物)的含量并未明显降低;整个培养过程中,加藻组氨肽酶活性均低于对照组相应值,说明高浓度氨对氨肽酶具有抑制作用。加藻培养后,沉积物脱氢酶活性和亚铁与总铁的比值均低于对照组相应值,但沉积物铁结合态磷(Fe(OOH)-P)含量明显高于对照组相应值。表明藻类碎屑分解过程中,沉积物Fe(OOH)-P厌氧释放的少,且藻类自身矿化产生的磷以Fe(OOH)-P的形式固定在沉积物中。 相似文献