首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fate of carbosulfan (seed treatment dry powder) was studied in rice field ecosystem, and a simple and reliable analytical method was developed for determination of carbosulfan, carbofuran, and 3-hydroxyl carbofuran in brown rice, rice straw, paddy water, and soil. The target compounds were extracted using acetonitrile or dichloromethane, cleaned up on acidic alumina or florisil solid phase extraction (SPE) cartridge, and analyzed by gas chromatography. The average recoveries of carbosulfan, carbofuran and 3-hydroxy carbofuran in brown rice, rice straw, paddy water, and soil ranged from 72.71% to 105.07%, with relative standard deviations of 2.00–8.80%. The limits of quantitation (LOQs) of carbosulfan, carbofuran and 3-hydroxy carbofuran in the samples (brown rice, rice straw, paddy water and soil) were 0.011, 0.0091, 0.014, 0.010 mg kg?1, 0.016, 0.019, 0.025, 0.013 mg kg?1, and 0.031, 0.039, 0.035, 0.036 mg kg?1, respectively. The trials results showed that the half-lives of carbosulfan, carbofuran and 3-hydroxy carbofuran in rice straw were 4.0, 2.6 days, 3.9, 6.0 days, and 5.8, 7.0 days in Zhejiang and Hunan, respectively. Carbosulfan, carbofuran and 3-hydroxy carbofuran were detected in soils. Carbosulfan and 3-hydroxy carbofuran were almost undetectable in paddy water. Carbofuran was detected in paddy water. The final residues of carbosulfan, carbofuran and 3-hydroxy carbofuran in brown rice were lower than 0.05 mg kg?1, which were lower than 0.5 mg kg?1 (MRL of carbosulfan) or 0.1 mg kg?1 (MRL of carbofuran). Therefore, a dosage of 420 g active ingredient per 100 kg seed was recommended, which could be considered as safe to human beings and animals. These would contribute to provide the scientific basis of using this insecticide.  相似文献   

2.
Das AC  Debnath A  Mukherjee D 《Chemosphere》2003,53(3):217-221
A field experiment has been conducted with two herbicides viz. oxadiazon [5-terbutyl-3-(2,4-dichloro-5-isopropoxyphenyl)-1,3,4-oxadiazol-2-one] and oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenyl)-4-(trifluoromethyl) benzene] at rates of 0.4 and 0.12 kg a.i. ha(-1), respectively, to investigate their effect on the growth and activities of phosphate solubilizing microorganisms in relation to availability of phosphorus as well as persistence of the herbicides in the rhizosphere soil of wetland rice (Oryza sativa L. variety IR-36). Application of herbicides stimulated the population and activities of phosphate solubilizing microorganisms and also the availability of phosphorus in the rhizosphere soil. Oxyfluorfen provided greater microbial stimulation than oxadiazon. Dissipation of oxyfluorfen and oxadiazon followed first order reaction kinetics with half-life (T(1/2)) of 8.8 and 12 days, respectively. Sixty days after application 0.5% and 3% of the applied oxadiazon and oxyfluorfen residues persisted, respectively, in the rhizosphere soil of rice.  相似文献   

3.
In laboratory incubation studies with three soils of varying physicochemical characteristics, phorate was more persistent in nonflooded (60% water holding capacity) soils than in flooded soils. Phorate sulphoxide was recovered as the only metabolite of phorate in nonflooded soils while three metabolites (diethyl dithiophosphate, triethyl dithiophosphate and an unidentified metabolite) were formed in flooded soils. Study indicates that in nonflooded soils phorate is degraded via oxidation while in flooded soils hydrolysis is the major degradation process. Degradation of phorate was accelerated by an increase in incubation temperature. Preexposure or repeated application of soils to phorate slightly decreased the persistence of phorate or its metabolites. Decreased persistence of phorate and its metabolites formed in nonsterile soils compared to sterile soils suggested the role of microorganisms in their transformation.  相似文献   

4.
Abstract

The pH‐disappearance rate profiles were determined at ca. 25°C for 24 insecticides at 4 or 5 pH values over the range 4.5 to 8.0 in sterile phosphate buffers prepared in water‐ethanol (99: 1 v/v). Half‐lives measured at pH 8 were generally smaller than at lower pH values. Changes in half lives between pH 8.0 and 4.5 were largest (>1000x) for the aryl carbamates, carbofuran and carbaryl, the oxime carbamate, oxamyl, and the organophosphorus insecticide, trichlorfon. In contrast, half lives of phorate, terbufos, heptachlor, fensulfothion and aldicarb were affected only slightly by pH changes. Under the experimental conditions described half lives at pH8 varied from 1–2 days for trichlorfon and oxamyl to >1 year for fensulfothion and cyper‐methrin. Insecticide persistence on alumina (acid, neutral and basic), mineral soils amended with aluminum sulfate or calcium hydroxide to different pH values and four natural soils of different pH was examined. No correlation was observed between the measured pH of these solids and the rate of disappearance of selected insecticides applied to them. These observations demonstrate the difficulty of extrapolating the pH dependent disappearance behaviour observed in homogeneous solution to partially solid heterogeneous systems such as soil.  相似文献   

5.
Abstract

The loss of carbofuran was studied from rice paddy water treated with a granular formulation of the insecticide, and from ponds filled with drainage from the paddy. The average half‐life (t1/2) for carbofuran loss was 57 hr. Controlled experiments indicated that pH was the predominating factor governing carbofuran loss from water in the environment studied. The loss due to hydrolysis was over 700 times more rapid at pH 10 (t1/2 = 1.2 hr.) than at pH 7 (t1/2 = 864 hr.) in buffered deionized water. The average pH of the rice paddy was 8, but diurnal fluctuations of 7 to 9.5 are common in similar environments. Impurities in the water, sunlight, and temperature influence the rate of carbofuran loss but not nearly so much as pH. There was no evidence for significant loss due to evaporation or oxidation. The results have important implications for the duration of the insecticide's activity and the effect on fish within or downstream from treated paddies.  相似文献   

6.
Biochar has been considered as a potential sorbent for removal of frequently detected pesticides in water. In the present study, modified and non-modified rice husk biochars were used for aqueous carbofuran removal. Rice husk biochars were produced at 300, 500, and 700 °C in slow pyrolysis and further exposed to steam activation. Biochars were physicochemically characterized using proximate, ultimate, FTIR methods and used to examine equilibrium and dynamic adsorption of carbofuran. Increasing pyrolysis temperature led to a decrease of biochar yield and increase of porosity, surface area, and adsorption capacities which were further enhanced by steam activation. Carbofuran adsorption was pH-dependant, and the maximum (161 mg g?1) occurred in the vicinity of pH 5, on steam-activated biochar produced at 700 °C. Freundlich model best fitted the sorption equilibrium data. Both chemisorption and physisorption interactions on heterogeneous adsorbent surface may involve in carbofuran adsorption. Langmuir kinetics could be applied to describe carbofuran adsorption in a fixed bed. A higher carbofuran volume was treated in a column bed by a steam-activated biochar versus non-activated biochars. Overall, steam-activated rice husk biochar can be highlighted as a promising low-cost sustainable material for aqueous carbofuran removal.  相似文献   

7.
Metalaxyl and carbofuran dissipation was studied in response to different factors (soil bacterial communities, light irradiation, presence of an inorganic culture medium and presence of soil) and combinations of these factors in short-term experiments (48 h). The soil microbial communities have no effect on metalaxyl or carbofuran dissipation in the time scale employed. Light irradiation and soil promote metalaxyl and carbofuran dissipation by photodegradation and adsorption, respectively. However, photodegradation has a stronger effect on metalaxyl and carbofuran dissipation than the adsorption of the pesticides in the soil. The addition of the culture medium have no direct effect on pesticide dissipation, degradation by microbial communities or adsorption but its presence greatly increased photodegradation.  相似文献   

8.
The loss of carbofuran was studied from rice paddy water treated with a granular formulation of the insecticide, and from ponds filled with drainage from the paddy. The average half-life (t 1/2) for carbofuran loss was 57 hr. Controlled experiments indicated that pH was the predominating factor governing carbofuran loss from water in the environment studied. The loss due to hydrolysis was over 700 times more rapid at pH (t 1/2 = 1.2 hr.) than at pH (t 1/2 = 864 hr.) in buffered deionized water. The average pH of the rice paddy was 8, but diurnal fluctuations of 7 to 9.5 are common in similar environments. Impurities in the water, sunlight, and temperature influence the rate of carbofuran loss but not nearly so much as pH. There was no evidence for significant loss due to evaporation or oxidation. The results have important implications for the duration of the insecticide's activity and the effect on fish within or downstream from treated paddies.  相似文献   

9.
One hundred days after field-application of fonofos as bands under the onion seed, 39 to 59% of that material was present in 3 moderately humified organic soils of pH varying from 5.4 to 6.7. In a low humified organic soil, only 21 to 24% of the applied fonofos remained. Thus humus enhanced the persistence of fonofos and curtailed the stimulating effect of fonofos on soil microbial populations. An assessment of low damage caused by onion maggot was found in a poorly humified soil with an even higher natural infestation than in a moderately humified soil. The effects of fonofos in other soils and of the low rate of carbofuran applied to four different types of soils on the numbers of fungi, bacteria, and actinomycetes were difficult to assess.  相似文献   

10.
11.
Abstract

In 1986 strawberry plots were treated with dimethoate, malathion, permethrin and cypermethrin at 80% bloom of primary flowers. In 1987 the plots were sprayed with dimethoate, malathion and permethrin at 30% bloom. Residue analysis of these insecticides on the flowers were analyzed using solvent extraction and gas liquid chromatography. Residue analysis at 0 to 18 days on flowers and fruit showed an exponential decrease. Organophosphates tended to degrade more quickly than synthetic pyrethroids. The results are discussed in the context of an integrated pest management program.  相似文献   

12.
The objectives of this work were estimate the reaction rates of hydrolysis of carbosulfan to carbofuran and subsequent degradation of this last compound in irrigated rice fields, and the respective half life, in aquatic environment and soil solution, by mean of numerical solution of differential ordinary linear equations system that describes the kinetics of insecticide concentrations. The results indicated that the carbosulfan and carbofuran have low persistence in water and medium persistence in soil solution of tropical irrigated rice fields. However, both compounds can be found in laminar water and soil solution in concentration above environmental and human safety limits.  相似文献   

13.
The objective of this research was to investigate the effect of wheat and rice biochars on pyrazosulfuron-ethyl sorption in a sandy loam soil. Pyrazosulfuron-ethyl was poorly sorbed in the soil (3.5–8.6%) but biochar amendment increased the herbicide adsorption, and the effect varied with the nature of the feedstock and pyrolysis temperature. Biochars prepared at 600°C were more effective in adsorbing pyrazosulfuron-ethyl than biochars prepared at 400°C. Rice biochars were better than wheat biochars, and higher herbicide adsorption was attributed to the biochar surface area/porosity. The Freundlich constant 1/n suggested nonlinear isotherms, and nonlinearlity increased with increase in the level of biochar amendment. Desorption results suggested sorption of pyrazosulfuron-ethyl was partially irreversible, and the irreversibility increased with increase in the level of biochar. Both sorption and desorption of pyrazosulfuron-ethyl correlated well with the content of biochars. The free energy change (ΔG) indicated that the pyrazosulfuron-ethyl sorption process was exothermic, spontaneous and physical in nature. Persistence studies indicated that biochar (0.5%) amendment did not have significant effect on herbicide degradation, and its half-life values in the control, 0.5% WBC600- and RBC600-amended rice planted soils were 7, 8.6, and 10.4 days, respectively.  相似文献   

14.
Metolachlor [2-chloro-N-(2-methoxy-1-methylethyl)-2'-ethyl-6'- methyl acetanilide] dissipation under both field and laboratory conditions were studied during summer season in an Indian soil. Metolachlor was found to have moderate persistence with a half-life of 27 days in field. The herbicide got leached down to 15-30 cm soil layer and residues were found up to harvest day of the sunflower crop in both 0-15 cm and 15-30 cm soil layers. Metolachlor was found to be more persistent in laboratory studies conducted for 190 days. The rate of degradation was faster in soil under flooded partial anaerobic conditions as compared to aerobic soil with a half-life of 44.3 days. In aerobic soil, metolachlor was very stable with only 49% dissipation in 130 days. Residues remained in both the soils up to the end of the experimental period of 190 days.  相似文献   

15.
Abstract

Metolachlor [2‐chloro‐N‐(2‐methoxy‐1‐methylethyl)‐2'‐ethyl‐6'‐methyl acetanilide] dissipation under both field and laboratory conditions were studied during summer season in an Indian soil. Metolachlor was found to have moderate persistence with a half‐life of 27 days in field. The herbicide got leached down to 15–30 cm soil layer and residues were found up to harvest day of the sunflower crop in both 0–15 cm and 15–30 cm soil layers. Metolachlor was found to be more persistent in laboratory studies conducted for 190 days. The rate of degradation was faster in soil under flooded partial anaerobic conditions as compared to aerobic soil with a half‐life of 44.3 days. In aerobic soil, metolachlor was very stable with only 49% dissipation in 130 days. Residues remained in both the soils up to the end of the experimental period of 190 days.  相似文献   

16.
粉末状和颗粒状有机膨润土对克百威的吸附   总被引:2,自引:0,他引:2  
用十六烷基三甲基溴化铵(CTMAB)和十二烷基苯磺酸钠(SDBS)制得粉末状CTMAB阳离子有机膨润土(简称CTMAB-膨润土)和CTMAB-SDBS阴阳离子有机膨润土(简称CTMAB-SDBS-膨润土),并利用聚乙烯醇(PVA)包埋固定化技术将2种粉末状有机膨润土制成颗粒状有机膨润土,研究了粉末状与颗粒状有机膨润土对水中克百威的吸附性能.结果表明:粉末状CTMAB-膨润土和CTMAB-SDBS-膨润土对克百威的吸附效果较好,最终去除率分别为90.9%和92.5%,颗粒状CTMAB-膨润土和CTMAB-SDBS-膨润土对克百威的最终去除率分别为55.5%和60.3%;有机膨润土对克百威的吸附等温线符合Freundlich方程;颗粒状有机膨润土吸附克百威最多可重复利用6次.  相似文献   

17.
Phorate (O,O-diethyl S-ethylthiomethyl phosphorodithioate) dissolved in aqueous solution was almost completely decomposed by ozonation to form various species within 10 minutes of reaction time for the experimental conditions examined in this research. The generation rate of sulfate was found to be fairly independent of solution pH value. However, the formation of phosphate and carbonate was more favorable for alkaline solutions where hydroxyl free radical is the primary oxidative species. The reaction rates increased with initial gaseous ozone concentrations, indicating the reaction was mass transfer-controlled within the experimental range of this research. Combining the analytical results by various instruments, including gas chromatograph equipped with an electron ionization detector (GC-EID), high performance liquid chromatography (HPLC), ion chromatography (IC), and total organic carbon (TOC), the temporal sequence of phorate ozonation was proposed in this study. The oxidation of sulfur atoms on the phosphorus-sulfur double bond or carbon-sulfur-carbon bond by ozonation was found to occur at first to form sulfate and various intermediates.  相似文献   

18.
Residues of chlorantraniliprole in rice field ecosystem   总被引:4,自引:0,他引:4  
Zhang JM  Chai WG  Wu YL 《Chemosphere》2012,87(2):132-136
The fate of chlorantraniliprole was studied in rice field ecosystem, and a simple and reliable analytical method was developed for determination of chlorantraniliprole in soil, rice straw, paddy water and brown rice. Chlorantraniliprole residues were extracted from samples with acetonitrile. The extract was cleaned up with QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method, and determined by high-performance liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The average recoveries were 76.9-82.4% from soil, 83.6-89.3% from rice straw, 95.2-103.1% from paddy water and 84.9-87.7% from brown rice. The relative standard deviation was less than 15%. The limits of detection (LODs) of chlorantraniliprole calculated as a sample concentration (S/N ratio of 3) were 0.012 μg L(-1) for paddy water, 0.15 μg kg(-1) for soil, brown rice and rice straw. The results of the kinetics study of chlorantraniliprole residue showed that chlorantraniliprole degradation in soil, water and rice straw coincided with C=0.01939e(-0.0434t), C=0.01425e(-0.8111t), and C=1.171e(-0.198t), respectively; the half-lives were about 16.0 d, 0.85 d and 3.50 d, respectively. The degradation rate of chlorantraniliprole in water was the fastest, followed by rice straw. The final residues of chlorantraniliprole on brown rice were lower than maximum residue limit (MRL) of 0.02 mg kg(-1) after 14 d Pre-Harvest Interval (PHI). Therefore, a dosage of 150 mL a.i.hm(-2) was recommended, which could be considered as safe to human beings and animals.  相似文献   

19.
微生物在环境中的丰度和多样性受到广泛关注.系统介绍了一种通过分析微生物菌群中电子传递体的种类和数量来表征其群落丰度和多样性的方法——醌指纹法.综述了醌指纹法的原理和检测分析手段,归纳了醌指纹法在废水处理、水体、土壤和堆肥环境场景中的应用,此外还分析了醌指纹法的优缺点.最后,对醌指纹法在未来微生物治理领域的应用进行了展望...  相似文献   

20.
Residues and dynamics of probenazole in rice field ecosystem   总被引:2,自引:0,他引:2  
Yi X  Lu Y 《Chemosphere》2006,65(4):639-643
The simple and efficient method for determination of probenazole in soil, rice plant, and paddy water was developed, and the fate of probenazole in rice field ecosystem was also studied. Probenazole residues were extracted from sample, cleaned up by liquid/liquid partition and chromatographic column and then determined by gas chromatography with flame photometric detection. As far as the accuracy and precision was concerned, the method met certain standard. The LODs of probenazole calculated as a sample concentration (S/N ratio of 3) was 0.02 mg kg-1. The minimum detectable limit was 5x10(-10) g. The degradation of probenazole in soil, rice straw, and water was determined. The results showed that probenazole degradation in soil and rice straw coincided with C=0.576e-0.147t, C=17.858e-0.414t, respectively; the half-lives were about 4.7 and 1.7 d, respectively. The degradation rate of probenazole in rice straw was faster than that of in soil. Probenazole residue at 0.02 mg kg-1 could only be detected in paddy water within the first day after application. The final probenazole residues in soil, brown rice, and water were undetectable at levels of recommended and doubled dosage with an interval of 63 d. Therefore, a dosage of 1800-3600 g a.i. hm-2 was recommended, which could be considered as safe to human beings and animals. These would contribute to provide the scientific basis of using this fungicide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号