首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Fragments of live colonies of scleractinian coral Acropora sp. and Montipora sp. under the family Acroporiidae were collected from Gulf of Mannar and transplanted in Pirotan, Narara and Mithapur reefs of Gulf of Kachchh Marine National Park. All the transplanted corals survived one complete season and it was observed that 87 nubbins out of the total 110 samples survived in Narara reef and 70 nubbins out of 102 samples stayed alive in Pirotan Island. Growth rate was measured for four months period, and it was found maximum in Narara reef, while minimum in Pirotan Island. The rate of sedimentation was higher during monsoon and low in winter season. Present study showed that species of Acropora and Montipora are suitable for transplantation in Gulf of Kachchh Marine National Park, Gujarat, India.  相似文献   

2.
For over 20 years the El Niño-Southern Oscillation (ENSO) has caused damage to the coral reefs of the eastern Pacific and other regions. In the mid-1980s scientists estimated that coral cover was reduced by 50–100% in several countries across the region. Almost 20 years (2002) after the 1982–1983 event, we assessed the recovery of the virtually destroyed reefs at Cocos Island (Costa Rica), previously evaluated in 1987 and reported to have less than 4% live coral cover. We observed up to fivefold increase in live coral cover which varied among reefs surveyed in 1987 and 2002. Most new recruits and adults belonged to the main reef building species from pre-1982 ENSO, Porites lobata, suggesting that a disturbance as outstanding as El Niño was not sufficient to change the role or composition of the dominant species, contrary to phase shifts reported for the Caribbean. During the 1990s, new species were observed growing on the reefs. Notably, Leptoseris scabra, considered to be rare in the entire Pacific, was commonly found in the area. Recovery may have begun with the sexual and asexual recruits of the few surviving colonies of P. lobata and Pavona spp. and with long distance transport of larvae from remote reefs. We found an overall 23% live coral cover by 2002 and with one reef above 58% indicating that Cocos Island coral reefs are recovering.  相似文献   

3.
Continuing coral‐reef degradation in the western Atlantic is resulting in loss of ecological and geologic functions of reefs. With the goal of assisting resource managers and stewards of reefs in setting and measuring progress toward realistic goals for coral‐reef conservation and restoration, we examined reef degradation in this region from a geological perspective. The importance of ecosystem services provided by coral reefs—as breakwaters that dissipate wave energy and protect shorelines and as providers of habitat for innumerable species—cannot be overstated. However, the few coral species responsible for reef building in the western Atlantic during the last approximately 1.5 million years are not thriving in the 21st century. These species are highly sensitive to abrupt temperature extremes, prone to disease infection, and have low sexual reproductive potential. Their vulnerability and the low functional redundancy of branching corals have led to the low resilience of western Atlantic reef ecosystems. The decrease in live coral cover over the last 50 years highlights the need for study of relict (senescent) reefs, which, from the perspective of coastline protection and habitat structure, may be just as important to conserve as the living coral veneer. Research is needed to characterize the geological processes of bioerosion, reef cementation, and sediment transport as they relate to modern‐day changes in reef elevation. For example, although parrotfish remove nuisance macroalgae, possibly promoting coral recruitment, they will not save Atlantic reefs from geological degradation. In fact, these fish are quickly nibbling away significant quantities of Holocene reef framework. The question of how different biota covering dead reefs affect framework resistance to biological and physical erosion needs to be addressed. Monitoring and managing reefs with respect to physical resilience, in addition to ecological resilience, could optimize the expenditure of resources in conserving Atlantic reefs and the services they provide.  相似文献   

4.
Near‐shore marine environments are increasingly subjected to reduced water quality, and their ability to withstand it is critical to their persistence. The potential role marine reserves may play in mitigating the effects of reduced water quality has received little attention. We investigated the spatial and temporal variability in live coral and macro‐algal cover and water quality during moderate and major flooding events of the Fitzroy River within the Keppel Bay region of the Great Barrier Reef Marine Park from 2007 to 2013. We used 7 years of remote sensing data on water quality and data from long‐term monitoring of coral reefs to quantify exposure of coral reefs to flood plumes. We used a distance linear model to partition the contribution of abiotic and biotic factors, including zoning, as drivers of the observed changes in coral and macro‐algae cover. Moderate flood plumes from 2007 to 2009 did not affect coral cover on reefs in the Keppel Islands, suggesting the reef has intrinsic resistance against short‐term exposure to reduced water quality. However, from 2009 to 2013, live coral cover declined by ~50% following several weeks of exposure to turbid, low salinity water from major flood plume events in 2011 and subsequent moderate events in 2012 and 2013. Although the flooding events in 2012 and 2013 were smaller than the flooding events between 2007 to 2009, the ability of the reefs to withstand these moderate floods was lost, as evidenced by a ~20% decline in coral cover between 2011 to 2013. Although zoning (no‐take reserve or fished) was identified a significant driver of coral cover, we recorded consistently lower coral cover on reserve reefs than on fished reefs throughout the study period and significantly lower cover in 2011. Our findings suggest that even reefs with an inherent resistance to reduced water quality are not able to withstand repeated disturbance events. The limitations of reserves in mitigating the effects of reduced water quality on near‐shore coral reefs underscores the importance of integrated management approaches that combine effective land‐based management with networks of no‐take reserves.  相似文献   

5.
Coral reefs are highly dynamic and productive marine ecosystems, providing habitat and refuge for an enormous number of species including fish, invertebrates and algae. With increased anthropogenic pressures and global climate change, many coral reefs are rapidly declining. Currently, there is limited knowledge on condition and community assemblage composition of shallow fringing coral reefs along the south-eastern coast of Queensland, Australia. With increased demand to determine existence of coastal fringing reefs by National Regional Management groups, a rapid cost effective method to determine reef composition and condition was required. The aim of this study was to determine the benthic structure and extent of two small coastal fringing reefs (Hummock Hill Reef and Stringers Reef) along the Southern Great Barrier Reef. Reef substrate assessments were carried out using a rapid assessment technique and a Point Intercept Method (PIM). The data were analysed and classified using a Geographic Information System (GIS). Percent substrate cover was calculated using a visual basic image analysis program. The Point intercept method showed higher accuracy over the rapid assessment technique (up to 15–40% difference) and was thus deemed a more suitable classification tool for reefs with high structural complexity and heterogeneity. This study focused on piloting a rapid, cost effective Point Intercept Technique using random point count methodology to document coral benthic habitat and extent over a commonly used rapid assessment method as a tool for reef coastal management and conservation. The two techniques were compared and substrate classification success, limitations and errors were discussed.  相似文献   

6.
Abstract: Concentrating tourism activities can be an effective way to closely manage high‐use parks and minimize the extent of the effects of visitors on plants and animals, although considerable investment in permanent tourism facilities may be required. On coral reefs, a variety of human‐related disturbances have been associated with elevated levels of coral disease, but the effects of reef‐based tourist facilities (e.g., permanent offshore visitor platforms) on coral health have not been assessed. In partnership with reef managers and the tourism industry, we tested the effectiveness of concentrating tourism activities as a strategy for managing tourism on coral reefs. We compared prevalence of brown band disease, white syndromes, black band disease, skeletal eroding band, and growth anomalies among reefs with and without permanent tourism platforms within the Great Barrier Reef Marine Park. Coral diseases were 15 times more prevalent at reefs with offshore tourism platforms than at nearby reefs without platforms. The maximum prevalence and maximum number of cases of each disease type were recorded at reefs with permanently moored tourism platforms. Diseases affected 10 coral genera from 7 families at reefs with platforms and 4 coral genera from 3 families at reefs without platforms. The greatest number of disease cases occurred within the spatially dominant acroporid corals, which exhibited 18‐fold greater disease prevalence at reefs with platforms than at reefs without platforms. Neither the percent cover of acroporids nor overall coral cover differed significantly between reefs with and without platforms, which suggests that neither factor was responsible for the elevated levels of disease. Identifying how tourism activities and platforms facilitate coral disease in marine parks will help ensure ongoing conservation of coral assemblages and tourism.  相似文献   

7.
Ocean acidification is one of the key threats facing coral reef ecosystems, but there are few estimates of spatial and temporal variability in pH among reef habitats. The present study documents levels of spatial variability in pH among coral reef habitats (9 to 10), among locations separated by 100’s km of latitude and between east (Great Barrier Reef, GBR) and west (Ningaloo Reef) coasts of Australia. Differences were found in pH between inshore and offshore waters along Ningaloo Reef (means 8.45, 8.53, respectively). Replicate assessments here ranged from 8.22 to 8.64. On the GBR, the range of values over all habitats and replicates was 0.39 pH units (7.98 to 8.37). There were minor but significant differences of 0.05 pH units between 5 consecutive days for habitats on average. Highest pH was recorded in filamentous algal beds maintained by the damselfish Dischistodus perspicillatus. Lowest pH was found in water extracted from sand-dwelling goby holes. While there were marked changes in pH over a 48-h sampling period among 4 habitats at Lizard Island (GBR), there was little evidence of a diel trend. Understanding how pH varies at scales that are relevant to organisms that live on shallow coral reefs is crucial for the design and interpretation of experiments that test the effects on organisms of the changes in water chemistry predicted to affect oceans in the future.  相似文献   

8.
The Aerial Bay group of Islands are one of the diverse environments of Andaman & Nicobar Islands, where the coral reefs degraded much due to the natural calamity of tsunami on 26 December 2004. After this event, the entire North Andaman Islands got elevated, which resulted in the exposure of coral reefs during low tide, causing mass mortalities and destructions to this pristine environment. In order to understand the current status, bio-physical monitoring of coral reefs was carried out and compared with classified coral map of pre-tsunami period. A decline from 411.14 to 68.25 hectares (ha) of live coral area was observed in the Aerial Bay group of Islands. The dead corals and other abiotic factors (sand, mud and rubble) were observed to be 317.33 and 25.56 ha respectively, based on comparisons between ground truthed and classified pre-tsunami coral map (2004) processed in ArcGIS®. The detrended correspondence analysis of coral life form categories showed maximum cover of dead coral with algae, in comparison with the live corals. Bray-curtis cluster analysis revealed three different groups of study sites with 60 % similarity based on life-form categories within the coral reef environment.  相似文献   

9.
Quantifying the distribution and habitat use of sharks is critical for understanding their ecological role and for establishing appropriate conservation and management regimes. On coral reefs, particularly the Great Barrier Reef (GBR), little is known regarding the distribution of sharks across major reef habitat types. In this study, we surveyed shark populations across outer-shelf reefs of the GBR in order to determine the diversity, abundance, and distribution of reef sharks across three major coral reef habitats: (1) the reef slope, (2) the back reef and (3) the reef flat. Model selection revealed that habitat was the principal factor influencing shark distribution and abundance. Specifically, overall shark abundance and diversity were significantly higher on the reef slope (and to a lesser degree, the back reef) than the reef flat. This confirms that shark populations are not homogeneously distributed across coral reefs. Thus, the results presented herein have important implications for shark population assessments. In addition, our results highlight the potential importance of the reef slope, with high levels of live coral cover and structural complexity, for sustaining reef shark populations. As this habitat is highly susceptible to disturbance events, this study provides a useful context for predicting and understanding how environmental degradation may influence reef shark populations in the future.  相似文献   

10.
Corals are the primary reef-building organisms, therefore it is key to understand their recruitment patterns for effective reef management. Coral recruitment rates and juvenile coral abundance were recorded in the Wakatobi National Marine Park, Indonesia, on two reefs (Sampela and Hoga) with different levels of environmental degradation (12.5 vs. 44 % coral cover with high and low sedimentation rates, respectively) to examine consistencies in recruitment patterns between years and seasons. Recruitment was measured on multiple panels at two sites on each reef (6–7 m depth) and cleared areas of natural reef. Although coral recruitment was twofold higher in 2008–2009 than in 2007–2008, and seasonal differences were identified, consistent significant differences in recruitment rates were found between the two reefs even though they are separated by only ~1.5 km. Recruitment rates and juvenile abundance were lower on the more degraded reef. These patterns are likely a consequence of differential pre- and post-settlement mortality as a result of the high sedimentation rates and degraded conditions and possibly reduced larval supply.  相似文献   

11.
Characterizing the Florida Keys National Marine Sanctuary (FKNMS), USA, has gained much attention over the past several decades because of apparent changes in the benthic community structure over space and time representative of patterns occurring in the Caribbean region. We used a 5-year dataset (1996–2000) of macroalgal and sponge cover and water quality measurements as predictor variables of hard coral community structure in the FKNMS. The 16 water quality variables were summarized into 4 groups by principal component analysis (PCA). Hierarchical agglomerative cluster analysis of the mean and standard deviation (SD) of the principal component scores of water quality variables separated the reef sites into two main groups (and five sub-groups), referred to as reefs of similar influence (RSI). The main groups corresponded with their geographical locations within the Florida Keys: the reefs in the Upper and Middle Keys being homogeneous and collectively, having lower water quality scores relative to reefs in the Lower Keys. Canonical correspondence analysis (CCA) between hard coral cover and key predictor variables (i.e., water quality, macroalgal cover and sponge cover) also separated the reefs in the Lower Keys from reefs in the Upper–Middle Keys, consistent with results of the cluster analysis, which categorized reefs based on RSI. These results suggest that the prevailing gradient of predictor variables may have influenced the structuring of coral reef communities at a spatial scale larger than the individual reef. Furthermore, it is conceivable that these predictor variables exerted influence for a long time rather than being a recent event. Results also revealed a pattern showing reduction in hard coral cover and species richness, and subsequent proliferation of macroalgae and sponges during the study period. Our analyses of the Florida Keys present a pattern that is consistent with the characteristics of a reef that has undergone a “phase-shift,” a phenomenon that is widely reported in the Caribbean region.  相似文献   

12.
W. Admiraal 《Marine Biology》1977,41(4):307-315
A carbon-14 assimilation method was used to determine action spectra and photosynthesis versus irradiance (P versus I) curves of natural populations of phytoplankton and zooxanthellae from a coral reef fringing Lizard Island in the Australian Barrier Reef. The action spectra were related to the phytoplankton species composition. The curves showed shade adaptation in phytoplankton from deeper waters and in the zooxanthellae. Rates of photosynthesis of zooxanthellae were shown to be highly but variably dependent on their host organisms. Photosynthetic production by zooxanthellae was about 0.9 gC m-2 day-1, which is about three times higher than phytoplankton production in the waters close to the reef.  相似文献   

13.
Within the tropics, mangroves and coral reefs represent highly productive biomes. Although these habitats are often within close proximity, the role and importance of mangrove habitats for reef fish species remains unclear. Throughout the Indo-Pacific, reef fish species appear to have few links with estuarine mangrove habitats. In contrast, clear-water non-estuarine mangrove habitats throughout the Caribbean support many reef fish species and may be fundamental for sustaining reef fish populations. But how important are clear-water non-estuarine mangroves for reef fishes within the Indo-Pacific? Using visual surveys during diurnal high tide, the fish assemblages inhabiting clear-water mangrove and adjacent reef habitats of Orpheus Island, Great Barrier Reef, were recorded. Of the 188 species of fishes that were recorded, only 38 were observed to inhabit both habitats. Of these, only eight were observed more than five times within each habitat. These observations provide little indication that the clear-water mangroves are an important habitat for reef fish species. In addition, although based on just a 3-month survey period, we found little evidence to suggest that these areas are important nurseries for reef fish species. The clear-water mangroves of Orpheus Island may, however, provide an additional foraging area for the few reef fish species that were observed to utilize these habitats during high tide. The difference in the importance of clear-water mangroves for reef fishes within this study compared with clear-water mangrove counterparts within the Caribbean is surprising. Although only preliminary, our observations would support suggestions that the patterns reflect the different hydrological characteristics and evolutionary histories of these two biogeographic regions.  相似文献   

14.
Nitrification in the coral reef community at Lizard Island, Great Barrier Reef, Australia, elevated the nitrate concentration to above that of the nearby open ocean water. Reef corals and a zooxanthellae-bearing foraminiferan were shown to take up nitrate from nitrate-enriched seawater; a lag period was absent, indicating that the responsible enzymes did not require induction. The relationship of nitrate uptake to seawater nitrate concentration could be described by a hyperbola with a non-zero intercept on the abscissa. Corals are opportunistic in acquiring nitrogen; in addition to gaining particulate nitrogen from ingested food, they acquire dissolved nitrogen in the form of nitrate, ammonia and urea.  相似文献   

15.
The southern Great Barrier Reef (GBR), a region that rarely experiences cyclones, was impacted by tropical cyclone (TC) Hamish in March 2009. We documented on-reef physical and habitat conditions before, during and after the cyclone at One Tree Reef (OTR) using data from environmental sensor instrumentation and benthic surveys. Over 5 years of monitoring, ocean mooring data revealed that OTR experienced large swells (4–8 m) of short duration (10–20 min) not associated with a cyclone in the area. These swells may have contributed to the physical disturbance of benthic biota and decline in coral cover recorded prior to and after TC Hamish. During the cyclone, OTR sustained southeasterly gale force winds (>61.2 km h−1) for 18.5 h and swells >6 m in height for 4 h. Benthic surveys of exposed sites documented a 20% drop in live coral cover, 30% increase in filamentous algae cover and the presence of dislodged corals and rubble after the storm. Leeward sites were largely unaffected by the cyclone. Benthic cover did not change in the lagoon sites. Significant rubble movement and infill of the lagoon occurred. Two years after the cyclone, algal cover remained high and laminar corals had not recovered. Total coral cover at impacted sites had continued to decline. Environmental conditions and habitat surveys supported Puotinen’s (Int J Geogr Inf Sci 21:97–120, 2007) model for cyclone conditions that cause reef destruction. While TC Hamish had a major impact on the reef, change in benthic cover over several years was due to multiple stressors. This on-reef scale integration of physical and biological data provided a rare opportunity to assess impacts of a major storm and other disturbances, showing the importance of considering multiple stressors (short-lived and sustained) in assessing change to reef habitats.  相似文献   

16.
The effects of sedimentation on coral reefs are commonly studied at local scales, but larger-scale patterns have been elusive, making it difficult to determine the role of sedimentation in region-wide changes in these ecosystems. We examined the relationships between characteristics of reef-associated surface sediment and benthic composition of 22 reefs around 11 islands of the eastern Caribbean. The terrigenous fraction in surface sediment increased with proximity to a clear source of sediment input. The percent cover of live coral, macroalgae, and turf algae decreased with higher terrigenous sediment fraction, while sponge cover increased. Sites with sediment containing high and low terrigenous fraction differed in coral species assemblages. In particular, the cover of Montastraea annularis complex decreased with increasing terrigenous sediment fraction. The proportion of fine-grained sediment had no effect on benthic composition. These results suggest that sedimentation may play a role in shaping coral reef communities at a regional scale.  相似文献   

17.
The present study (Ishigaki Island, Japan) explored the distance of transmission of chemical cues emitted by live versus dead coral reefs (Exp. 1: High performance liquid chromatography (HPLC) analyses with water sampling station at 0, 1, and 2 km away from the reef) and the potential attraction of these chemical cues by larval fish, crustaceans, and cephalopods (Exp. 2: choice flume experiment conducted on 54 Chromis viridis larvae, 52 Palaemonidae sp larvae, and 16 Sepia latimanus larvae). In the experiment 1, HPLC analyses highlighted that the live coral reef (and not the dead coral reef) produced different and distinct molecules, and some of these molecules could be transported to a distance of at least 2 km from the reef with a reduction of concentration by 14–17-fold. In the experiment 2, C. viridis, Palaemonidae sp, and S. latimanus larvae were significantly attracted by chemical cues from a live coral reef (sampling station: 0 km), but not from a dead coral reef. However, only C. viridis larvae detected the chemical cues until 1 km away from the live coral reef. Overall, our study showed that chemical cues emitted by a live coral reef were transported farthest away in the ocean (at least 2 km) compared to those from a dead coral reef and that fish larvae could detect these cues until 1 km. These results support the assumption of a larval settlement ineffective in degraded coral reefs, which will assist conservationists and reef managers concerned with maintaining biodiversity on reefs that are becoming increasingly degraded.  相似文献   

18.
Abstract: Underwater trails are intended as interpretative tools in marine parks, but concentrating divers and snorkelers in defined areas may negatively affect the surrounding environment. We examined spatial and temporal patterns in the effects of use of underwater trails on coral reef flats in the Great Barrier Reef Marine Park, Australia. Changes in benthic assemblages were assessed on two new trails used by snorkelers, two unused (control) trails, and two undisturbed areas. Total percent coral cover, numbers of broken colonies, and living coral fragments were counted 6 months before and 6 months after the new trails began to be used. Spatial patterns of effects around concentrated nodes of use were determined by stratified sampling around and away from the interpretative signs within each trail. Despite comparatively low levels of use (approximately 15 snorkelers per trail per week), snorkelers caused significant damage to corals along the trails. Branching corals (non- Acropora branching corals and Millepora spp.) were most affected. More damage occurred near the interpretative signs than elsewhere on the trails. The numbers of broken branches and damaged coral colonies in the snorkeling trails increased rapidly but stabilized within 2 months of the commencement of use. There was no significant change in overall benthic assemblages within the trails after 6 months of use by snorkelers. Although concentrating snorkelers within confined trails caused increased damage to corals, the effects can be mitigated by appropriate design and placement of the trails and by managing the behavior of snorkelers. Interpretative information should warn users about the damage they may cause when swimming along the trails. Managing the behavior of snorkelers in the water is likely to be more effective in reducing damage than simply applying fixed limits to the amount of use the trails receive.  相似文献   

19.
Two methods were used to assess the grazing impact of roving herbivorous fishes across a coral reef depth gradient within Pioneer Bay, Orpheus Island, Great Barrier Reef. The first technique employed was a method traditionally used to quantify herbivory on coral reefs via the (indirect) inference of herbivore impact from biomass estimates and reported feeding rates. The second method (one of a range of direct approaches) used remote underwater video cameras to film the daily feeding activity of roving herbivores in the absence of divers. Both techniques recorded similar patterns and relative levels of herbivore biomass across five reef zones at the study site. Indirect estimates of the grazing impact across the reef depth gradient of the three predominant species of herbivore broadly coincided with levels quantified directly by remote underwater video, indicating that, to a large extent, presence does correspond to function. However, the video data suggested that, for individual species in particular reef zones, the absolute level of impact may be less than that inferred from presence. In the case of the parrotfish Scarus rivulatus, the video recordings suggested that, at the reef crest, an average of 52% (±18 SE) of each m2 area of reef would be grazed each month, compared with an area of 109% (±41 SE) suggested by inferring grazing activity from presence alone. Potential biases associated with remote video recorders may explain some of the discrepancy between values. Overall, the results suggest that, for some fish groups, the indirect method of inferring function from presence can provide a good indication of relative levels of herbivore impact across a coral reef. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Ian C. Enochs 《Marine Biology》2012,159(4):709-722
Coral reef cryptofauna are a diverse group of metazoan taxa that live within intra- and inter-skeletal voids formed by framework structures. Despite a hypothesized high biomass and numerous trophic roles, they remain uncharacterized relative to exposed reef communities. Motile cryptofauna were sampled from live coral colonies and dead frameworks typifying four successive levels of degradation on an eastern Pacific pocilloporid reef. Abundances and biomass were higher on live versus dead corals habitats. The density of cryptofauna per volume substrate was highest on dead coral frameworks of intermediate degradation, where complex eroded substrates provide abundant shelters. These data have important and far-reaching ramifications for how the diverse multispecies assemblages that are reef ecosystems will respond to anthropogenic stressors such as those associated with climate change. Extreme levels of coral mortality, bioerosion, and habitat destruction will lead to impairment and eventually loss of ecosystem functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号