首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
珊瑚钨锡矿硅质尾矿中Cd、As、Zn、F富集迁移及环境污染   总被引:1,自引:0,他引:1  
硅质尾矿在释放中性矿山废水(NMD)时所伴生的多元素复合污染问题值得重视。本文以桂东北珊瑚矿尾矿作为研究对象,通过分析该尾矿的组构、元素富集及迁移特性,筛选出主要污染元素,并探讨尾矿胶结层对元素富集迁移的影响。结果表明:(1)该尾矿中Cd、As、Zn及F富集程度较高、可交换态含量(易迁移释放量)较大,是主要的污染元素,而Cu、Pb、Tl产生污染的可能性较小;(2)胶结层对重金属具有再富集作用,但其对可交换态Cd、As(Tl)再富集明显,而对可交换态Cu、Pb、Zn再富集则不明显。胶结层中次生伊利石、石膏等胶结物趋向于吸附富集活性可交换态Cd、As。这表明该尾矿可能迁移释放出含Cd、As浓度较高的NMD。研究表明,硅质尾矿风化释出NMD的同时,可能伴生Cd、As、Zn等重金属以及F的复合污染。  相似文献   

2.
海南岛西部非农用地土壤中的稀土元素地球化学特征   总被引:3,自引:1,他引:2  
对海南岛西部发育典型的12个非农业土壤剖面REE的组成特征及其纵向变化规律进行研究发现,区内非农业土壤剖面不同层位之间的稀土元素具有一定的继承性,风化成土的基岩奠定了土壤中稀土元素的初始含量及土壤中呈现的LREE富集与Eu亏损的特点,而成土过程中稀土元素分异作用则进一步加剧土壤中LREE的富集和Eu亏损,土壤剖面浅部的氧化和水解作用致使Ce在浅层土壤中的富集,并导致由剖面深部至浅部,Ce呈现出正异常增大之趋势。区内稀土元素的赋存状态与稀土元素性质及其所处的土壤地球化学环境有密切联系,同一层中不同形态稀土元素含量总体上表现为残渣态>Fe-Mn结合态>有机态>可交换态(含水溶态)>碳酸盐态,而往土壤深部,残渣态所占比例逐步增大,Fe-Mn结合态、有机态与可交换态(含水溶态)所占比例逐步降低。  相似文献   

3.
选择贵州省新蒲、平坝和罗吏地区的3个碳酸盐岩原地就位风化成土剖面为研究对象,通过对剖面土壤中氟形态、矿物组成、主量地球化学元素和理化性质等的测定实验,讨论了土壤剖面中氟的赋存形态、分布特征及与影响机制。结果表明:罗吏、平坝和新蒲3个剖面残渣态氟含量分别介于896~1 667 mg/kg、897~2 827 mg/kg和1 386~2 852 mg/kg之间,均占各剖面总氟含量的98%以上,3个碳酸盐岩风化形成的土壤剖面中氟主要为残渣结合态;除罗吏剖面外,其它几个剖面吸附性强的无定形铁铝氧化物、结晶态铁铝氧化物与氟含量皆无显著中度以上正相关,有机碳甚至在三个剖面中和氟显著负相关,表明吸附作用对氟富集的贡献有限;次生粘土矿物是氟的主要载体,且主要以残渣态的形式存在于粘土矿物的晶格中,但氟含量与粘粒含量相关性并不显著;采用SPSS软件对氟与各种理化性质进行多元逐步回归分析,回归方程表明镁对氟富集具有重要作用。  相似文献   

4.
海南土壤中稀土元素含量及分布特征   总被引:15,自引:2,他引:13  
对海南四种不同母质来源的土壤样品中的稀土元素含量及分布特征进行了研究,结果表明:除砂岩母质外,海南省其它母质的土壤中稀土元素总量都高于全国土壤、世界土壤和地壳中稀土元素的平均含量;各母质类型土壤中Eu亏损明显。花岗岩上发育的土壤中稀土元素含量最高,总量达419.42mg/kg。砂岩和花岗岩上发育的土壤中LREE相对富集。LREE和HREE在不同母质来源的土壤剖面中的富集、迁移等地球化学行为不完全相同,这说明:土壤发育过程中,稀土元素的含量和分布不仅仅和成土过程、气候及其它地球化学因素有关,而且与母质也有重要的关系,母质往往制约着风化成土过程中稀土元素的地球化学行为。  相似文献   

5.
前人对贵州第四纪碳酸盐岩风化壳红粘土已经进行大量的地球化学研究,但贵州东部大片的新元古界浅变质岩分布区第四纪风化壳地球化学至今尚未被研究。作者以从江大融砖厂新元古界浅变质岩风化壳为研究对象,对该系统的微量元素分布状况进行研究,发现风化壳剖面具有与碳酸盐岩风化红粘土类似的特征,即上部发育褐铁矿层,底部富集Mn、Co、Mo、Cd、Cs、Ba、Tl、Pb等元素,pH值的增加对多种微量元素沉淀富集起至关重要的作用。母岩微量元素含量背景值低及岩石节理发育可能是研究剖面微量元素含量整体表现为亏损特征的主要原因。利用SPSS软件对大融砖厂风化剖面土壤中各种微量元素进行R型聚类分析,根据其相关性大小划分为四类。在聚类过程中,突出地表现出一条原则,即为表生环境中地球化学活动性相似的元素往往归为一类。  相似文献   

6.
矿山开采是造成环境重金属污染的重要途径,揭示重金属在污染区的富集特征及潜在生态效应对重金属污染防治有重要意义。以粤西某硫铁矿区废水池沉积物剖面为研究对象,采用电感耦合等离子质谱仪和分级提取法分析底泥中Tl、Cr、Ni、Co与Cd总量和各化学形态的分布特征及生态风险,并结合矿物组成分析阐明富集及迁移机制。结果表明:底泥中Cd含量远超我国土壤背景值,且Cd主要以弱酸可交换态的形式存在;Tl含量同样远超我国土壤背景值,以残余态的形式为主;Cr和Ni含量均略高于我国土壤背景值,也主要以残余态的形式存在;Co含量小于我国土壤环境背景值,具有较大的弱酸可交换态比例。综合富集因子法和风险评价指数分析,底泥中Cd具有很强的环境潜在危害性;Tl具有强的环境潜在危害性;Cr和Ni具有中等程度的环境潜在危害性;Co没有环境潜在的危害。硫铁矿区废水池底泥是重金属(Cd、Tl、Ni和Cr)重要的汇和潜在二次污染源。硫铁矿区废水池底泥中Cd和Tl高度富集,Ni和Cr具有低—中等程度的富集,废水池底泥的污染防治与资源回收同样值得思考关注。  相似文献   

7.
周睿  秦超  任何军  赵妍 《中国环境科学》2022,42(6):2734-2743
以深圳市水源地周边三种不同类型土壤(赤红壤、红壤、水稻田土)为研究对象,选择具有较高环境含量且毒性较强的Zn、Pb、As为目标,探究其在三种土壤剖面淋溶层、淀积层和母质层(A、B和C层)中的分布特征及赋存形态,同时分析重金属含量、赋存形态与土壤理化性质的相关性,并利用潜在生态危害指数法和潜在迁移指数法从重金属全量和赋存形态两个角度对土壤重金属的生态风险水平进行评估.结果表明:土壤重金属Zn、Pb、As在三类土壤各层中含量较高,但均低于当地土壤环境质量背景值,重金属含量受当地土壤成岩母质影响较大.形态分析表明三种重金属在三类土壤中均以残渣态为主,但红壤中可还原态Pb含量较高,在低pH时易转化为弱酸可溶态,而后释放并迁移.相关性分析表明Zn、Pb的全量与有机质含量呈极显著正相关,可还原态Zn与pH呈显著正相关,Pb和As的弱酸可溶态与可还原态显著正相关,黏粒和粉粒含量对Pb和As的形态分布造成不同程度的影响.三种重金属潜在生态危害级别均为轻微,对水源地安全潜在生态风险影响较小;重金属迁移能力大小在不同土类中依次为红壤土>赤红壤>水稻田土,元素本身迁移能力强弱依次为Zn>As>Pb;赤红壤和水稻田土A层Zn迁移能力最强,B层As最强,C层Zn、Pb、As均较弱;红壤中A层迁移能力Zn最强,B层Zn、Pb、As均较强,C层Zn、Pb、As均较弱.  相似文献   

8.
我国南方水源低氟成因探讨   总被引:1,自引:0,他引:1  
陈静生  尹松  张朝生 《环境科学》1992,13(1):68-70,74
本文比较了我国东部花岗岩上各类地带性土壤中的总氟、水萃取态氟含量及各类土壤对氟离子的吸附能力。总氟含量有自北向南递减的趋势。赤红壤与砖红壤氟含量最低。水萃取态氟含量亦以赤红壤与砖红壤为最低。吸附实验表明,东部土壤对氟离子的吸附能力依次为棕壤<黄壤<红壤<砖红壤。从地球化学角度考虑,我国华南地区水源低氟的原因:①氟在风化-成土过程中已达较强烈淋溶;②氟矿物溶解度低;③土壤对水溶液中氟离子的吸附能力较强。  相似文献   

9.
以海南东寨港红树林湿地为研究区,采集了36个表层沉积物样品,综合分析了沉积物中主微量元素含量、碳氮比(C/N)等地球化学指标,探讨了研究区表层沉积物中汞(Hg)含量的分布特征、来源以及环境因子对表层沉积物中汞富集的影响。结果表明:(1)研究区表层沉积物中Hg含量的平均值为0.33μg/g,表现出潟湖口门和东寨港东岸周围表层沉积物中Hg含量高、东寨港南岸表层沉积物中Hg含量低的特征;(2)表层沉积物的物源为火成岩,表层沉积物中Hg含量与物源的化学风化程度呈负相关关系,且随着Na、Ca的风化流失,Hg也从表层沉积物中迁移释放;(3)表层沉积物中Hg含量与C/N比值具有相关关系,说明内源有机质增强了微生物活性,不利于表层沉积物中Hg的富集;(4)表层沉积物中可迁移释放的Hg,部分以吸附态赋存于沉积物中,影响吸附态Hg迁移行为的主要因素为pH值。  相似文献   

10.
魏洪斌  罗明  向垒  查理思  杨慧丽 《环境科学》2023,44(6):3573-3584
为探究矿业废弃地重金属形态分布特征和迁移转化的影响机制,在广东大宝山矿区矿业废弃地采集土壤和尾砂样品,分析重金属形态特征;采用Pb稳定同位素分析进行矿区污染源解析,并结合矿区典型矿物的X射线衍射分析(XRD)、透射电镜-能谱分析(TEM-EDS)和拉曼分析,以及室内模拟浸出实验,阐明矿区重金属迁移转化的特征和影响因素.结果表明,矿区土壤和沉积物样品中Cd、 Pb和As的赋存形态以残渣态为主,占总量的比例范围为85%~95%;其次为铁锰氧化物结合态(1%~15%).矿区土壤和尾砂中的主要矿物类型为黄铁矿(FeS2)、黄铜矿(CuFeS2)和金属氧化物,同时也存在少量的闪锌矿(ZnS)和方铅矿(PbS).酸性条件(pH=3.0)有利于Cd和Pb从土壤、尾砂和矿物(黄铁矿和黄铜矿)中释放迁移,并从残渣态向非残渣态转化.铅同位素分析显示土壤和尾砂中的重金属(Pb)主要来自采矿区金属矿物的释放,矿区柴油的贡献率在30%以内.多元统计分析表明矿区土壤和尾砂重金属主要来源于3种类型的矿物污染源,即黄铁矿、黄铜矿和闪锌矿+金属氧化物,其中Cd、 As和Pb主...  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

14.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

15.
Single and joint effects of pesticides and mercury on soil urease   总被引:6,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

16.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

17.
A field study was conducted in the Taihu Lake region, China in 2004 to reveal the organochlorine pesticide concentrations in soils after the ban of these substances in the year 1983. Thirteen organochlorine pesticides (OCPs) were analyzed in soils from paddy field, tree land and fallow land. Total organochlorine pesticide residues were higher in agricultural soils than in uncultivated fallow land soils. Among all the pesticides, ΣDDX (DDD, DDE and DDT) had the highest concentration for all the soil samples, ranging from 3.10 ng/g to 166.55 ng/g with a mean value of 57.04 ng/g and followed by ΣHCH, ranging from 0.73 ng/g to 60.97 ng/g with a mean value of 24.06 ng/g. Dieldrin, endrin, HCB and α-endosulfan were also found in soils with less than 15 ng/g. Ratios of p,p'-(DDD DDE)/DDT in soils under three land usages were: paddy field > tree land > fallow land, indicating that land usage inlfuenced the degradation of DDT in soils. Ratios of p,p'-(DDD DDE)/DDT >1, showing aged residues of DDTs in soils of the Taihu Lake region. The results were discussed with data from a former study that showed very low actual concentrations of HCH and DDT in soils in the Taihu Lake region, but according to the chemical half-lives and their concentrations in soils in 1980s, the concentration of DDT in soils seemed to be underestimated. In any case our data show that the ban on the use of HCH and DDT resulted in a tremendous reduction of these pesticide residues in soils, but there are still high amounts of pesticide residues in soils, which need more remediation processes.  相似文献   

18.
The contribution of aliphatic-rich plant biopolymer to sorption of hydrophobic organic compounds is significantly important because of their preservation and accumulation in the soil environment,but sorption mechanism is still not fully understood.In this study, sorption of 1-naphthol by plant cuticular fractions was examined to better understand the contributions of respective fraction.Toward this end,cuticular materials were isolated from the fruits of tomato by chemical method.The tomato cuticle sheet consisted of waxes (6.5 wt%),cuticular monomer (69.5 wt%),and polysaccharide (24.0 wt%).Isotherms of l-naphthol to the cuticular fractions were nonlinear (N value (0.82-0.90)) at the whole tested concentration ranges.The KodKow ratios for bulk cuticle (TC1),dewaxed cuticle (TC2),cutin (TC4),and desugared cuticle (TC5) were larger than unity,suggested that tomato bulk cuticle and cutin are much powerful solption medium.Sorption capability of cutin (TC4) was 2.4 times higher than the nonsaponifiable fraction (TC3).The 1-naphthol interactions with tomato cuticular materials were governed by both hydrophobic-type interactions and polar (H-bonding) interactions. Removal of the wax and polysaccharide materials from the bulk tomato cuticle caused a significant increase in the sorption ability of the cuticular material.There was a linear negative trend between K_(oc) values and the amount of polysaccharides or fraction's polarities ((N O)/C);while a linear positive relationship between K_(oc) values and the content of cutin monomer (linear R~2=0.993) was observed for present in the cuticular fractions.Predominant sorbent of the hydrophobic organic compounds (HOCs) in the plant cuticular fraction was the cutin monomer,contributing to 91.7% of the total sorption of tomato bulk cuticle.  相似文献   

19.
Common silver barb,Puntius gonionotus,exposed to the nominal concentration of 0.06 mg/L Cd for 60 d,were assessed for histopathological alterations(gills,liver and kidney),metal accumulation,and metallothionein(MT)mRNA expression.Fish exhibited pathological symptoms such as hypertrophy and hyperplasia of primary and secondary gill lamellae,vacuolization in hepatocytes,and prominent tubular and glomerular damage in the kidney.In addition,kidney accumulated the highest content of cadmium,more than gills and liver.Expression of MT mRNA was increased in both liver and kidney of treated fish.Hepatic MT levels remained high after fish were removed to Cd-free water.In contrast,MT expression in kidney was peaked after 28 d of treatment and drastically dropped when fish were removed to Cd-free water.The high concentrations of Cd in hepatic tissues indicated an accumulation site or permanent damage on this tissue.  相似文献   

20.
Seed induces and promotes the crystallization of calcium phosphate, and acts as carrier of the recovered phosphorus (P). In order to select suitable seed for P recovery from wastewater, three seeds including Apatite (AP), Juraperle (JP) and phosphate-modified Juraperle (M-JP) were tested and compared. Batch and fixed-bed column experiments of seeded crystallization of calcium phosphate were undertaken by using synthetic wastewater with 10 mg/L P phosphate. It shows that AP has bad enduring property in the crystallization process, while JP has better performance for multiple uses, and M-JP is a hopeful seed for P recovery by crystallization of calcium phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号