首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对化学镀镍废水氨氮浓度高、去除难度较大等特点,以预处理后的实际化学镀镍废水为试验对象,采用次氯酸钠氧化法脱除废水中的剩余氨氮。分别研究NaClO溶液投加量、反应时间、初始pH值及反应温度对氨氮去除效果的影响,得到较适宜的反应条件为:NaClO溶液投加量为1800 mg/L,反应时间为30 min,初始pH值为6.0~7.0,反应温度为10~30℃。在此条件下,废水氨氮去除率达到91%以上,剩余氨氮浓度低于15 mg/L,满足GB 21900—2008《电镀污染物排放标准》表2中对氨氮的排放限值。结果表明:次氯酸钠氧化作为深度处理方式脱除化学镀镍废水中氨氮是高效可行的。  相似文献   

2.
通过考察某油田含油废水中COD、石油类污染物、悬浮物、氨氮以及挥发酚等污染物的浓度变化,评估了UASB-SMBR组合工艺处理油田含油废水的可行性以及聚四氟乙烯膜的抗油污性能.实验结果表明该工艺对含油废水中COD、石油类污染物、悬浮物、氨氮以及挥发酚等各类污染物质的平均去除率均在96%以上,工艺出水水质满足国家污水综合排放标准.膜污染的加重使得膜透水率逐渐降低,但在化学清洗之后透水率恢复到95%以上.  相似文献   

3.
腈纶废水是典型的难降解、高氨氮废水。为评价电化学氧化法对腈纶废水深度处理的实际运行效果,通过建立腈纶废水处理中试装置,考察了其对经AO生物处理后腈纶废水中COD、氨氮、总氮、BOD5等污染物的去除效果,分析了其运行能耗。结果表明:电化学氧化中试装置对经生物处理后腈纶废水中COD去除率为39.2%。稳定运行后,该装置对废水中氨氮、总氮的去除率分别为100%与75.1%。经电化学氧化处理后,废水中的COD、氨氮浓度达GB 8978—1996《污水综合排放标准》一级排放标准要求。电化学氧化处理不能显著提高腈纶废水的可生化性。  相似文献   

4.
采用电氯化氧化法处理高浓度含有机污染物和氨氮的兰炭废水,考查了NaCl添加量、外加电压、初始pH值等对废水中化学需氧量(COD)和氨氮(NH3-N)去除效果的影响,并对电化学氧化过程及污染物氧化机理进行深入分析.研究表明,随着NaCl添加量、外加电压及电解时间的增加,废水中COD与NH3-N去除率逐渐增大.在NaCl添加量为60g/L、电压6V、极板间距10mm、废水初始pH值不变、电解时间3h的条件下,兰炭废水中COD和NH3-N去除率分别为84.31%和95.77%,远高于不添加NaCl时的41.18%和34.10%.废水中COD和氨氮的降解主要归因于间接氧化,阳极反应产生的Cl2水解生成具有强氧化性的ClO-.电解过程中大部分NH3-N在ClO-的作用下转化为N2,而小部分以含氮化合物的形式存在.兰炭废水中有机污染物主要以酚类物质为主,电化学处理后其含量大幅降低,部分会转化为醚类或者烷烃类物质.  相似文献   

5.
两种膜生物反应器处理印染废水的对比试验研究   总被引:2,自引:0,他引:2  
针对印染废水成分复杂、色度大、浓度高且生物难降解物质多等特点,采用了混凝沉淀法对印染废水进行预处理,而后分别采用新型海藻式膜生物反应器(MBR)和传统帘式膜生物反应器对印染废水进行活性污泥法处理试验研究。通过对化学需氧量(COD)、生化需氧量(BOD)、氨氮(NH3-N)、总氮(TN)、总磷(TP)、色度、浊度等水质指标连续进行测定、分析与处理,考察两种膜生物反应器对印染废水的降解效果,并观察系统运行情况和膜组件污染状况。试验结果表明:海藻式MBR对印染废水的处理效果良好,出水浊度低于0.3NTU,对COD、BOD、色度、氨氮、总氮的去除率分别可达90%、94%、91.4%、87.8%、86.4%。海藻式MBR在各项指标上均明显优于传统帘式MBR,且能够降低MBR膜丝根部的污染,清洗更方便、更有效。  相似文献   

6.
化学沉淀法处理高浓度氨氮废水工艺条件研究   总被引:5,自引:3,他引:2  
以Na2HPO4和MgSO4为沉淀剂,对氯化铵、硫酸铵、氨水以及碳酸氨等四种高浓度氨氮废水进行化学沉淀法脱氮处理。正交试验的结果表明,废水初始pH值是影响氨氮去除率最主要的因素,Mg2+和PO43+的投加量与废水中氨氮的比值也对氨氮去除率有重要影响。单因素试验进一步优化表明,对于此四种氨氮废水,当初始氨氮浓度为1500mg/L时,去除氨氮的最佳工艺条件为:pH10.1~10.5,Mg:N和P:N的比例分别为1.2~1.4和1.0~1.2,此时各废水中氨氮的去除率可达到93%~99%,磷的利用率达到97%以上。  相似文献   

7.
制药废水厌氧氨氧化脱氮性能与毒性机理的研究   总被引:11,自引:2,他引:9       下载免费PDF全文
采用上流式厌氧氨氧化污泥床反应器考察了制药废水的生物脱氮性能,并采用发光细菌急性毒性试验研究了制药废水、厌氧氨氧化处理进出水的生物毒性,以及制药废水对厌氧氨氧化污泥的蓄积毒性.结果表明,当制药废水稀释30倍以上时,毒性物质浓度低于毒性抑制浓度阈值,厌氧氨氧化反应器运行性能良好,平均氨氮和亚硝氮去除率分别达87.8%和95.6%,平均总氮容积负荷可达10.38 kg/(m3×d);但当进水稀释小于20倍时,毒性物质浓度高于毒性抑制浓度阈值,反应器运行性能恶化,平均氨氮和亚硝氮去除率降至24.6%和26.0%,直到完全消失.制药废水、厌氧氨氧化反应器进出水均具有较强的生物毒性,在相对发光度为50%时,所对应的制药废水、反应器进水、出水的稀释倍数分别为70.5,5.19,7.77倍.经厌氧氨氧化处理后,出水毒性增强,说明制药废水毒性物质可在厌氧氨氧化污泥中蓄积,具有蓄积毒性.  相似文献   

8.
探究活性炭-电化学氧化联用工艺对制药废水进行预处理,以石墨-PTFE复合电极为阴极、Fe电极为阳极,通过在阴极表面通入空气的方式产生H2O2,进而与Fe2+发生Fenton反应。考察了单一电化学法与活性炭-电化学氧化联用工艺对废水降解过程的影响,分析出水中COD、氨氮、盐分的变化情况。结果表明,电化学法可有效降低水中有机污染物,同时将活性炭与电化学氧化联用显示出更高的处理效果,尤其在处理高浓废水时,COD、氨氮降解率可达82%和64%,对废水预处理领域有一定的指导意义。  相似文献   

9.
以FeCl3改性海藻酸钠(SA)膜,将其由水溶性膜改性为不溶性膜。用电子显微镜观察其表面形态IR,分析表明Fe3+与SA膜中的-OOH和-OH发生交联。将此膜应用于电渗析去除高浓度氨氮废水的处理研究中,结果表明,该膜对氨氮的选择透过性较好,能有效地透过废水中氨氮,氨氮透过率可达80%。  相似文献   

10.
厌氧铁氨氧化(ammonium oxidation coupling with iron reduction,Feammox)反应是一种在厌氧条件下,由厌氧铁氨氧化菌驱动,以三价铁为电子受体,氧化氨氮的生物化学途径,它可以用于去除水体中的氨氮.为提高厌氧铁氨氧化菌对氨氮废水处理效果,采用"氢氧化钠共沉淀-溶胶-凝胶"法制备粒径为1~5mm的磁性壳聚糖凝胶球(magnetic chitosan hydrogel beads,MCHBs),将厌氧铁氨氧化菌固定,研究其对废水中氨氮去除效果和影响因素,并与游离厌氧铁氨氧化菌对废水氨氮去除效率作对比.制备的MCHBs进行X射线衍射(XRD)和振动样品磁强(VSM)等表征分析.结果表明,MCHBs为铁磁性、结晶度高,饱和磁化强度达29.46 emu·g~(-1).MCHBs固定厌氧铁氨氧化菌比游离菌具有更高的氨氧化和铁还原速率,平均增幅为42.96%和20.75%,以MCHBs(1~2 mm)固定厌氧铁氨氧化菌的效果最显著(P0.05).进一步研究发现,不适宜氨氮浓度、温度和pH下,MCHBs(1~2 mm)固定厌氧铁氨氧化菌氧化氨氮的能力均比游离菌高.初始氨氮浓度60.00 mg·L~(-1)、温度25℃和pH 4.50时,厌氧铁氨氧化效果较好,主要产物为硝态氮和二价铁,16 d时MCHBs(1~2 mm)固定厌氧铁氨氧化菌对氨氮去除率高达53.62%.这些结果都表明以MCHBs固定厌氧铁氨氧化菌后,能起到增强厌氧铁氨氧化反应去除废水氨氮的目的.  相似文献   

11.
厌氧氨氧化技术处理高浓度氨氮工业废水的可行性分析   总被引:5,自引:2,他引:5  
厌氧氨氧化(Anammox)技术是一种新型自养生物脱氮工艺,处理低C/N比、高浓度氨氮废水具有突出优势.本文总结了厌氧氨氧化技术的应用现状和不同工业行业高氨氮废水的水质特征,分析了氨氮、有机物等因素对厌氧氨氧化菌的影响,讨论了厌氧氨氧化技术处理高氨氮工业废水的可行性,最后对其在工业废水处理领域的研究重点做出了展望.  相似文献   

12.
新型固定化细胞膜反应器脱氮研究   总被引:18,自引:2,他引:18       下载免费PDF全文
研究了一种新型的废水土生脱氮反应器,即利用固定化细胞膜将反应器一隔为二,膜的侧与好氧的氨氮废水接触,另一侧与缺氧的乙醇 水溶液(反硝化碳源)接触,固定于膜中的硝化细菌将氨氮氧化成亚硝氮和硝氮,随即被同一膜中的反硝化细菌还原成氮气。硝化细菌和反硝化细菌混合固定于膜内时的氨氧化速率约为硝化细菌单独固定时的2倍。未发现碳源重复利用对脱氮过程产生不利影响。此新型反应器 可以稳定运行50天以上。  相似文献   

13.
低碳氮比猪场废水短程硝化反硝化-厌氧氨氧化脱氮   总被引:13,自引:4,他引:9  
针对低碳氮比猪场废水传统脱氮法碳源不足的问题,采用SBBR反应器进行短程硝化反硝化-厌氧氨氧化联合脱氮.实验表明,短程硝化反硝化预处理可为厌氧氨氧化创造良好的进水条件;经预处理的猪场废水厌氧氨氧化脱氮效果显著,氨氮、亚硝态氮和总氮的平均去除率分别为91.8%、 99.3%、 84.1%,废水中残留有机物未对厌氧氨氧化效果产生明显影响,氨氮、亚硝态氮、硝态氮平均变化量之比为 1∶1.21∶0.24.色质联用分析结果显示,猪场废水中有机物成分在厌氧氨氧化反应前后未发生明显变化,主要化合物为酯类和烷烃类物质;特殊功能菌种检测结果表明,实验条件下的微生物系统是一个厌氧氨氧化菌与硝化菌、亚硝化菌和反硝化菌共存的系统,厌氧氨氧化菌是该系统主要脱氮功能菌.  相似文献   

14.
催化臭氧氧化预处理垃圾渗滤液   总被引:2,自引:0,他引:2  
采用浸渍法制备载铜活性炭催化剂,系统地研究了催化氧化法对垃圾渗滤液中的COD和氨氮去除效果,对臭氧氧化和催化臭氧氧化效率进行了对比。在该方法下制备的催化剂中,活性组分金属铜的含量为2.89%。结果表明:在投加催化剂的情况下,COD的去除效率可得到显著提高。实验结果表明:处理COD为4980mg/L,氨氮为2100mg/L的垃圾渗滤液废水,在室温、pH为3、反应时间为120min、催化剂投加量为150g/L、臭氧的流量为5.2mg/min的条件下,废水中的COD及氨氮的去除率分别达到达81.9%和99.04%。  相似文献   

15.
双甘膦废水中含有高浓度总磷、有机磷、甲醛、氰化物、氨氮、COD,运用三效蒸发+强氧化+两级化学除磷+UASB+兼氧+好氧组合处理双甘膦废水。研究结果表明双甘膦废水排放满足《污水综合排放标准》(G88978—1996)二级排放标准。  相似文献   

16.
钟琼  方丽 《环境工程》2012,30(4):36-38
氧化部分氨氮到亚硝酸氮,然后进行完全自养厌氧氨氧化反应,即称SHARON-ANAMMOX工艺,该工艺是近年开发的针对高浓度氨氮废水生物处理较为经济合理的技术之一。其过程控制的关键是第一步亚硝化(SHARON)工艺积累亚硝酸菌,并使氨氮氧化到亚硝酸氮的转化率控制在50%左右,以最合理满足厌氧氨氧化对底物的需求。在进水pH=7.6,ρ(氨氮)=750 mg/L时顺利启动了SHARON反应器,氨氮的转化率达50%左右。研究结果表明,进一步提高氨氮浓度和进水pH,反应器可以维持稳定运行。  相似文献   

17.
采用电催化氧化法处理化工园区废水,运行效果表明电催化氧化法适用于化工园区废水的深度处理,污染物的去除率比较高、运行效果很稳定、操作也很简单。废水经处理后,出水CODCr的平均浓度为5mg/L,CODCr的去除率达到了89.6%;氨氮的平均浓度为0.5 mg/L,氨氮的去除率达到了89.8%。参照《子牙河流域水污染物排放标准》(DB 13/2796-2018),与其对重点控制区设定的排放限值比较发现,电催化氧化法均能使水质达到更优的水平。  相似文献   

18.
周宁  程迪  胡筱敏 《环境工程》2012,(Z2):44-47
研究了采用液膜分离技术从氧化铁行业生产氨氮废水中处理氨氮的工艺,并通过实际工业废水进行了验证。主要考察了表面活性剂的用量、外水相pH值、内相试剂的选择、油内比、乳水比等因素对氨氮去除率的影响。通过实验结果表明:以3%EA表面活性剂(质量分数),10%内水相硫酸浓度,油内比为2∶1的乳状液膜体系,处理初始浓度为1057mg/L氧化铁行业氨氮废水,在pH值为11.8,乳水比Rew为1∶8的传质条件下,氨氮去除率可达94%以上。  相似文献   

19.
锰矿石氧化-磷酸铵镁沉淀预处理焦化废水   总被引:3,自引:1,他引:3  
针对焦化废水中含有高浓度CODCr,挥发酚和氨氮的特性,提出锰矿石氧化-磷酸铵镁(鸟粪石)沉淀两步预处理焦化废水的方法. 以磷酸、硫酸调节焦化废水pH至1.2,利用锰氧化物在酸性条件下的强氧化性,氧化去除废水中的挥发酚和硫化物,去除率分别为99%和100%,同时CODCr的去除率达70%,出水pH升高至1.8;向上述锰矿石处理后的废水投加菱苦土粉(轻烧氧化镁)进行磷酸铵镁沉淀试验. 结果表明,在固液比为18 g/L,搅拌反应24 h后,氨氮以磷酸铵镁沉淀形式得到去除,去除率达90.1%,pH升高至9.4. X射线粉末衍射(XRD)和透射电镜(TEM)对沉淀产物表征分析表明,磷酸铵镁沉淀是在菱苦土颗粒表面形成和生长的.   相似文献   

20.
为了高效处理水产养殖废水,采用了生物接触氧化-滴滤(以陶粒为滤料)组合工艺,并对该组合工艺的处理效果进行考察。以生物接触氧化池中组合填料的密度、停留时间以及滴滤的水力负荷作为研究对象,通过对CODMn、氨氮、TN等参数的分析,得到了该组合工艺的处理效果。研究表明:当工艺中组合填料密度(组合填料与废水的体积比)为9.24%,生物接触氧化水力停留时间为0.85 h,滴滤的水力负荷为27.2 m3/(m2·d)时,CODMn、氨氮、TN、TP的去除率可分别高达55.31%、34.31%、57.64%和20.25%。证明采用该组合工艺净化水产养殖废水具有可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号