首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
This paper reports an experimental investigation of converting waste medium density fibreboard (MDF) sawdust into chars and activated carbon using chemical activation and thermal carbonisation processes. The MDF sawdust generated during the production of architectural mouldings was characterised and found to have unique properties in terms of fine particle size and high particle density. It also has a high content of urea formaldehyde resin used as a binder in the manufacturing of MDF board. Direct thermal carbonisation and chemical activation of the sawdust by metal impregnation and acid (phosphoric acid) treatment prior to pyrolysis treatment were carried out. The surface morphology of the raw dust, its chars and activated carbon were examined using scanning electron microscopy (SEM). Adsorptive properties and total pore volume of the materials were also analysed using the BET nitrogen adsorption method. Liquid adsorption of a reactive dye (Levafix Brilliant red E-4BA) by the derived sawdust carbon was investigated in batch isothermal adsorption process and the results compared to adsorption on to a commercial activated carbon (Filtrasorb F400). The MDF sawdust carbon exhibited in general a very low adsorption capacity towards the reactive dye, and physical characterisation of the carbon revealed that the conventional chemical activation and thermal carbonisation process were ineffective in developing a microporous structure in the dust particles. The small size of the powdery dust, the high particle density, and the presence of the urea formaldehyde resin all contributed to the difficulty of developing a proper porous structure during the thermal and chemical activation process. Finally, activation of the dust material in a consolidated form (cylindrical pellet) only achieved very limited improvement in the dye adsorption capacity. This original study, reporting some unexpected outcomes, may serve as a stepping-stone for future investigations of recycle and reuse of the waste MDF sawdust which is becoming an increasing environmental and cost liability.  相似文献   

2.
In the present study the interactions between the main constituents of the refuse derived fuel (plastics, paper, and wood) during pyrolysis were studied. Binary mixtures of polyethylene-paper and polyethylene/sawdust have been transformed into pellets and pyrolyzed. Various mixtures with different composition were analyzed and pyrolysis products (tar, gas, and char) were collected. The mixtures of wood/PE and paper/PE have a different behavior. The wood/PE mixtures showed a much reduced interaction of the various compounds because the yields of pyrolysis products of the mixture can be predicted as linear combination of those of the pure components. On the contrary, a strong char yield increase was found at a low heating rate for paper/PE mixtures. In order to explain the results, the ability of wood and paper char to adsorb and convert the products of PE pyrolysis into was studied. Adsorption and desorption tests were performed on the char obtained by paper and wood by using n-hexadecane as a model compound for the heavy products of PE pyrolysis.  相似文献   

3.
The pyrolysis and co-pyrolysis behaviors of polyethylene (PE), polystyrene (PS) and polyvinyl chloride (PVC) under N2 atmosphere were analyzed by Thermal gravimetric/Fourier transform infrared (TG/FTIR). The volatile products were analyzed to investigate the interaction of the plastic blends during the thermal decomposition process. The TGA results showed that the thermal stability increased followed by PVC, PS and PE. The pyrolysis process of PE was enhanced when mixed with PS. However, PS was postponed when mixed with PVC. As for PE and PVC, mutual block was happened when mixed together. The FTIR results showed that the free radical of the decomposition could combine into a stable compound. When PE mixed with PVC or PS, large amount of unsaturated hydrocarbon groups existed in products while the content of alkynes was decreased. The methyl (CH3) and methylene (CH2) bonds were disappeared while PVC mixed with PE.  相似文献   

4.
The chemical structure of liquid products of the pinewood sawdust (W) co-pyrolysis with polystyrene (PS) and polypropylene (PP) with and without the zinc chloride as an additive was investigated. The pyrolysis process was carried out at 450 °C with the heating rate of 5 °C/min. The yield of liquid products of pyrolysis was in the range of 37–91 wt% and their form was liquid or semi-solid depending on the composition of the wood/polymer blend. The zinc chloride addition to wood/polymer blends has influenced the range of samples decomposition as well as the chemical structure of resulted bio-oils. All bio-oils from wood/polypropylene blends were two-phase (liquid and solid). Contrarily, all bio-oils obtained from biopolymer/polypropylene blends with zinc chloride added were yellow liquids. All analyses proved that the structure and the quality of bio-oil strongly depend on both the composition of the blend and the presence of ZnCl2 as an additive. The FT-IR analyses of oils showed that oxygen-containing groups and hydrocarbons content highly depend on the composition of biomass/synthetic polymer mixture. The fractionation of bio-oils by column chromatography with four different solvents was followed by GC–MS analysis. Results confirmed the significant removal and/or transformation of oxygen-containing organic compounds due to the zinc chloride presence during pyrolysis process.  相似文献   

5.
In the present work, sawdust reinforced polypropylene composites were fabricated using an extruder and an injection molding machine. Raw sawdust was chemically treated with benzene diazonium salt in order to improve the mechanical properties of the composites. The effect of the chemically treated sawdust reinforced PP composites was evaluated from their mechanical and surface morphological properties. The values of the mechanical properties of the chemically treated sawdust–PP composites were found to be significantly higher than those of the raw ones. Water uptake tests revealed that composites prepared from the chemically treated sawdust absorb lower amount of water compared to the ones prepared from raw sawdust, suggesting that hydrophilic nature of the cellulose in the sawdust has significantly decreased upon chemical treatment. The surface morphology obtained from scanning electron microscopy (SEM) showed that raw sawdust–PP composites possess surface roughness with extruded filler moieties, and weak interfacial adhesion between the matrix and the filler while the chemically treated one showed improved filler–matrix interaction. This indicates that better dispersion of the filler with the PP matrix has occurred upon chemical treatment of the filler.  相似文献   

6.
This study aims to assess the composting process of sawdust, wheat-straw and chicken manure and to define the best blend proportion as a function of organic matter loss. Chicken manure, sawdust, and wheat-straw were mixed at different ratios and composted in reactors. The obtained outcomes revealed that the optimum mixture ratio was found in a mixture of 60 % chicken manure, 30 % sawdust, and 10 % wheat-straw. Three kinetic parameters were used in the models including daily process average temperature, area characterized by temperatures under the process temperature curve, and area characterized by temperatures between the ambient and process temperature (ALAT) as an alternative of process temperature. In addition to these statistical values, modelling efficiency was defined. Statistical analyses revealed that all the evaluated models were found suitable for this study; however, when ALAT was used as a function of temperature, the predictability level of all the models improved.  相似文献   

7.
This work was aimed at improving the pyrolysis oil quality of waste rubber by adding larch sawdust. Using a 1 kg/h stainless pyrolysis reactor, the contents of sawdust in rubber were gradually increased from 0%, 50%, 100% and 200% (wt%) during the pyrolysis process. Using a thermo-gravimetric (TG) analyzer coupled with Fourier transform infrared (FTIR) analysis of evolving products (TG–FTIR), the weight loss characteristics of the heat under different mixtures of sawdust/rubber were observed. Using the pyrolysis–gas chromatography (GC)–mass spectrometry (Py–GC/MS), the vapors from the pyrolysis processes were collected and the compositions of the vapors were examined. During the pyrolysis process, the recovery of the pyrolysis gas and its composition were measured in-situ at a reaction temperature of 450 °C and a retaining time of 1.2 s. The results indicated that the efficiency of pyrolysis was increased and the residual carbon was reduced as the percentage of sawdust increased. The adding of sawdust significantly improved the pyrolysis oil quality by reducing the polycyclic aromatic hydrocarbons (PAHs) and nitrogen and sulfur compounds contents, resulting in an improvement in the combustion efficiency of the pyrolysis oil.  相似文献   

8.
Sludge as dioxins suppressant in hospital waste incineration   总被引:1,自引:0,他引:1  
Nitrogen containing compounds such as ammonia, urea and amines can effectively inhibit the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Sewage sludge accumulates both sulfur and nitrogen during wastewater treatment so it could be used to reduce PCDD/Fs formation. Indeed, it is observed in this study that the gas evolving from the sludge drying process can significantly suppress chlorobenzene (CBz) and PCDD/Fs formation from fly ash collected from a hospital waste incinerator. For instance, the reduction of hexachlorobenzene (HxCBz) and PCDD/Fs amount was 92.1% and 78.7%, respectively, when the drying gas evolving from 2g sludge flew through 2g fly ash. These tests were conducted in the frame of projects devoted to hospital waste incineration. The disposal technology for hospital waste (HW), developed in this institute, features rotary kiln pyrolysis combined with post-combustion followed by flue gas cleaning. Hence, some preliminary tests were devoted to investigate dioxins suppression by co-pyrolysis and co-combustion of polyvinyl chloride (PVC) and sludge in lab scale. More experimental research will be conducted to appropriately assess these effects of sludge on PCDD/Fs emissions during co-pyrolysis/combustion of HW and sludge.  相似文献   

9.
The degradability of the compatible thermoplastic starch/polyethylene film was investigated by weight loss percent (WLP), Fourier Transform Infrared (FT-IR) Spectroscopy, and Scanning Electron Microscope (SEM). The compatible film was prepared by using the particles of thermoplastic starch/polyethylene blends that were produced by one-step reactive extrusion. The weight of the film after degradation reduced more than 3% for 30 days and 4% for 60 days. The FTIR results revealed that both starch and polyethylene in the film exhibited varying degrees of degradation. SEM photographs of the films after degradation showed that starch particles in the film disintegrated into smaller particles or separated out of the film surface. Degradation studies demonstrated that the compatible thermoplastic starch/polyethylene film had increased degradability at the given degradable environment. The information implies that this film could be utilized as a degradable plastic.  相似文献   

10.
In a urine diversion dry toilet (UDDT), the urine and faeces are collected separately in order to recycle their nutrient content unmixed. In a UDDT, an additive e.g. lime, wood ash, dry soil or sawdust, depending on which one is easily accessed by the users, is usually sprinkled to the faeces after each defecation. The purpose of the additive is primarily to keep away the flies and odours and to contribute to primary treatment of the faeces. In this paper, ash and sawdust were applied separately to source-separated faeces during the collection phase, and then the die-off of indicators and pathogens in the mixtures was studied. The die-off of E. coli in the faeces/ash mixture was faster initially (first 7 days) compared to that achieved in the faeces/sawdust mixture even though the die-off achieved after 30–50 days was nearly similar for both mixtures. E. coli was not detected in faeces/ash after about 2 months, but was detected after 2 months in the faeces/sawdust mixture. Enterococcus spp. did not decrease below detection in faeces/ash or faeces/sawdust mixture but higher numbers (difference of about 2 logs) were detected at all times in faeces/sawdust than in faeces/ash mixture. The difference in the die-off in the mixtures of faeces/ash and faeces/sawdust was attributed to the differences in the characteristics of the additives, namely, high alkaline mineral content (giving high pH) and lower moisture content of ash compared to sawdust. It is recommended to increase use of ash as additive over sawdust in urine diversion dry toilets.  相似文献   

11.
The continuous increase in generation of solid wastes and gradual declining of fossil fuels necessities the development of sustainable conversion technologies. Recent studies have shown that the addition of biomass with hydrogen-rich co-reactants (plastics) altogether enhances the quality of bio-fuels using pyrolysis process. It was observed that red mud (which is produced as by-product in Bayer process) was used as a catalyst in few conversion process. In this study, pyrolysis of biomass (Pterospermum acerifolium) and waste plastic mixture with activated red-mud catalyst was investigated using thermo-gravimetric analysis. The kinetic parameters (activation energy and pre-exponential factor) of this process were determined using distributed activation energy model (DAEM). The DAEM was effectively applied to decide the activation energy (E) and pre-exponential factor (A) for each sample at various conversions during the catalytic co-pyrolysis. The biomass, plastic, biomass–plastic, and biomass–plastic–catalyst exhibited activation energies in the ranges of 78–268, 172–218, 67–307, and 202–292 kJ/mol, respectively.  相似文献   

12.
Application of wood plastic composites (WPCs) obtained from recycled materials initially intended for landfill is usually limited by their composition, mainly focused on release of volatile organic compounds (VOCs) which could affect quality or human safety. The study of the VOCs released by a material is a requirement for new composite materials. Characterization and quantification of VOCs of several WPC produced with low density polyethylene (LDPE) and polyethylene/ethylene vinyl acetate (PE/EVA) films and sawdust were carried out, in each stage of production, by solid phase microextraction in headspace mode (HS-SPME) and gas chromatography–mass spectrometry (GC–MS). An odor profile was also obtained by HS-SPME and GC–MS coupled with olfactometry analysis. More than 140 compounds were observed in the raw materials and WPC samples. Some quantified compounds were considered WPC markers such as furfural, 2-methoxyphenol, N-methylphthalimide and 2,4-di-tert-butylphenol. Hexanoic acid, acetic acid, 2-methoxyphenol, acetylfuran, diacetyl, and aldehydes were the most important odorants. None of the VOCs were found to affect human safety for use of the WPC.  相似文献   

13.
In this study we observed the production of volatile fatty acids (VFAs) during the composting process of compost heaps in two different bioreactors (open and closed) at three different depths (0, 40 and 80 cm). The compost was prepared as a mixture of bio-waste, horse manure, grass and sawdust to ensure sufficient pH conditions in compost heaps. VFA contents in the composting materials were analysed weekly over 14–119 d. The degradation process was monitored, along with temperature, pH, total organic carbon, oxidizable carbon and mono- and oligosaccharides. VFA contents were evaluated with regard to the depth of the sample site in the compost heap and to conditions in the bioreactors. The maximum VFA occurrence was observed during the first 35 d; acetic and propionic acids in particular were determined to occur in each sample. Considerable variations in their formation and elimination were observed in the two bioreactors as well as at the various depths in the compost heaps. Significant correlations were found between individual VFAs, as well as between VFA concentrations and organic carbon contents.  相似文献   

14.
Development of a cheap system for reuse of glycerol by-product discharged from the biodiesel fuel (BDF) production process is needed in parallel with development of a low-cost BDF production system. In this article, optimization of compost fermentation of glycerol by-product was studied. The type and amount of additive nitrogen source was studied, and good utilization of glycerol was observed when 0.5 g of urea was added to a mixture of 625 g dry sawdust, 25 g of microbial seed, and 50 g of glycerol by-product. To achieve efficient compost fermentation, repeated batch fermentation was applied and five batch cultures were repeated. Although the pH level and nitrogen and water contents were maintained at suitable levels for microbial growth, the glycerol consumption rate gradually decreased with accumulation of oily compounds in the compost. Finally, a material cost evaluation of the compost fermentation proposed in this study was performed. The total material cost decreased to ¥0.57 /l of BDF when employing an existing compost system for the fermentation process, although sawdust used for mushroom cultivation was used in this study at the very high cost of ¥123 /kg dry sawdust. However, the cost of disposal of the glycerol byproduct as an industrial waste was ¥5.2 /l of BDF produced; therefore, there might be an economical advantage to compost fermentation of glycerol by-product from BDF production.  相似文献   

15.
Sawdust has been proven to be a good bulking agent for sludge composting; however, studies on the most suitable ratio of sludge:sawdust for sludge composting and on the influence of the sludge nature (aerobic or anaerobic) on the composting reaction rate are scarce. In this study two different sewage sludges (aerobic, AS, and anaerobic, ANS) were composted with wood sawdust (WS) as bulking agent at two different ratios (1:1 and 1:3 sludge:sawdust, v:v). Aerobic sludge piles showed significantly higher microbial activity than those of anaerobic sludge, organic matter mineralization rates being higher in the AS mixtures. The lowest thermophilic temperatures during composting were registered when the anaerobic sludge was mixed with sawdust at 1:1 ratio, suggesting the presence of substances toxic to microorganisms. This mixture also showed the lowest decreases of ammonium during composting. All this matched with the inhibitory effect on the germination of Lepidium sativum seeds of this mixture at the first stages of composting, and with its low values of microbial basal respiration. However, the ANS+WS 1:3 compost developed in a suitable way; the higher proportion of bulking agent in this mixture appeared to have a diluting effect on these toxic compounds. Both the proportions assayed allowed composting to develop adequately in the case of the aerobic sludge mixture, yielding suitable composts for agricultural use. However, the ratio 1:1 seems more suitable because it is more economical than the 1:3 ratio and has a lower dilution effect on the nutritional components of the composts. In the case of the anaerobic sludge with its high electrical conductivity and ammonium content, and likely presence of other toxic and phytotoxic substances, the 1:3 ratio is to be recommended because of the dilution effect.  相似文献   

16.
The paper focuses on studying the conversion of rice husks and sawdust into liquid fuel. Rice husks, sawdust and their mixture are pyrolyzed at temperatures between 420 and 540 degrees C, and the main product of liquid fuel is obtained. The experimental result shows that the yield of liquid fuel depends on various factors such as feedstock and temperature. The maximum yields for rice husks, sawdust and their mixture are 56%, 61% and 60% at 465, 490 and 475 degrees C, respectively. Analyses with GC-MS and other apparatus show that the liquid fuel is a complicated compound with low caloric value and can be directly used as a fuel oil for combustion in a boiler or a furnace without any upgrading. Alternatively, the fuel can be refined to be used by vehicles.  相似文献   

17.
The pyrolysis characteristics of six representative organic components of municipal solid waste (MSW) and their mixtures were studied in a specially designed thermogravimetric analysis apparatus with a maximum recorded heating rate of 864.8 degrees Cmin(-1). The pyrolysis behavior of individual components was described by the Avrami-Erofeev equation. The influence of final temperature on individual components was studied, and it was concluded that final temperature was a factor in reaction speed and intensity, but that it played only a limited role in determining the reaction mechanism. The interactions between different components were evaluated, and it was concluded that the interaction between homogeneous materials was minimal, whereas the interaction between polyethylene and biomass was significant.  相似文献   

18.
In this study, refuse plastic fuel (RPF) was copyrolyzed with low-quality coal and was gasified in the presence of a metal catalyst and steam. Some metal catalysts, such as Ni, NiO, and Mg, and mixtures of these with base promoters such as Al2O3 and Fe2O3 were employed in the pyrolysis and gasification processes to convert the synthesis gas into more valuable fuel gas. The operating temperatures for the pyrolysis and gasification were between 700° and 1000°C. The experimental parameters were the operating temperature, catalyst type, basic promoter type, and steam injection amount. Solid fuel samples (5 g) were fed into a semibatch-type quartz tube reactor when the reactor reached the designated temperature. The synthesis gas was analyzed by gas chromatography. The use of low-quality coal as fuel in co-pyrolysis with RPF was explored. For the co-pyrolysis of RPF and low-quality coal, the effectiveness of the catalysts for fuel gas production followed the order Mg > NiO > Ni. In catalytic gasification of RPF, the addition of Al2O3 seemed to reduce the activity of the corresponding catalysts Ni and Mg. The maximum fuel gas yield (92.6%) was attained when Mg/Fe2O3 was used in steam gasification at 1000°C.  相似文献   

19.
Wastewater sewage sludge was co-pyrolyzed with a well characterized clay sample, in order to evaluate possible advantages in the thermal disposal process of solid waste. Characterization of the co-pyrolysis process was carried out both by thermogravimetric-mass spectrometric (TG-MS) analysis, and by reactor tests, using a lab-scale batch reactor equipped with a gas chromatograph for analysis of the evolved gas phase (Py-GC).Due to the presence of clay, two main effects were observed in the instrumental characterization of the process. Firstly, the clay surface catalyzed the pyrolysis reaction of the sludge, and secondly, the release of water from the clay, at temperatures of approx. 450-500 °C, enhanced gasification of part of carbon residue of the organic component of sludge following pyrolysis.Moreover, the solid residue remaining after pyrolysis process, composed of the inorganic component of sludge blended with clay, is characterized by good features for possible disposal by vitrification, yielding a vitreous matrix that immobilizes the hazardous heavy metals present in the sludge.  相似文献   

20.
Medium density fiberboard (MDF) sanding powder is an industrial waste that has not been yet used as a raw material to produce composites. In this study, the influence of nanoclay particles on the flexural and impact strengths and the withdrawal strength of green biocomposites (based on MDF sanding powder/polyethylene/nanoclay) were investigated. For this aim, medium density fiberboard sanding dust and polyethylene were used as the lignocellulosic and thermoplastic material, respectively. In addition, maleic anhydride grafted polyethylene was used in three weight percentages (0, 3 and 6 %) as a coupling agent and compatibilizer, and Cloisite®15A was used in four weight percentages (0, 2, 4 and 6 %). To prepare samples, wood-plastic granules were produced by using a twin-screw extruder followed by the hot pressing method. The mechanical and physical properties were measured according to the CEN/TS15534:2007 and ASTM-D256 technical specifications. The results showed that the coupling agent improved the mechanical and physical properties of biocomposites; however, its effect might be affected by the nanoclay particles. Furthermore, the ultrastructure of the biocomposites was surveyed with SEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号