首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We provide a global assessment, with detailed multi-scale data, of the ecological and toxicological effects generated by inorganic nitrogen pollution in aquatic ecosystems. Our synthesis of the published scientific literature shows three major environmental problems: (1) it can increase the concentration of hydrogen ions in freshwater ecosystems without much acid-neutralizing capacity, resulting in acidification of those systems; (2) it can stimulate or enhance the development, maintenance and proliferation of primary producers, resulting in eutrophication of aquatic ecosystems; (3) it can reach toxic levels that impair the ability of aquatic animals to survive, grow and reproduce. Inorganic nitrogen pollution of ground and surface waters can also induce adverse effects on human health and economy. Because reductions in SO2 emissions have reduced the atmospheric deposition of H2SO4 across large portions of North America and Europe, while emissions of NOx have gone unchecked, HNO3 is now playing an increasing role in the acidification of freshwater ecosystems. This acidification process has caused several adverse effects on primary and secondary producers, with significant biotic impoverishments, particularly concerning invertebrates and fishes, in many atmospherically acidified lakes and streams. The cultural eutrophication of freshwater, estuarine, and coastal marine ecosystems can cause ecological and toxicological effects that are either directly or indirectly related to the proliferation of primary producers. Extensive kills of both invertebrates and fishes are probably the most dramatic manifestation of hypoxia (or anoxia) in eutrophic and hypereutrophic aquatic ecosystems with low water turnover rates. The decline in dissolved oxygen concentrations can also promote the formation of reduced compounds, such as hydrogen sulphide, resulting in higher adverse (toxic) effects on aquatic animals. Additionally, the occurrence of toxic algae can significantly contribute to the extensive kills of aquatic animals. Cyanobacteria, dinoflagellates and diatoms appear to be major responsible that may be stimulated by inorganic nitrogen pollution. Among the different inorganic nitrogenous compounds (NH4+, NH3, NO2-, HNO2NO3-) that aquatic animals can take up directly from the ambient water, unionized ammonia is the most toxic, while ammonium and nitrate ions are the least toxic. In general, seawater animals seem to be more tolerant to the toxicity of inorganic nitrogenous compounds than freshwater animals, probably because of the ameliorating effect of water salinity (sodium, chloride, calcium and other ions) on the tolerance of aquatic animals. Ingested nitrites and nitrates from polluted drinking waters can induce methemoglobinemia in humans, particularly in young infants, by blocking the oxygen-carrying capacity of hemoglobin. Ingested nitrites and nitrates also have a potential role in developing cancers of the digestive tract through their contribution to the formation of nitrosamines. In addition, some scientific evidences suggest that ingested nitrites and nitrates might result in mutagenicity, teratogenicity and birth defects, contribute to the risks of non-Hodgkin's lymphoma and bladder and ovarian cancers, play a role in the etiology of insulin-dependent diabetes mellitus and in the development of thyroid hypertrophy, or cause spontaneous abortions and respiratory tract infections. Indirect health hazards can occur as a consequence of algal toxins, causing nausea, vomiting, diarrhoea, pneumonia, gastroenteritis, hepatoenteritis, muscular cramps, and several poisoning syndromes (paralytic shellfish poisoning, neurotoxic shellfish poisoning, amnesic shellfish poisoning). Other indirect health hazards can also come from the potential relationship between inorganic nitrogen pollution and human infectious diseases (malaria, cholera). Human sickness and death, extensive kills of aquatic animals, and other negative effects, can have elevated costs on human economy, with the recreation and tourism industry suffering the most important economic impacts, at least locally. It is concluded that levels of total nitrogen lower than 0.5-1.0 mg TN/L could prevent aquatic ecosystems (excluding those ecosystems with naturally high N levels) from developing acidification and eutrophication, at least by inorganic nitrogen pollution. Those relatively low TN levels could also protect aquatic animals against the toxicity of inorganic nitrogenous compounds since, in the absence of eutrophication, surface waters usually present relatively high concentrations of dissolved oxygen, most inorganic reactive nitrogen being in the form of nitrate. Additionally, human health and economy would be safer from the adverse effects of inorganic nitrogen pollution.  相似文献   

2.
A variety of methods have been proposed, developed, and evaluated for detecting viruses, especially human enteric viruses, in water, wastewater, and other environmental samples, and continued developments and improvements have led to simpler and more reliable methodology. However, the use of currently available methods is still limited primarily to special circumstances, such as investigation of waterborne disease outbreaks, research studies on virus reductions by water and wastewater treatment processes and systems, especially reuse systems, and research monitoring and surveying of natural and treated waters. Widespread and routine virus monitoring is still not possible due to technical limitations and deficiencies of present detection methods and their relatively high cost. Although continued development of new methods and further improvement of existing methods is desirable, it is perhaps more important that current methods be systematically evaluated in carefully designed collaborative (round-robin) studies and quality assurance tests. Until virus detection methods are further improved and systematically evaluated, the establishment of virus standards for such materials as water and edible shellfish requiring routine monitoring appears to be unjustified.  相似文献   

3.
Viruses of animals, plants, and bacteria abound in sewage and receiving waters. Their ecological impact has, for the most part, gone unheeded except as it relates to viruses from human sources. Viruses present at levels infective to man have been recovered from waters used for recreational or drinking purposes. Their presence in a water environment virtually always denotes prior contamination by domestic wastes. Neither conventional sewage treatment processes nor the discharge to land or water of sludges produced by these processes achieve full viral control. Many environmental virologists advocate the setting of permissible virus limits for those recreational and potable waters dominated by wastewater effluents. The initiation of regulatory pressure to restrict virus discharges into these water environments has been instituted in Montgomery County, Maryland, and in the states of California and Arizona.  相似文献   

4.
Although fish intake has potential health benefits, the presence of metal contamination in seafood has raised public health concerns. In this study, levels of mercury, cadmium, lead, tin and arsenic have been determined in fresh, canned and frozen fish and shellfish products and compared with the maximum levels currently in force. In a further step, potential human health risks for the consumers were assessed. A total of 485 samples of the 43 most frequently consumed fish and shellfish species in Andalusia (Southern Spain) were analyzed for their toxic elements content. High mercury concentrations were found in some predatory species (blue shark, cat shark, swordfish and tuna), although they were below the regulatory maximum levels. In the case of cadmium, bivalve mollusks such as canned clams and mussels presented higher concentrations than fish, but almost none of the samples analyzed exceeded the maximum levels. Lead concentrations were almost negligible with the exception of frozen common sole, which showed median levels above the legal limit. Tin levels in canned products were far below the maximum regulatory limit, indicating that no significant tin was transferred from the can. Arsenic concentrations were higher in crustaceans such as fresh and frozen shrimps. The risk assessment performed indicated that fish and shellfish products were safe for the average consumer, although a potential risk cannot be dismissed for regular or excessive consumers of particular fish species, such as tuna, swordfish, blue shark and cat shark (for mercury) and common sole (for lead).  相似文献   

5.
Pectenotoxins (PTXs) are a group of toxins associated with diarrhetic shellfish poisoning (DSP) and isolated from DSP toxin-producing dinoflagellate algae. Consumption of shellfish contaminated with PTXs has been associated with incidences of severe diarrhetic illness resulting in hospitalisation. Concern has been raised for public health following the discovery that these toxins are not only hepatotoxic and can cause diarrhetic effects in mammals, but that they are potently cytotoxic to human cancer cell lines and have been found to be tumour promoters in animals. With advances in knowledge and technology, more PTXs are being identified, but little is known of their toxicology and the potential impact these toxins may have on public health in the long term. Without such information, adequate health-risk assessments for the consumption of shellfish contaminated with PTXs cannot be performed. This review gives a brief introduction to diarrhetic shellfish toxins, details the known toxicology and metabolism of PTXs in animals, and discusses known incidences of PTX poisoning in humans.  相似文献   

6.
This study indicates that the concentration of cadmium in shellfish species may often be higher than it is in their environment as a result of formation of stable biological chelate complexes. This study also indicates that the concentration of cadmium in finfish species is less than the shellfish species. It was found that cadmium levels in shellfish were relatively higher in oysters and shrimps, moderately high in scallops and squids, and less in crabs and clams. It seems that cadmium levels are surprisingly elevated in shellfish than other saltwater finfish. It also seems that larger shellfish had higher Cd content levels than the smaller shellfish of the same species.  相似文献   

7.
Commercial and recreational harvesting of shellfish within the coastal systems is usually very extensive. Since these ecosystems are frequently subjected to contamination, namely from agricultural, urban and industrial activities, and shellfish generally display a high capacity to bioaccumulate metals, populations may be at risk in terms of toxic metal exposure as a consequence of the harvesting and ingestion of near shore coastal marine organisms. Shellfish is regularly tested for concentrations of metals and other contaminants by legal authorities for commercial purposes, but although health officials use total metal as standards of food safety, only a part of the metal accumulated in shellfish is available to be assimilated and to cause toxic effect. In order to elucidate these issues an investigation on cockles inhabiting the Aveiro estuary was conducted. Element levels in sediments and wild Cerastoderma edule from sampling areas with different levels of contamination were measured; total element burden of cockles was related to accessible fraction for assimilation (TAM); element concentrations in wild C. edule were compared to EFSA (European Food Safe Authorities), USFDA (United States Food and Drug Administration) and FSANZ (Food Standards Australia and New Zealand) maximum levels (MLs); and the amount of cockle flesh needed to be consumed to exceed provisional tolerable weekly intake (PTWI) was determined. The present work showed that although sediment metal and metalloid contamination in Aveiro estuary is low the concentration of elements in C. edule does not reflect the contamination of the sediment. Aluminium (Al) and mercury (Hg) were the less and nickel (Ni), lead (Pb), zinc (Zn) and cadmium (Cd) were the most bioaccumulated metals by cockles. Comparison of MLs from international organisations with the concentration of elements in C. edule showed that arsenic (As) and Pb exceeded standard levels. The ingestion of less than 1 kg for As and 1.5 kg for Pb of cockles would result in exceeding the PTWI threshold (0.015 and 0.025 mg kg?1 week?1 respectively) in any of the areas considered in the study. Cd and Al also appear to be limiting elements for human consumption. Indeed, consumption of more than 3.1 kg and 2.1 kg of whole cockle soft part from one of the study areas during a single week would lead to exceedance of the recommended PTWI value for Cd (0.007 mg kg?1 week?1) and Al (7 mg kg?1 week?1) respectively. The health concerns to humans from cockle consumption from Aveiro estuary are discussed.  相似文献   

8.
Annual global aquaculture production has more than tripled within the past 15 years, and by 2015, aquaculture is predicted to account for 39% of total global seafood production by weight. Given that lack of adequate nutrition is a leading contributor to the global burden of disease, increased food production through aquaculture is a seemingly welcome sign. However, as production surges, aquaculture facilities increasingly rely on the heavy input of formulated feeds, antibiotics, antifungals, and agrochemicals. This review summarizes our current knowledge concerning major chemical, biological and emerging agents that are employed in modern aquaculture facilities and their potential impacts on public health. Findings from this review indicate that current aquaculture practices can lead to elevated levels of antibiotic residues, antibiotic-resistant bacteria, persistent organic pollutants, metals, parasites, and viruses in aquacultured finfish and shellfish. Specific populations at risk of exposure to these contaminants include individuals working in aquaculture facilities, populations living around these facilities, and consumers of aquacultured food products. Additional research is necessary not only to fully understand the human health risks associated with aquacultured fish versus wild-caught fish but also to develop appropriate interventions that could reduce or prevent these risks. In order to adequately understand, address and prevent these impacts at local, national and global scales, researchers, policy makers, governments, and aquaculture industries must collaborate and cooperate in exchanging critical information and developing targeted policies that are practical, effective and enforceable.  相似文献   

9.
A main known culprit causing amnesic shellfish poisoning in humans is domoic acid (DA). The toxin appearance in sea waters (by counting the toxin producing algae) and consequently in shellfish is closely monitored to prevent acute intoxications with gastrointestinal symptoms and neurological signs. However it is assumed that there might be some chronic problems with repetitive exposures to the toxin in animals. In humans this is greatly unknown and it is mostly assessed by relating reported toxin episodes and representative consumption data. Although in Belgium no alarming outbreaks have been reported in recent years, different concentrations of DA have been found in shellfish samples. In this study the human acute and chronic exposure to DA through shellfish consumption was evaluated by linking the data of DA concentrations in samples collected in the scope of the National Food control program in the period 2004–2009 and consumption data obtained from the National Belgian Food Consumption Survey including 3245 adults. The found level of toxin was highest in scallops while lowest in mussels. The mean usual long-term intake of molluscs such as scallops, mussels and oysters for the whole Belgian population was from 0.10 g/day for scallops to 1.21 g/day for mussels. With average portion size estimated to be 56–108 g/day depending on the shellfish source it was calculated that less than 1% of the population would be at risk of acute intoxication. Using a medium bound approach, 5–6% of the population shows chronic exposure exceeding the tolerable daily intake of 0.075 μg/kg bw per day with scallops being the most probable toxin vector when using lower (68.5%) and medium (45.6%) bound concentrations.  相似文献   

10.
Perfluorinated compounds (PFCs) have been frequently detected in both the environment and biota, and have become a growing concern. However, information is limited on the potential sources and human health implications of such exposure. We evaluated the exposure levels of 13 major PFCs among a population (n = 633, > 12 years of age) in a mid-sized city of Korea, and investigated for their potential dietary sources and the impact on thyroid hormone concentrations. For this purpose, we collected blood samples from a general population in Siheung, Korea and measured for 13 PFCs, total thyroxine (T4), and thyroid stimulating hormone (TSH). In addition, a questionnaire survey on diet was conducted. Perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA) were detected in relatively greater concentrations than the other 9 PFCs in the blood serum. Males tend to have greater concentrations than females for most PFCs, and the concentrations were elevated as age increased up to 50s. Body mass index (BMI) was also shown to influence the serum concentrations of several PFCs. After adjustment for age, sex, and BMI, the consumption of vegetable, potato, fish/shellfish, and popcorn was identified to be significantly related with concentrations of major PFCs in blood. Among the studied PFCs, the concentrations of perfluorotridecanoic acid (PFTrDA) were negatively correlated with total T4, and positively with TSH levels, especially among females. The result of this study will provide information useful for developing public health and safety management measures for PFCs.  相似文献   

11.
Infections caused by antibiotic resistant bacteria (ARB) are associated with poor health outcomes and are recognised globally as a serious health problem. Much research has been conducted on the transmission of ARB to humans. Yet the role the natural environment plays in the spread of ARB and antibiotic resistance genes is not well understood. Antibiotic resistant bacteria have been detected in natural aquatic environments, and ingestion of seawater during water sports is one route by which many people could be directly exposed.The aim was to estimate the prevalence of resistance to one clinically important class of antibiotics (third-generation cephalosporins (3GCs)) amongst Escherichia coli in coastal surface waters in England and Wales. Prevalence data was used to quantify ingestion of 3GC-resistant E. coli (3GCREC) by people participating in water sports in designated coastal bathing waters. A further aim was to use this value to derive a population-level estimate of exposure to these bacteria during recreational use of coastal waters in 2012.The prevalence of 3GC-resistance amongst E. coli isolated from coastal surface waters was estimated using culture-based methods. This was combined with the density of E. coli reported in designated coastal bathing waters along with estimations of the volumes of water ingested during various water sports reported in the literature to calculate the mean number of 3GCREC ingested during different water sports.0.12% of E. coli isolated from surface waters were resistant to 3GCs. This value was used to estimate that in England and Wales over 6.3 million water sport sessions occurred in 2012 that resulted in the ingestion of at least one 3GCREC.Despite the low prevalence of resistance to 3GCs amongst E. coli in surface waters, there is an identifiable human exposure risk for water users, which varies with the type of water sport undertaken. The relative importance of this exposure is likely to be greater in areas where a large proportion of the population enjoys water sports. Millions of water sport sessions occurred in 2012 that were likely to have resulted in people ingesting E. coli resistant to a single class of antibiotics (3GCs). However, this is expected to be a significant underestimate of recreational exposure to all ARB in seawater.This is the first study to use volumes of water ingested during different water sports to estimate human exposure to ARB. Further work needs to be done to elucidate the health implications and clinical relevance of exposure to ARB in both marine and fresh waters in order to fully understand the risk to public health.  相似文献   

12.
The elongated semi-enclosed Bay of Izmit, which receives both domestic and industrial wastes, has been monitored by measuring its physical and biochemical parameters for 2 years, 1994-1995. It is clear that there are two distinct water masses. The upper layer has been occupied by the less saline (22-26 ppt) waters of the Black Sea origin; whereas the lower layer contains saline (38.5 ppt) Mediterranean waters. The seasonal variations in the biochemical characteristics were dependent on the bay's two-layer flow system. If one considers the distribution of transparency in the upper bay waters, it has been observed that the Secchi disk depth (SDD) decreases from west to east. Furthermore, these depths are limited by the high primary productivity associated with the low concentrations of nutrients observed during the spring. Discharges of wastes into the surface waters significantly affect the biological production and oxygen consumption in the lower layer. Within the last 10 years, 80% of organic matter has been removed from industrial wastewater. However, organic loads from the domestic wastewaters have doubled because of the growth in the surrounding population. Fortunately, as a result, the total organic loads in the bay have not changed significantly within the last 10 years.  相似文献   

13.
Commercial feedlots for beef cattle finishing are potential sources of a range of trace chemicals which have human health or environmental significance. To ensure adequate protection of human and environmental health from exposure to these chemicals, the application of effective manure and effluent management practices is warranted. The Australian meat and livestock industry has adopted a proactive approach to the identification of best management practices. Accordingly, this review was undertaken to identify key chemical species that may require consideration in the development of guidelines for feedlot manure and effluent management practices in Australia. Important classes of trace chemicals identified include steroidal hormones, antibiotics, ectoparasiticides, mycotoxins, heavy metals and dioxins. These are described in terms of their likely sources, expected concentrations and public health or environmental significance based on international data and research. Androgenic hormones such as testosterone and trenbolone are significantly active in feedlot wastes, but they are poorly understood in terms of fate and environmental implications. The careful management of residues of antibiotics including virginiamycin, tylosin and oxytetracycline appears prudent in terms of minimising the risk of potential public health impacts from resistant strains of bacteria. Good management of ectoparasiticides including synthetic pyrethroids, macrocyclic lactones, fluazuron, and amitraz is important for the prevention of potential ecological implications, particularly towards dung beetles. Very few of these individual chemical contaminants have been thoroughly investigated in terms of concentrations, effects and attenuation in Australian feedlot wastes.  相似文献   

14.
长江河口近岸水体自然净化作用及其初步评价   总被引:8,自引:1,他引:8  
按照水体的净化机理,结合长江口和上海滨岸带近岸水体的物理、化学和生物等因素的实际特征,对近岸水体的自然净化作用进行了阐述和分析。并在历史资料和实测资料基础上,就近岸水体的自然净化作用进行了评价。评价结果表明,因长江河口近岸水体存在较强的自然净化作用机制,近岸水体体的自然净化能力较强,环境容量较大,但由于污染物输入量的不断增加,部分岸段近岸水体的环境质量有逐渐下降的趋势;近岸水体的自然净化作用具有明显的季节性变化,长江口南岸水域洪水季节水体的自然净化作用比估水季节强,而杭州湾北岸水域的自然净化作用表现为相反的变化趋势,因此建议在近岸污水排放过程中应考虑近岸水体的净化能力,遵循水体的自然净化作用规律。  相似文献   

15.
The paralytic shellfish toxins (PSTs) are potent neurotoxic alkaloids and their major biological effect is due to the blockage of voltage-gated sodium channels in excitable cells. They have been recognised as an important health risk for humans, animals, and ecosystems worldwide. The metabolic pathways that lead to the production and the degradation of these toxic metabolites are still unknown. In this study, we investigated the possible link between PST accumulation and the activation of the metabolism that leads to purine degradation in the filamentous freshwater cyanobacterium Planktothrix sp. FP1. The purine catabolic pathway is related to the nitrogen microcycle in water environments, in which cyanobacteria use traces of purines and ureides as a nitrogen source for growth. Thus, the activity of allantoicase, a key inducible enzyme of this metabolism, was used as tool for assaying the activation of the purine degradation pathway. The enzyme and the pathway were induced by allantoic acid, the direct substrate of allantoicase, as well as by adenine and, to a lower degree, by urea, one of the main products of purine catabolism. Crude cell extract of Escherichia coli was also employed and showed the best induction of allantoicase activity. In culture, Planktothrix sp. FP1 showed a differential accumulation of PST in consequence of the induction with different substrates. The cyanobacterial culture induced with allantoic acid accumulated 61.7% more toxins in comparison with the control. On the other hand, the cultures induced with adenine, urea, and the E. coli extract showed low PST accumulation, respectively, 1%, 38%, and 5% of the total toxins content detected in the noninduced culture. A degradation pathway for the PSTs can be hypothesised: as suggested for purine alkaloids in higher plants, saxitoxin (STX) and derivatives may also be converted into xanthine, urea, and further to CO2 and NH4+ or recycled in the primary metabolism through the purine degradation pathway.  相似文献   

16.
The biological treatment of groundwater is used primarily to remove electron donors from water sources, providing (biologically) stable drinking water, which preclude bacterial regrowth during subsequent water distribution. To the electron donors belong also the dissolved metal cations of ferrous iron and manganese, which are common contaminants found in most (anaerobic) groundwater. The removal of iron and manganese is usually accomplished by the application of chemical oxidation and filtration. However, biological oxidation has recently gained increased importance and application due to the existence of certain advantages, over the conventional physicochemical treatment. The oxidation of iron and manganese is accelerated by the presence of certain indigenous bacteria, the so-called "iron and manganese oxidizing bacteria." In the present paper, selected long-term experimental results will be presented, regarding the bioremediation of natural groundwater, containing elevated concentrations of iron and arsenic. Arsenic is considered as a primary pollutant in drinking water due to its high toxicity. Therefore, its efficient removal from natural waters intended for drinking water is considered of great importance. The application of biological processes for the oxidation and removal of dissolved iron was found to be an efficient treatment technique for the simultaneous removal of arsenic, from initial concentrations between 60 and 80 microg/l to residual (effluent) arsenic concentrations lower than the limit of 10 microg/l. The paper was focused on the removal of As(III) as the most common species in anaerobic groundwater and generally is removed less efficiently than the oxidized form of As(V). To obtain information for the mechanism of As(III) removal, X-ray photoelectron spectroscopy (XPS) analyses were applied and it was found that As(III) was partially oxidized to As(V), which enabled the high arsenic removal efficiency over a treatment period of 10 months.  相似文献   

17.
Agricultural land application of wastewater is becoming a widely used means of dealing with water scarcity and diminishing sources of unpolluted water. One of the most common forms of land application—sprinkler irrigation—poses an environmental problems in that it created wastewater aerosols. Air sampling experiments done at distances of up to 100 meters from wastewater irrigation sprinklers have detected several airborne enteroviruses: echovirus 1, 25, 29; poliovirus II, and coxsackie B1. The levels of airborne viruses found in wastewater aerosols may be potentially hazardous at any level. Since the impact of these findings on public health is not clear, epidemiological investigations by standard techniques should be conducted. It is estimated that the number of viruses isolated in environmental samples may be smaller by one or two orders of magnitude (90%–99%) than their actual number due to the limitations of virus recovery procedures. The unvailability of a reliable indicator microorganism which fulfills all the requirements for a biological indicator also makes it difficult to determine the virus level in the aerosols. Thus the scientific knowledge available today is insufficient to determine with certainty that no public health risk is created by wastewater aerosols. A comprehensive prospective study will, in all likelihood, provide answers to most questions and make it possible to assess more reliably the extent of the health risk due to wastewater aerosols.  相似文献   

18.
Australia is free of many diseases, pests and weeds found elsewhere in the world due to its geographical isolation and relatively good health security practices. However, its health security is under increasing pressure due to a number of ecological, climatic, demographic and behavioural changes occurring globally. North Queensland is a high risk area (a health security hot spot) for Australia, due in part to its connection to neighbouring countries via the Torres Strait and the Indo‐Papuan conduit, its high diversity of wildlife reservoirs and its environmental characteristics. Major outbreaks of exotic diseases, pests and weeds in Australia can cost in excess of $1 billion; however, most expenditure on health security is reactive apart from preventive measures undertaken for a few high profile diseases, pests and weeds. Large gains in health security could therefore be made by spending more on pre-emptive approaches to reduce the risk of outbreaks, invasion/spread and establishment, despite these gains being difficult to quantify. Although biosecurity threats may initially have regional impacts (e.g. Hendra virus), a break down in security in health security hot spots can have national and international consequences, as has been seen recently in other regions with the emergence of SARS and pandemic avian influenza. Novel approaches should be driven by building research and management capacity, particularly in the regions where threats arise, a model that is applicable both in Australia and in other regions of the world that value and therefore aim to improve their strategies for maintaining health security.  相似文献   

19.
Microbial source tracking (MST) tools are used to identify sources of fecal pollution for accurately assessing public health risk and implementing best management practices (BMPs). This review focuses on the potential of enteric viruses for MST applications. Following host infection, enteric viruses replicate and are excreted in high numbers in the hosts' feces and urine. Due to the specificity in host infection, enteric viruses have been considered one of the most accurate library-independent culture-independent MST tools. In an assessment of molecular viral assays based on sensitivity, specificity and the density of the target virus in fecal-impacted samples, human adenovirus and human polyomavirus were found to be the most promising human-specific viral markers. However, more research is needed to identify promising viral markers for livestock because of cross-reactions that were observed among livestock species or the limited number of samples tested for specificity. Other viral indicators of fecal origin, F+ RNA coliphage and pepper mild mottle virus, have also been proposed as potential targets for developing MST markers. Enhancing the utility of enteric viruses for MST applications through next generation sequencing (NGS) and virus concentration technology is discussed in the latter part of this review. The massive sequence databases generated by shotgun and gene-targeted metagenomics enable more efficient and reliable design of MST assays. Finally, recent studies revealed that alternative virus concentration methodologies may be more cost-effective than standard technologies such as 1MDS; however, improvements in the recovery efficiency and consistency are still needed. Overall, developments in metagenomic information combined with efficient concentration methodologies, as well as high host-specificity, make enteric viruses a promising tool in MST applications.  相似文献   

20.
Tributyltin (TBT) is a toxic chemical used for various industrial purposes such as slime control in paper mills, disinfection of circulating industrial cooling waters, antifouling agents, and the preservation of wood. Due to its widespread use as an antifouling agent in boat paints, TBT is a common contaminant of marine and freshwater ecosystems exceeding acute and chronic toxicity levels. TBT is the most significant pesticide in marine and freshwaters in Europe and consequently its environmental level, fate, toxicity and human exposure are of current concern. Thus, the European Union has decided to specifically include TBT compounds in its list of priority compounds in water in order to control its fate in natural systems, due to their toxic, persistent, bioaccumulative and endocrine disruptive characteristics. Additionally, the International Maritime Organization has called for a global treaty that bans the application of TBT-based paints starting 1 of January 2003, and total prohibition by 1 of January 2008. This paper reviews the state of the science regarding TBT, with special attention paid to the environmental levels, toxicity, and human exposure. TBT compounds have been detected in a number of environmental samples. In humans, organotin compounds have been detected in blood and in the liver. As for other persistent organic pollutants, dietary intake is most probably the main route of exposure to TBT compounds for the general population. However, data concerning TBT levels in foodstuffs are scarce. It is concluded that investigations on experimental toxicity, dietary intake, potential human health effects and development of new sustainable technologies to remove TBT compounds are clearly necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号