共查询到4条相似文献,搜索用时 0 毫秒
1.
Chlorine dioxide (ClO2) disinfection usually does not produce halogenated disinfection by-products, but the formation of the inorganic by-product chlorite (ClO2–) is a serious consideration. In this study, the ClO2– formation rule in the ClO2 disinfection of drinking water was investigated in the presence of three representative reductive inorganics and four natural organic matters (NOMs), respectively. Fe2+ and S2– mainly reduced ClO2 to ClO2– at low concentrations. When ClO2 was consumed, the ClO2– would be further reduced by Fe2+ and S2–, leading to the decrease of ClO2–. The reaction efficiency of Mn2+ with ClO2 was lower than that of Fe2+ and S2–. It might be the case that MnO2 generated by the reaction between Mn2+ and ClO2 had adsorption and catalytic oxidation on Mn2+. However, Mn2+ would not reduce ClO2–. Among the four NOMs, humic acid and fulvic acid reacted with ClO2 actively, followed by bovine serum albumin, while sodium alginate had almost no reaction with ClO2. The maximum ClO2– yields of reductive inorganics (70%) was higher than that of NOM (around 60%). The lower the concentration of reductive substances, the more ClO2– could be produced by per unit concentration of reductive substances. The results of the actual water samples showed that both reductive inorganics and NOM played an important role in the formation of ClO2– in disinfection. 相似文献
2.
Qilin Wang Jing Sun Kang Song Xu Zhou Wei Wei Dongbo Wang Guo-Jun Xie Yanyan Gong Beibei Zhou 《环境科学学报(英文版)》2018,30(5):378-386
The importance of enhancing sludge dewaterability is increasing due to the considerable impact of excess sludge volume on disposal costs and on overall sludge management. This study presents an innovative approach to enhance dewaterability of anaerobic digestate(AD) harvested from a wastewater treatment plant. The combination of zero valent iron(ZVI, 0–4.0 g/g total solids(TS)) and hydrogen peroxide(HP, 0–90 mg/g TS) under pH 3.0 significantly enhanced the AD dewaterability. The largest enhancement of AD dewaterability was achieved at 18 mg HP/g TS and 2.0 g ZVI/g TS, with the capillary suction time reduced by up to 90%. Economic analysis suggested that the proposed HP and ZVI treatment has more economic benefits in comparison with the classical Fenton reaction process. The destruction of extracellular polymeric substances and cells as well as the decrease of particle size were supposed to contribute to the enhanced AD dewaterability by HP + ZVI conditioning. 相似文献
3.
Capturing flue gases often require multiple stages of scrubbing, increasing the capital and operating costs. So far, no attempt has been made to study the absorption characteristics of all the three gases (NO, SO2 and CO2) in a single stage absorption unit at alkaline pH conditions. We have attempted to capture all the three gases with a single wet scrubbing column. The absorption of all three gases with sodium carbonate solution promoted with oxidizers was investigated in a tall absorption column. The absorbance was found to be 100% for CO2, 30% for NO and 95% for SO2 respectively. The capture efficiency of sodium carbonate solution was increased by 40% for CO2 loading, with the addition of oxidizer. Absorption kinetics and reaction pathways of all the three gases were discussed individually in detail. 相似文献
4.
Addition of hydrogen peroxide for the simultaneous control of bromate and odor during advanced drinking water treatment using ozone 总被引:1,自引:0,他引:1
Complete removal of the characteristic septic/swampy odor from Huangpu River source water could only be achieved under an ozone dose as high as 4.0 mg/L in an ozone-biological activated carbon (O3- BAC) process, which would lead to the production of high concentrations of carcinogenic bromate due to the high bromide content. This study investigated the possibility of simultaneous control of bromate and the septic/swampy odor by adding H2O2 prior to the O3-BAC process for the treatment of Huangpu River water. H2O2 addition could reduce the bromate concentration effectively at an H2O2/O3 (g/g) ratio of 0.5 or higher. At the same time, the septic/swampy odor removal was enhanced by the addition of H2O2, although optimization of the H2O2/O3 ratio was required for each ozone dose. At an ozone dose of 2.0 mg/L, the odor was removed completely at an H2O2/O3 ratio of 0.5. The results indicated that H2O2 application at a suitable dose could enhance the removal of the septic/swampy odor while suppressing the formation of bromate during ozonation of Huangpu River source water. 相似文献