首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
In recent years, engineered nanoparticles, as a new group of contaminants emerging in natural water, have been given more attention. In order to understand the behavior of nanoparticles in the conventional water treatment process, three kinds of nanoparticle suspensions, namely multi-walled carbon nanotube-humic acid (MWCNT-HA), multi-walled carbon nanotube-N,N-dimethylformamide (MWCNT-DMF) and nanoTiO2-humic acid (TiO2-HA) were employed to investigate their coagulation removal efficiencies with varying aluminum chloride (AlCl3) concentrations. Results showed that nanoparticle removal rate curves had a reverse “U” shape with increasing concentration of aluminum ion (Al3 +). More than 90% of nanoparticles could be effectively removed by an appropriate Al3 + concentration. At higher Al3 + concentration, nanoparticles would be restabilized. The hydrodynamic particle size of nanoparticles was found to be the crucial factor influencing the effective concentration range (ECR) of Al3 + for nanoparticle removal. The ECR of Al3 + followed the order MWCNT-DMF > MWCNT-HA > TiO2-HA, which is the reverse of the nanoparticle size trend. At a given concentration, smaller nanoparticles carry more surface charges, and thus consume more coagulants for neutralization. Therefore, over-saturation occurred at relatively higher Al3 + concentration and a wider ECR was obtained. The ECR became broader with increasing pH because of the smaller hydrodynamic particle size of nanoparticles at higher pH values. A high ionic strength of NaCl can also widen the ECR due to its strong potential to compress the electric double layer. It was concluded that it is important to adjust the dose of Al3 + in the ECR for nanoparticle removal in water treatment.  相似文献   

2.
The objective of this study was to understand toxicity of mixture of nanoparticles (NPs) (ZnO and TiO2) and their ions to Escherichia coli. Results indicated the decrease in percentage growth of E. coli with the increase in concentration of NPs both in single and mixture setups. Even a small concentration of 1 mg/L was observed to be significantly toxic to E. coli in binary mixture setup (exposure concentration: 1 mg/L ZnO and 1 mg/L TiO2; 21.15% decrease in plate count concentration with respect to control). Exposure of E. coli to mixture of NPs at 1000 mg/L (i.e., 1000 mg/L ZnO and 1000 mg/L TiO2) resulted in 99.63% decrease in plate count concentration with respect to control. Toxic effects of ions to E. coli were found to be lesser than their corresponding NPs. The percentage growth reduction was found to be 36% for binary mixture of zinc and titanium ions at the highest concentration (i.e., 803.0 mg/L Zn and 593.3 mg/L Ti where ion concentrations are equal to the Zn ions present in 1000 mg/L ZnO NP solution and Ti+ 4 ions present in 1000 mg/L TiO2 NP solution). Nature of mixture toxicity of the two NPs to E. coli was found to be antagonistic. The alkaline phosphatase (Alp) assay indicated that the maximum damage was observed when E. coli was exposed to 1000 mg/L of mixture of NPs. This study tries to fill the knowledge gap on information of toxicity of mixture of NPs to bacteria which has not been reported earlier.  相似文献   

3.
The current work deals with ZnO-Ag nanocomposites (in the wide range of x in the Zn1 − xO-Agx chemical composition) synthesized using microwave assisted solution combustion method. The structural, morphological and optical properties of the samples were characterized by XRD (X-ray diffraction), FTIR (Fourier transform infrared spectrometry), SEM (scanning electron microscopy technique), EDX (energy dispersive X-ray spectrum), ICP (inductively coupled plasma technique), TEM (transmission electron microscopy), BET (Brunauer–Emmett–Teller method), UV–Vis (ultraviolet–visible spectrophotometer) and photoluminescence spectrophotometer. The photocatalytic activity of the ZnO-Ag was investigated by photo-degradation of Acid Blue 113 (AB 113) under UV illumination in a semi-batch reactor. This experiment showed that ZnO-Ag has much more excellent photocatalytic properties than ZnO synthesized by the same method. The enhanced photocatalytic activity was due to the decrease in recombination of photogenerated electron-holes. The results showed the improvement of ZnO photocatalytic activity and there is an optimum amount of Ag (3.5 mol%) that needs to be doped with ZnO. The effect of operating parameters such as pH, catalyst dose and dye concentration were investigated. The reaction byproducts were identified by LC/MS (liquid chromatography/mass spectrometry) analysis and a pathway was proposed as well. Kinetic studies indicated that the decolorization process follows the first order kinetics. Also, the degradation percentage of AB 113 was determined using a total organic carbon (TOC) analyzer. Additionally, cost analysis of the process, the mechanism and the role of Ag were discussed.  相似文献   

4.
Highly active mesoporous TiO_2 of about 6 nm crystal size and 280.7 m~2/g specific surface areas has been successfully synthesized via controlled hydrolysis of titanium butoxide at acidic medium. It was characterized by means of XRD(X-ray diffraction), SEM(scanning electron microscopy), TEM(transmission electron microscopy), FT-IR(Fourier transform infrared spectroscopy), TGA(thermogravimetric analysis), DSC(differential scanning calorimetry) and BET(Brunauer–Emmett–Teller) surface area. The degradation of dichlorophenol-indophenol(DCPIP) under ultraviolet(UV) light was studied to evaluate the photocatalytic activity of samples. The effects of different parameters and kinetics were investigated. Accordingly, a complete degradation of DCPIP dye was achieved by applying the optimal operational conditions of 1 g/L of catalyst, 10 mg/L of DCPIP, pH of 3 and the temperature at 25 ± 3°C after 3 min under UV irradiation. Meanwhile, the Langmuir–Hinshelwood kinetic model described the variations in pure photocatalytic branch in consistent with a first order power law model.The results proved that the prepared TiO_2 nanoparticle has a photocatalytic activity significantly better than Degussa P-25.  相似文献   

5.
To remove cesium ions from water and soil, a novel adsorbent was synthesized by following a one-step co-precipitation method and using non-toxic raw materials. By combining ammonium-pillared montmorillonite (MMT) and magnetic nanoparticles (Fe3O4), an MMT/Fe3O4 composite was prepared and characterized. The adsorbent exhibited high selectivity of Cs+ and could be rapidly separated from the mixed solution under an external magnetic field. Above all, the adsorbent had high removal efficiency in cesium-contaminated samples (water and soil) and also showed good recycling performance, indicating that the MMT/Fe3O4 composite could be widely applied to the remediation of cesium-contaminated environments. It was observed that the pH, solid/liquid ratio and initial concentration affected adsorption capacity. In the presence of coexisting ions, the adsorption capacity decreased in the order of Ca2 + > Mg2 + > K+ > Na+, which is consistent with our theoretical prediction. The adsorption behavior of this new adsorbent could be expressed by the pseudo-second-order model and Freundlich isotherm. In addition, the adsorption mechanism of Cs+ was NH4+ ion exchange and surface hydroxyl group coordination, with the former being more predominant.  相似文献   

6.
Removal of Pb~(2+)and biodegradation of organophosphorus have been both widely investigated respectively. However, bio-remediation of both Pb~(2+)and organophosphorus still remains largely unexplored. Bacillus subtilis FZUL-33, which was isolated from the sediment of a lake, possesses the capability for both biomineralization of Pb~(2+)and biodegradation of acephate. In the present study, both Pb~(2+)and acephate were simultaneously removed via biodegradation and biomineralization in aqueous solutions.Batch experiments were conducted to study the influence of p H, interaction time and Pb~(2+)concentration on the process of removal of Pb2+. At the temperature of 25°C, the maximum removal of Pb~(2+)by B. subtilis FZUL-33 was 381.31 ± 11.46 mg/g under the conditions of p H 5.5, initial Pb~(2+)concentration of 1300 mg/L, and contact time of 10 min. Batch experiments were conducted to study the influence of acephate on removal of Pb~(2+)and the influence of Pb2+on biodegradation of acephate by B. subtilis FZUL-33. In the mixed system of acephate–Pb2+, the results show that biodegradation of acephate by B. subtilis FZUL-33 released PO43+, which promotes mineralization of Pb2+. The process of biodegradation of acephate was affected slightly when the concentration of Pb2+was below 100 mg/L. Based on the results, it can be inferred that the B. subtilis FZUL-33 plays a significant role in bio-remediation of organophosphorus-heavy metal compound contamination.  相似文献   

7.
Influence of common dye-bath additives, namely sodium chloride, ammonium sulphate, urea, acetic acid and citric acid, on the reductive decolouration of Direct Green 1 dye in the presence of Fe0 was investigated. Organic acids improved dye reduction by augmenting Fe0 corrosion, with acetic acid performing better than citric acid. NaCl enhanced the reduction rate by its ‘salting out’ effect on the bulk solution and by Cl anion-mediated pitting corrosion of iron surface. (NH4)2SO4 induced ‘salting out’ effect accompanied by enhanced iron corrosion by SO42 − anion and buffering effect of NH4+ improved the reduction rates. However, at 2 g/L (NH4)2SO4 concentration, complexating of SO42 − with iron oxides decreased Fe0 reactivity. Urea severely compromised the reduction reaction, onus to its chaotropic and ‘salting in’ effect in solution, and due to it masking the Fe0 surface. Decolouration obeyed biphasic reduction kinetics (R2 > 0.993 in all the cases) exhibiting an initial rapid phase, when more than 95% dye reduction was observed, preceding a tedious phase. Maximum rapid phase reduction rate of 0.955/min was observed at pH 2 in the co-presence of all dye-bath constituents. The developed biphasic model reckoned the influence of each dye-bath additive on decolouration and simulated well with the experimental data obtained at pH 2.  相似文献   

8.
Na+ doped WO3 nanowire photocatalysts were prepared by using post-treatment (surface doping) and in situ (bulk doping) doping methods. Photocatalytic degradation of Methyl Blue was tested under visible light irradiation, the results showed that 1 wt.% Na+ bulk-doped WO3 performed better, with higher photoactivity than surface-doped WO3. Photoelectrochemical characterization revealed the differences in the photocatalytic process for surface doping and bulk doping. Uniform bulk doping could generate more electron–hole pairs, while minimizing the chance of electron–hole recombination. Some bulk properties such as the bandgap, Fermi level and band position could also be adjusted by bulk doping, but not by surface doping.  相似文献   

9.
High-surface-area mesoprous powders of γ-Al2O3 doped with Cu2 +, Cr3 +, and V3 + ions were prepared via a modified sol–gel method and were investigated as catalysts for the oxidation of chlorinated organic compounds. The composites retained high surface areas and pore volumes comparable with those of undoped γ-Al2O3 and the presence of the transition metal ions enhanced their surface acidic properties. The catalytic activity of the prepared catalysts in the oxidation of 1,2-dichloroethane (DCE) was studied in the temperature range of 250–400°C. The catalytic activity and product selectivity were strongly dependent on the presence and the type of dopant ion. While Cu2 +- and Cr3 +-containing catalysts showed 100% conversion at 300°C and 350°C, V3 +-containing catalyst showed considerably lower conversion. Furthermore, while the major products of the reactions over γ-alumina were vinyl chloride (C2H3Cl) and hydrogen chloride (HCl) at all temperatures, Cu- and Cr-doped catalysts showed significantly stronger capability for deep oxidation to CO2.  相似文献   

10.
Mercury and its organic compounds have been of severe concern worldwide due to their damage to the ecosystem and human health. The development of effective and affordable technology to monitor and signal the presence of bioavailable mercury is an urgent need. The Mer gene is a mercury-responsive resistant gene, and a mercury-sensing recombinant luminescent bacterium using the Mer gene was constructed in this study. The mer operon from marine Pseudomonas putida strain SP1 was amplified and fused with prompterless luxCDABE in the pUCD615 plasmid within Escherichia coli cells, resulting in pTHE30–E. coli. The recombinant strain showed high sensitivity and specificity. The detection limit of Hg2 + was 5 nmol/L, and distinct luminescence could be detected in 30 min. Cd2 +, Cu2 +, Zn2 +, Ca2 +, Pb2 +, Mg2 +, Mn2 +, and Al3 + did not interfere with the detection over a range of 10− 5–1 mM. Application of recombinant luminescent bacteria testing in environmental samples has been a controversial issue: especially for metal-sensing recombinant strains, false negatives caused by high cytotoxicity are one of the most important issues when applying recombinant luminescent bacteria in biomonitoring of heavy metals. In this study, by establishing an internal standard approach, the false negative problem was overcome; furthermore, the method can also help to estimate the suspected mercury concentration, which ensures high detection sensitivity of bioavailable Hg2 +.  相似文献   

11.
ZnBiYO4 was synthesized by a solid-state reaction method for the first time. The structural and photocatalytic properties of ZnBiYO4 were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV–Vis diffuse reflectance. ZnBiYO4 crystallized with a tetragonal spinel structure with space group I41/A. The lattice parameters for ZnBiYO4 were a = b = 11.176479 Å and c = 10.014323 Å. The band gap of ZnBiYO4 was estimated to be 1.58 eV. The photocatalytic activity of ZnBiYO4 was assessed by photodegradation of methyl orange under visible light irradiation. The results showed that ZnBiYO4 had higher catalytic activity compared with N-doped TiO2 under the same experimental conditions using visible light irradiation. The photocatalytic degradation of methyl orange with ZnBiYO4 or N-doped TiO2 as catalyst followed first-order reaction kinetics, and the first-order rate constant was 0.01575 and 0.00416 min− 1 for ZnBiYO4 and N-doped TiO2, respectively. After visible light irradiation for 220 min with ZnBiYO4 as catalyst, complete removal and mineralization of methyl orange were observed. The reduction of total organic carbon, formation of inorganic products, SO42 − and NO3, and evolution of CO2 revealed the continuous mineralization of methyl orange during the photocatalytic process. The intermediate products were identified using liquid chromatography–mass spectrometry. The ZnBiYO4/(visible light) photocatalysis system was found to be suitable for textile industry wastewater treatment and could be used to solve other environmental chemical pollution problems.  相似文献   

12.
We describe here a one-step method for the synthesis of Au/TiO2 nanosphere materials, which were formed by layered deposition of multiple anatase TiO2 nanosheets. The Au nanoparticles were stabilized by structural defects in each TiO2 nanosheet, including crystal steps and edges, thereby fixing the Au–TiO2 perimeter interface. Reactant transfer occurred along the gaps between these TiO2 nanosheet layers and in contact with catalytically active sites at the Au–TiO2 interface. The doped Au induced the formation of oxygen vacancies in the Au–TiO2 interface. Such vacancies are essential for generating active oxygen species (*O) on the TiO2 surface and Ti3 + ions in bulk TiO2. These ions can then form Ti3 +–O–Ti4 + species, which are known to enhance the catalytic activity of formaldehyde (HCHO) oxidation. These studies on structural and oxygen vacancy defects in Au/TiO2 samples provide a theoretical foundation for the catalytic mechanism of HCHO oxidation on oxide-supported Au materials.  相似文献   

13.
To increase the knowledge on the particulate matter of a wetland in Beijing, an experimental study on the concentration and composition of PM10 and PM2.5 was implemented in Beijing Olympic Forest Park from 2013 to 2014. This study analyzed the meteorological factors and deposition fluxes at different heights and in different periods in the wetlands. The results showed that the mean mass concentrations of PM10 and PM2.5 were the highest at 06:00–09:00 and the lowest at 15:00–18:00. And the annual concentration of PM10 and PM2.5 in the wetland followed the order of dry period (winter) > normal water period (spring and autumn) > wet period (summer), with the concentration in the dry period significantly higher than that in the normal water and wet periods. The chemical composition of PM2.5 in the wetlands included NH4+, K+, Na+, Mg2 +, SO42 −, NO3, and Cl, which respectively accounted for 12.7%, 1.0%, 0.8%, 0.7%, 46.6%, 33.2%, and 5.1% of the average annual composition. The concentration of PM10 and PM2.5 in the wetlands had a significant positive correlation with relative humidity, a negative correlation with wind speed, and an insignificant negative correlation with temperature and radiation. The daily average dry deposition amount of PM10 in the different periods followed the order of dry period > normal water period > wet period, and the daily average dry deposition amount of PM2.5 in the different periods was dry period > wet period > normal water period.  相似文献   

14.
Concerns over exposure to mercury have motivated the exploration of cost-effective, rapid, and reliable method for monitoring Hg2 + in the environment. Recently, surface-enhanced Raman scattering (SERS) has become a promising alternative method for Hg2 + analysis. SERS is a spectroscopic technique which combines modern laser spectroscopy with the optical properties of nano-sized noble metal structures, resulting in substantially increased Raman signals. When Hg2 + is in a close contact with metallic nanostructures, the SERS effect provides unique structural information together with ultrasensitive detection limits. This review introduces the principles and contemporary approaches of SERS-based Hg2 + detection. In addition, the perspective and challenges are briefly discussed.  相似文献   

15.
The adsorption characteristics and mechanisms of the biosorbent from waste activated sludge were investigated by adsorbing Pb2+and Zn2+in aqueous single-metal solutions. A p H value of the metal solutions at 6.0 was beneficial to the high adsorption quantity of the biosorbent. The optimal mass ratio of the biosorbent to metal ions was found to be 2. A higher adsorption quantity of the biosorbent was achieved by keeping the reaction temperature below 55°C. Response surface methodology was applied to optimize the biosorption processes, and the developed mathematical equations showed high determination coefficients(above 0.99 for both metal ions) and insignificant lack of fit(p = 0.0838 and 0.0782 for Pb2+and Zn2+, respectively). Atomic force microscopy analyses suggested that the metal elements were adsorbed onto the biosorbent surface via electrostatic interaction. X-ray photoelectron spectroscopy analyses indicated the presence of complexation(between –NH2,-CN and metal ions) and ion-exchange(between –COOH and metal ions). The adsorption mechanisms could be the combined action of electrostatic interaction, complexation and ion-exchange between functional groups and metal ions.  相似文献   

16.
17.
A novel material, aminopropyl-functionalized manganese-loaded SBA-15 (NH2-Mn-SBA-15), was synthesized by bonding 3-aminopropyl trimethoxysilane (APTMS) onto manganese-loaded SBA-15 (Mn-SBA-15) and used as a Cu2 + adsorbent in aqueous solution. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction spectra (XRD), N2 adsorption/desorption isotherms, high resolution field emission scanning electron microscopy (FESEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the NH2-Mn-SBA-15. The ordered mesoporous structure of SBA-15 was remained after modification. The manganese oxides were mainly loaded on the internal surface of the pore channels while the aminopropyl groups were mainly anchored on the external surface of SBA-15. The adsorption of Cu2 + on NH2-Mn-SBA-15 was fitted well by the Langmuir equation and the maximum adsorption capacity of NH2-Mn-SBA-15 for Cu2 + was over two times higher than that of Mn-SBA-15 under the same conditions. The Elovich equation gave a good fit for the adsorption process of Cu2 + by NH2-Mn-SBA-15 and Mn-SBA-15. Both the loaded manganese oxides and the anchored aminopropyl groups were found to contribute to the uptake of Cu2 +. The NH2-Mn-SBA-15 showed high selectivity for copper ions. Consecutive adsorption–desorption experiments showed that the NH2-Mn-SBA-15 could be regenerated by acid treatment without altering its properties.  相似文献   

18.
Pollution by various heavy metals as environmental stress factors might affect bacteria. It was established that iron (Fe(III)), manganese (Mn(II)) and copper (Cu(II)) ion combinations caused effects on Enterococcus hirae that differed from the sum of the effects when the metals were added separately. It was shown that the Cu2 +–Fe3 + combination decreased the growth and ATPase activity of membrane vesicles of wild-type E. hirae ATCC9790 and atpD mutant (with defective FoF1-ATPase) MS116. Addition of Mn2 +–Fe3 + combinations within the same concentration range had no effects on growth compared to control (without heavy metals). ATPase activity was increased in the presence of Mn2 +–Fe3 +, while together with 0.2 mmol/L N,N′-dicyclohexylcarbodiimide (DCCD), ATPase activity was decreased compared to control (when only 0.2 mmol/L DCCD was present). These results indicate that heavy metals ion combinations probably affect the FOF1-ATPase, leading to conformational changes. Moreover the action may be direct or be mediated by environment redox potential. The effects observed when Fe3 + was added separately disappeared in both cases, which might be a result of competing processes between Fe3 + and other heavy metals. These findings are novel and improve the understanding of heavy metals ions effects on bacteria, and could be applied for regulation of stress response patterns in the environment.  相似文献   

19.
Cerium-doped SiO2/TiO2 nanostructured fibers were fabricated by electrospinning technology. The prepared fibers were characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Using the fibers as catalysts, photocatalytic degradation of Methylene Blue (MB) aqueous solution was carried out under simulated sunlight. The 0.2% Ce doping proved to be the optimal concentration for the doping of TiO2/SiO2, compared to other Ce-doped molar concentrations. The 0.2% Ce-doped SiO2/TiO2 fibers exhibited higher photocatalytic activity than industrial Degussa P25 and the samples doped with only Ce or SiO2. The reasons for improving the photocatalytic activity were also discussed. Several operational parameters were studied, which showed that the photocatalytic efficiency of MB was influenced by parameters such as the initial dye concentration, the initial pH, inorganic anions, and so on. In addition, the influences of an electron acceptor and a radical scavenger suggested that OH was the dominant photooxidant during the photocatalytic process. The reuse evaluation of the fibers indicated that their photocatalytic activity had good stability.  相似文献   

20.
Salinization and sodicity are obstacles for vegetation reconstruction of coastal tidal flat soils. A study was conducted with flue gas desulfurization(FGD)-gypsum applied at rates of 0, 15, 30, 45 and 60 Mg/ha to remediate tidal flat soils of the Yangtze River estuary.Exchangeable sodium percentage(ESP), exchangeable sodium(ExNa), p H, soluble salt concentration, and composition of soluble salts were measured in 10 cm increments from the surface to 30 cm depth after 6 and 18 months. The results indicated that the effect of FGD-gypsum is greatest in the 0–10 cm mixing soil layer and 60 Mg/ha was the optimal rate that can reduce the ESP to below 6% and decrease soil p H to neutral(7.0). The improvement effect was reached after 6 months, and remained after 18 months. The composition of soluble salts was transformed from sodic salt ions mainly containing Na~+, HCO_3~-+ CO_3~(2-)and Cl-to neutral salt ions mainly containing Ca~(2+)and SO_4~(2-). Non-halophyte plants were survived at 90%. The study demonstrates that the use of FGD-gypsum for remediating tidal flat soils is promising.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号