首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Egyptian national marine oil pollution contingency plan was urgently initiated after the Nabila oil spill in 1982, to provide an estimate of its environmental effects on the Egyptian Red Sea coastal areas and to determine geomorphological features and cuastal processes, together with physical, chemical and biological baseline data for this tropical environment.The ‘Vulnerability Index’ (VI) was applied to evaluate and calibrate the effect of the Nabila oil spill on the Egyptian Red Sea Coastal area. A detailed in situ coastal survey was conducted during two visits in November 1982 and May 1983 to 80 shore sites from Suez to Ras Banas to monitor the oil pollution and to apply the ‘Vulnerability Index’. A comparative assessment of the index over time by comparing it with a quick ground inspection in November 1993 to some sites to evaluate the applicability of this index for oil spills in such environments. In addition, the physical effects of fresh and weathered crude oil and/with dispersant on water filtration by different beaches were preliminary studied.The geomorphological/Vulnerability Index results show that most of the Egyptian Red Sea coastal environments have medium to high vulnerability to immediate and medium term oil spill damage. The oil pollution spread estimated to be 250 km south of the oil spill and about 200 km north of it. The quantity of oil along the shoreline was reduced by about 60% due to natural and authorities clean up. The third survey after 11 years showed that the VI could be used as a predictive tool for assessment of oil spill effects on such tropical environments.  相似文献   

2.
The spill response community is engaged in a technological rush towards computer-based, information-synthesis systems. Typically, they are modeled after many successful ‘incident command’ or ‘command and control’ systems that rely on micro- or mini-computer technology that is friendly and graphically oriented. Virtually all of these systems offer spill trajectory modeling components. What is typically lacking in this modeling output is any reliable way to estimate the uncertainty. This means that advice derived from the models is of questionable value, and when integrated into a complex response plan, the propagation of errors could seriously compromise the usefulness of results. It is shown that no single trajectory model run can provide the necessary information to respond in an optimal, ‘minimum regret’ strategy. However, a well-defined series of model runs used as the basis for trajectory analysis can provide the required information. A discussion of options suggests that the adoption of a minimum standard analysis procedure would significantly improve the ability of integrated response systems to use the predictions of oil distributions.  相似文献   

3.
The work reported here encompasses analyses of specific potential spill scenarios for oil exploration activity planned offshore of Namibia. The analyses are carried out with the SINTEF Oil Spill Contingency and Response (OSCAR) 3-dimensional model system. A spill scenario using 150 m3 of marine diesel demonstrates the rapidity with which such a spill will dissipate naturally, even in light winds. Vertical and horizontal mixing bring subsurface hydrocarbon concentrations to background levels within a few days. A hypothetical 10 day blowout scenario releasing 11,000 bbl per day of light crude oil is investigated in terms of the potential for delivering oil to selected bird and marine mammal areas along the Namibian coast. Worst case scenarios are selected to investigate the potential mitigating effects of planned oil spill response actions. Mechanical recovery significantly reduces, and in some cases eliminates, potential environmental consequences of these worst case scenarios. Dispersant application from fixed wing aircraft further reduces the potential surface effects. The analysis supplies an objective basis for net environmental analysis of the planned response strategies.  相似文献   

4.
During the first 72 h of a spill, the focus is on stabilization of the casualty and on open water recovery. As the oil moves into shallow water, technology often gives way to labor and the ensuing battle is won or lost on an efficient means of transporting a vast network of responders and their equipment. From an operations perspective, transportation alternatives can be evaluated, most simplistically, by two standards: speed and cargo capacity. How fast can resources be delivered to the site? What is the payload of the vehicle delivering the resources? As the life of the incident grows and more resources are committed to the project, the issues of delivery speed and delivery volume become more critical. The traditional means of transporting a response organization by land, air, or water always seem to leave a gap in efficiency, particularly when mounting a shoreline clean-up campaign. This paper seeks to build enthusiasm within the response community for viewing the air cushioned vehicle (ACV) as the amphibious alternative in marine spill response transportation. Theory, case histories, and personal experience are used to develop support for planning ACVs into future response roles.  相似文献   

5.
The oil spill trajectory and weathering model OILMAP was used to forecast spill trajectories for an experimental oil spill in the Barents Sea marginal ice zone. The model includes capabilities to enter graphically and display environmental data governing oil behavior: ice fields, tidal and background current fields, and wind time series, as well as geographical map information. Forecasts can also be updated from observations such as airplane overflights. The model performed well when wind was ‘off-ice’ and speeds were relatively low (3–7 m s−1), with ice cover between 60 and 90%. Errors in forecasting the trajectory could be directly attributed to errors in the wind forecasts. Appropriate drift parameters for oil and ice were about 25% of the wind speed, with an Ekman veering angle of 35° to the right. Ice sheets were typically 1 m thick. When the wind became ‘on-ice’, wind speeds increased to about 10 m s−1 and trajectory simulations began to diverge from the observations, with observed drift parameters being 1.5% of the wind speed, with a 60° veering angle. Although simple assumptions for the large scale movement of oil in dense ice fields appear appropriate, the importance of good wind forecasts as a basis for reliable trajectory prognoses cannot be overstated.  相似文献   

6.
7.
This viewpoint paper considers the potential of offshore burning of oil in the recent Tampa Bay spill as a generic oil spill response option. While the oil spilled might not have been amenable to burning, the physical constraints of the spill and subsequent environmental conditions provide a scenario for future consideration of this option.  相似文献   

8.
The state-of-the-art in oil spill modeling is summarized, focusing primarily on the years from 1990 to the present. All models seek to describe the key physical and chemical processes that transport and weather the oil on and in the sea. Current insights into the mechanisms of these processes and the availability of algorithms for describing and predicting process rates are discussed. Advances are noted in the areas of advection, spreading, evaporation, dispersion, emulsification, and interactions with ice and shorelines. Knowledge of the relationship between oil properties, and oil weathering and fate, and the development of models for the evaluation of oil spill response strategies are summarized. Specific models are used as examples where appropriate. Future directions in these and other areas are indicated  相似文献   

9.
This paper identifies and estimates time periods as ‘windows-of-opportunity’ where specific response methods, technologies, equipment, or products are more effective in clean-up operations for several oils. These windows have been estimated utilizing oil weathering and technology performance data as tools to optimize effectiveness in marine oil spill response decision-making. The windows will also provide data for action or no-action alternatives. Crude oils and oil products differ greatly in physical and chemical properties, and these properties tend to change significantly during and after a spill with oil aging (weathering). Such properties have a direct bearing on oil recovery operations, influencing the selection of response methods and technologies applicable for clean up, including their effectiveness and capacity, which can influence the time and cost of operations and the effects on natural resources.The changes and variations in physical and chemical properties over time can be modeled using data from weathering studies of specific oils. When combined with performance data for various equipment and materials, tested over a range of weathering stages of oils, windows-of-opportunity can be estimated for spill response decision-making. Under experimental conditions discussed in this paper, windows-of-opportunity have been identified and estimated for four oils (for which data are available) under a given set of representative environmental conditions. These ‘generic’ windows have been delineated for the general categories of spill response namely: (1) dispersants, (2) in situ burning, (3) booms, (4) skimmers, (5) sorbents, and (6) oil-water separators. To estimate windows-of-opportunity for the above technologies (except booms), the IKU Oil Weathering Model was utilized to predict relationships—with 5 m s−1 wind speed and seawater temperatures of 15°C.The window-of-opportunity for the dispersant (Corexit 9527®) with Alaska North Slope (ANS) oil was estimated from laboratory data to be the first 26 h. A period of ‘reduced’ dispersibility, was estimated to last from 26–120 h. The oil was considered to be no longer dispersible if treated for the first time after 120 h. The most effective time window for dispersing Bonnic Light was 0–2 h, the time period of reduced dispersibility was 2–4 h, and after 4 h the oil was estimated to be no longer dispersible. These windows-of-opportunity are based on the most effective use of a dispersant estimated from laboratory dispersant effectiveness studies using fresh and weathered oils. Laboratory dispersant effectiveness data cannot be directly utilized to predict dispersant performance during spill response, however, laboratory results are of value for estimating viscosity and pour point limitations and for guiding the selection of an appropriate product during contingency planning and response. In addition, the window of opportunity for a dispersant may be lengthened if the dispersant contains an emulsion breaking agent or multiple applications of dispersant are utilized. Therefore, a long-term emulsion breaking effect may increase the effectiveness of a dispersant and lengthen the window-of-opportunity.The window-of-opportunity of in situ burning (based upon time required for an oil to form an emulsion with 50% water content) was estimated to be approximately 0–36 h for ANS oil and 0–1 h for Bonnie Light oil after being spilled. The estimation of windows-of-opportunity for offshore booms is constrained by the fact that many booms available on the market undergo submergence at speeds of less than 2 knots. The data suggest that booms with buoyancy to weight ratios less than 8:1 may submerge at speeds within the envelope in which they could be expected to operate. This submergence is an indication of poor wave conformance, caused by reduction of freeboard and reserve net buoyancy within the range of operation. The windows-of-opportunity for two selected skimming principles (disk and brush), were estimated using modeled oil viscosity data for BCF 17 and BCF 24 in combination with experimental performance data developed as a function of viscosity. These windows were estimated to be within 3–10 h (disk skimmer) and after 10 h (brush skimmer) for BCF 17. Whereas for BCF 24, it is within 2–3 d (disk skimmer) and after 3 d (brush skimmer).For sorbents, an upper viscosity limit for an effective and practical use has in studies been found to be approximately 15,000 cP, which is the viscosity range of some Bunker C oils. Using viscosity data for the relative heavy oils, BCF 17 and BCF 24 (API gravity 17 and 24), the time windows for a sorbent (polyamine flakes) was estimated to be 0–4 and 0–10 d, respectively. With BCF 24, the effectiveness of polyamine flakes, was reduced to 50% after 36 h, although it continued to adsorb for up to 10 d. For BCF 17, the effectiveness of polyamine flakes was reduced to 50% after 12 h, although it continued to adsorb for up to 4 d. The windows-of-opportunity for several centrifuged separators based upon the time period to close the density gap between weathered oils and seawater to less than 0.025 g ml−1 (which is expected to be an end-point for effective use of centrifugal separation technology), were estimated to be 0–18 (ANS) and 0–24 h (Bonnie Light) after the spill. Utilizing the windows-of-opportunity concept, the combined information from a dynamic oil weathering model and a performance technology data base can become a decision-making tool; identifying and defining the windows of effectiveness of different response methods and equipment under given environmental conditions. Specific research and development needs are identified as related to further delineation of windows-of-opportunity.  相似文献   

10.
In situ burning is an oil spill response technique or tool that involves the controlled ignition and burning of the oil at or near the spill site on the surface of the water or in a marsh (see Lindau et al., this volume). Although controversial, burning has been shown on several recent occasions to be an appropriate oil spill countermeasure. When used early in a spill before the oil weathers and releases its volatile components, burning can remove oil from the waters surface very efficiently and at very high rates. Removal efficiencies for thick slicks can easily exceed 95% (Advanced In Situ Burn Course, Spiltec, Woodinville, WA, 1997). In situ burning offers a logistically simple, rapid, inexpensive and if controlled a relatively safe means for reducing the environmental impacts of an oil spill. Because burning rapidly changes large quantities of oil into its primary combustion products (water and carbon dioxide), the need for collection, storage, transport and disposal of recovered material is greatly reduced. The use of towed fire containment boom to capture, thicken and isolate a portion of a spill, followed by ignition, is far less complex than the operations involved in mechanical recovery, transfer, storage, treatment and disposal (The Science, Technology, and Effects of Controlled Burning of Oil Spills at Sea, Marine Spill Response Corporation, Washington, DC, 1994).However, there is a limited window-of-opportunity (or time period of effectiveness) to conduct successful burn operations. The type of oil spilled, prevailing meteorological and oceanographic (environmental) conditions and the time it takes for the oil to emulsify define the window (see Buist, this volume and Nordvik et al., this volume). Once spilled, oil begins to form a stable emulsion: when the water content exceeds 25% most slicks are unignitable. In situ burning is being viewed with renewed interest as a response tool in high latitude waters where other techniques may not be possible or advisable due to the physical environment (extreme low temperatures, ice-infested waters), or the remoteness of the impacted area. Additionally, the magnitude of the spill may quickly overwhelm the deployed equipment necessitating the consideration of other techniques in the overall response strategy (The Science, Technology, and Effects of Controlled Burning of Oil Spills at Sea, Marine Spill Response Corporation, Washington, DC, 1994; Proceedings of the In Situ Burning of Oil Spills Workshop. NIST. SP934. MMS. 1998, p. 31; Basics of Oil Spill Cleanup, Lewis Publishers, Washington, DC, 2001, p. 233). This paper brings together the current knowledge on in situ burning and is an effort to gain regulatory acceptance for this promising oil spill response tool.  相似文献   

11.
The Federal Water Pollution Control Act as amended by the Oil Pollution Act of 1990 provides criminal penalties in oil spills that result from criminal activity, gross negligence or willful misconduct on the part of the spiller. Nevertheless, the Department of Justice has seen fit to reach into unrelated legislation to potentially apply strict criminal liability to any oil spill regardless of intent.Strict criminalization of accidental oil spills is demonstrably counterproductive to effective protection of the environment from the effect of spills since it poses a serious impediment to cooperation and coordination by and between those charged by law to respond to them. This impediment is particularly dangerous since it threatens the proper functioning of the inherently sensitive “troika” Unified Command Structure that has evolved in spill response management in response to OPA-90 management requirements.Introduction of strict criminal liability for accidental spills is also particularly troublesome in that it must enlist unrelated law to influence an area that has been addressed specifically by legislation designed for that purpose; legislation that has worked well in the past 30 years to both regulate the target activities while successfully achieving the objective of protecting and improving environment quality.  相似文献   

12.
This paper focuses on the cost recovery issues arising through the operation of the International Oil Pollution Compensation Fund (IOPC) and administrative matters which arose following the Braer and Sea Empress oil tanker pollution incidents in the UK. Each of these oil spills brought very different problems.Any major oil spill will have prolonged economic and social consequences for the communities affected. Membership of the International Oil Pollution Compensation Fund (IOPC Fund) will do much to soften the impact as regards economic damage. However, the operation of the Fund brings difficulties which may not have been considered by the administration prior to the spill. Some of the difficulties are foreseeable.It covers details of the international compensation and liability regimes, it considers a number of administrative consequences and highlights seven lessons that have been learned in the UK in the light of recent experience. These lessons are:
  • •Claims may not be paid quickly or in full.
  • •Claimants will need advice and government involvement.
  • •Action by the government may be needed to complement the IOPC Fund.
  • •Governments have to balance their obligations as a member state with the needs of claimants.
  • •It is better for claimants to keep matters out of court for as long as possible.
  • •Administrative consequences will continue for a long time after the oil has been cleared from the shoreline.
  • •Each major oil spill brings different cost recovery problems and will also bring demands ‘to learn the lessons’.
In much the same way as contingency plans are regularly tested, each state party to the regime would be wise, from time to time, to think through the likely scenarios so as to better prepare themselves in the light of experiences elsewhere. The United Kingdom has had rather more experience in recent years than it would have wished!  相似文献   

13.
The fate of oil spilled in coastal zones depends in large part on the interactions with environmental factors existing within a short time of the spill event. In addition to weathering which produces changes in the chemistry of the hydrocarbon stock, physical interactions between oil and suspended particulate matter (SPM), both organic and inorganic, play a role in determining the dispersal and sedimentation rates of the spill. This in turn affects the degradation rate of the oil. This paper provides a comprehensive literature review of the role of oil–particle interactions in removal of petroleum hydrocarbons from the sea surface and provides estimates of the degree to which SPM may augment the deposition of oil. Both field and laboratory observations have shown widely varying rates of oil removal due to particulate interactions. The discussion covers the interaction between oil weathering, injection, sinking, adsorption, microbial processes, flocculation and ingestion by zooplankton, which all contribute to packaging oil and SPM into settling aggregates.  相似文献   

14.
The South Arne field being developed by Amerada Hess A/S is located in 60 m water depth approximately 200 km from the Danish mainland, in block 5604/29 of the Danish sector of the North Sea.As part of the development of the field, a comprehensive environmental impact assessment has been carried out, including the assessment of the impact from oil spills. The Danish authorities required that a ‘worst case’ oil spill be chosen as the basis for the assessment on birds and aquatic organisms including plankton, fish eggs and larvae and benthos.A well blow-out at the surface was chosen as the worst case for the impact on birds, and a seabed blow-out for aquatic organisms.The oil spill modelling was carried out with the DEEPBLOW, SLIKMAP and OSCAR models from SINTEF. The modelling identified environmentally sensitive areas which could potentially be influenced by an oil spill. These included the Dogger Bank, western Skagerrak, south-western Norwegian Trench, the eastern German Bight and the Wadden Sea.Historical meteorological and hydrodynamic scenarios were chosen from a long period of records to ensure that the plume passed through the environmentally sensitive resource areas.For birds, a scan of the literature and available databases was made to determine the numbers and species of birds in the areas swept by the surface slick, the number of fatalities was estimated and finally the recovery time for each species population was estimated.The impact on aquatic organisms was estimated using the predicted environmental concentration/predicted no effect concentration (PEC/PNEC) method of the CHARM model. This method is normally applied to continuous discharges, but here has been used to estimate the impact of a transient pollution cloud resulting from an oil spill.  相似文献   

15.
16.
The common response to an oil spill on water is to contain the oil with booms and recover it with skimming devices. In some situations, however, the booms cannot hold the oil and the oil will escape underneath the boom due to hydrodynamic forces. Computational fluid dynamics (CFD) is a powerful modelling tool combining fluid dynamics and computer technology. We have utilized a commercial CFD program, Fluent, to simulate the oil-water flow around a boom. The studies accurately model channel experiments conducted in recent years. The studies show that the flow patterns around booms are modified by the presence of oil and, therefore, suggest that towing and wave-conformity tests of booms will not be meaningful unless they are undertaken with the presence of oil.  相似文献   

17.
Estimates of occurrence rates for offshore oil spills are useful for analysis of potential oil spill impacts and for oil spill response contingency planning. As the Oil Pollution Act of 1990 (U.S. Public Law 101–380, 18 August 1990) becomes fully implemented, estimates of oil spill occurrence will become even more important to natural resource trustees and to responsible parties involved in oil and gas activities. Oil spill occurrence rate estimates have been revised based on U.S. Outer Continental Shelf platform and pipeline spill data (1964–1992) and worldwide tanker spill data (1974–1992). These spill rates are expressed and normalized in terms of number of spills per volume of crude oil handled. The revisions indicate that estimates for the platform spill occurrence rates declined, the pipeline spill occurrence rates increased, and the worldwide tanker spill occurrence rates remained unchanged. Calculated for the first time were estimates of tanker and barge spill rates for spills occuring in U.S. waters, and spill occurrence rates for spills of North Slope crude oil transported by tanker from Valdez, Alaska. All estimates of spill occurrence rates were restricted to spills greater than or equal to 159 m3 (1000 barrels).  相似文献   

18.
The coastal region affected by the Exxon Valdez oil spill, although a beautiful and sensitive maritime wilderness with bountiful fish and wildlife, was not a pristine environment in 1989. Prior to the spill, Prince William Sound and the northern Gulf of Alaska region had experienced extensive human impacts from the commercial fur trade, commercial sea-mammal hunting, commercial fishing, logging, mining and introduced exotic species including foxes, Sitka black-tailed deer and hatchery-reared pink salmon. The spill occurred in a scenic area that was (and is) paradoxically both the source of subsistence food for local residents and the scene of extensive natural resource exploitation.Contrary to media sound bites and news headlines, the Exxon Valdez oil spill did not destroy a pristine wilderness. The Russian and American fur traders, commercial whalers and commercial fishermen, miners, loggers, fox farmers and military construction crews had transformed the region long before March 24, 1989. The Exxon Valdez spill was an important chapter in the history of human impacts to the area’s maritime ecosystem, but it was not, as many continue to claim, the mother of all environmental impacts in the region.  相似文献   

19.
Parameter uncertainty is ubiquitous in marine environmental processes. Failure to account for this uncertainty may lead to erroneous results, and may have significant environmental and economic ramifications. Stochastic modeling of oil spill transport and fate is, therefore, central in the development of an oil spill contingency plan for new oil and gas projects. Over the past twenty years, several stochastic modeling tools have been developed for modeling parameter uncertainty, including the spectral, perturbation, and simulation methods. In this work we explore the application of a new stochastic methodology, the first-order reliability method (FORM), in oil spill modeling. FORM was originally developed in the structural reliability field and has been recently applied to various environmental problems. The method has many appealing features that makes it a powerful tool for modeling complex environmental systems. The theory of FORM is presented, identifying the features that distinguish the method from other stochastic tools. Different formulations to the reliability-based stochastic oil spill modeling are presented in a decision-analytic context.  相似文献   

20.
In planning for response to oil spills, a great deal of information must be assimilated. Typically, geophysical flow patterns, ocean turbulence, complex chemical processes, ecological setting, fisheries activities, economics of land use, and engineering constraints on response equipment all need to be considered. This presents a formidable analysis problem. It can be shown, however, that if an appropriate set of evaluation data is available, an objective function and appropriate constraints can be formulated. From these equations, the response problem can be cast in terms of game theory or decision analysis and an optimal solution can be obtained using common scarce-resource allocation methods. The optimal solution obtained by this procedure maximizes the expected return over all possible implementations of a given set of response options. While considering the development of an optimal spill response, it is useful to consider whether (in the absence of complete data) implementing some subset of these methods is possible to provide relevant and useful information for the spill planning process, even though it may fall short of a statistically optimal solution. In this work we introduce a trajectory analysis planning (TAP) methodology that can provide a cohesive framework for integrating physical transport processes, environmental sensitivity of regional sites, and potential response options. This trajectory analysis planning methodology can be shown to implement a significant part of the game theory analysis and provide `minimum regret' strategy advice, without actually carrying out the optimization procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号