首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper discusses the changes in spilled oil properties over time and how these changes affect differential density separation. It presents methods to improve differential density, and operational effectiveness when oil-water separation is incorporated in a recovery system. Separators function because of the difference in density between oil and seawater. As an oil weathers this difference decreases, because the oil density increases as the lighter components evaporate. The density also increases as the oil incorporates water droplets to form a water-in-oil emulsion. These changes occur simultaneously during weathering and reduce the effectiveness of separators. Today, the state-of-the-art technologies have limited capabilities for separating spilled marine oil that has weathered.For separation of emulsified water in an emulsion, the viscosity of the oil will have a significant impact on drag forces, reducing the effect of gravity or centrifugal separation. Since water content in an emulsion greatly increases the clean up volume (which can contain as much as two to five times as much water as the volume of recovered oil), it is equally important to remove water from an emulsion as to remove free water recovered owing to low skimmer effectiveness. Removal of both free water and water from an emulsion, has the potential to increase effective skimming time, recovery effectiveness and capacity, and facilitate waste handling and disposal. Therefore, effective oil and water separation in marine oil spill clean-up operations may be a more critical process than credited because it can mean that fewer resources are needed to clean up an oil spill with subsequent effects on capital investment and basic stand-by and operating costs for a spill response organization.A large increase in continuous skimming time and recovery has been demonstrated for total water (free and emulsified water) separation. Assuming a 200 m3 storage tank, 100 m3 h−1 skimmer capacity, 25% skimmer effectiveness, and 80% water content in the emulsion, the time of continuous operation (before discharge of oil residue is needed), increases from 2 to 40 h and recovery of oil residue from 10 to 200 m3.Use of emulsion breakers to enhance and accelerate the separation process may, in some cases, be a rapid and cost effective method to separate crude oil emulsions. Decrease of water content in an emulsion, by heating or use of emulsion breakers and subsequent reduction in viscosity, may improve pumpability, reduce transfer and discharge time, and can reduce oily waste handling, and disposal costs by a factor of 10. However, effective use of emulsion breakers is dependant on the effectiveness of the product, oil properties, application methods and time of application after a spill.  相似文献   

2.
This paper summarizes the development, field testing and performance evaluation of the Transrec oil recovery system including the Framo NOFO Transrec 350 skimmer and multi-functional oil spill prevention and response equipment and presents performance data, not published before, from full-scale experimental oil spills in the North Sea from 1981 to 1990. The rare data provides useful information for evaluation of mechanical clean-up capabilities and efficiency, in particular, for responders who are using this equipment in many countries around the world.The development of the Transrec oil recovery system represents one of the most comprehensive efforts funded to date by the oil industry in Norway to improve marine and open ocean oil spill response capabilities. The need for improvements was based upon early practical user experience with different oil recovery systems, and test results from experimental oil spills in the North Sea.The result of the development efforts increased: (1) skimmer efficiency from approximately 15–75% (it reached 100% under favorable environmental conditions); (2) oil emulsion recovery rate from approximately 20–300 m3/h; (3) recovery system efficiency from approximately 15–85% in 1.5 m significant wave height; (4) oil emulsion thickness from approximately 15–35 cm; (5) weather-window for mechanical recovery operations from 1.5 to 3.0 m significant wave height; (6) capability for transfer of recovered oil residue to shuttle tankers in up to 4 m significant wave height and 45 knot winds; (7) capability for operations at night.The new Transrec oil recovery system with the special J-configuration virtually eliminated skimming operation downtime, and damage to booms and equipment failures that had been caused by oil spill response vessel (OSRV) problems with maintaining skimming position in the previous three-vessel oil recovery system with the boom towed in U-configuration. The time required to outfit OSRVs dropped from approximately 30–<1 h, reducing time from notification to operation on site by more than 24 h.Improvement in oil recovery resulted in the acceptance of a new oil spill preparedness and response plan. The new plan reduced the need for oil recovery systems from 21 to 14, towing vessels in preparedness from 42 to 18, and personnel on stand-by from 135 to 70, which subsequently reduced the total contingency and operational costs by almost 50%. These cost reductions resulted from lower contingency fees for personnel, fewer towing vessels on stand-by, less expensive open ocean training and exercises, less equipment and reduced storage space to lease, and simplified equipment maintenance.  相似文献   

3.
A numerical model for the simulation of the physicochemical weathering processes of an oil spill at sea is presented based on state-of-the-art models. The model includes the most significant processes: spreading, evaporation, dispersion into the water column, emulsification and the change in viscosity and density. These processes depend on each other and are allowed to vary simultaneously since processes are described by a set of differential equations, solved by a fourth-order Runge-Kutta method. Numerical examples are given, in order to test the results obtained, and compared with available experimental data in the literature. The model predicts well the variation of water incorporation, density and viscosity but seems to overestimate the fraction evaporated. However more experimental data are needed to calibrate and validate the model since differences in the composition of the simulated oil and the samples from which experimental data are taken may occur in evaporation studies. The model is suitable to join other modules for the prediction of the spill trajectory by advection due to winds and currents and sub-sea transport.  相似文献   

4.
The common response to an oil spill on water is to contain the oil with booms and recover it with skimming devices. In some situations, however, the booms cannot hold the oil and the oil will escape underneath the boom due to hydrodynamic forces. Computational fluid dynamics (CFD) is a powerful modelling tool combining fluid dynamics and computer technology. We have utilized a commercial CFD program, Fluent, to simulate the oil-water flow around a boom. The studies accurately model channel experiments conducted in recent years. The studies show that the flow patterns around booms are modified by the presence of oil and, therefore, suggest that towing and wave-conformity tests of booms will not be meaningful unless they are undertaken with the presence of oil.  相似文献   

5.
Estimates of occurrence rates for offshore oil spills are useful for analysis of potential oil spill impacts and for oil spill response contingency planning. As the Oil Pollution Act of 1990 (U.S. Public Law 101–380, 18 August 1990) becomes fully implemented, estimates of oil spill occurrence will become even more important to natural resource trustees and to responsible parties involved in oil and gas activities. Oil spill occurrence rate estimates have been revised based on U.S. Outer Continental Shelf platform and pipeline spill data (1964–1992) and worldwide tanker spill data (1974–1992). These spill rates are expressed and normalized in terms of number of spills per volume of crude oil handled. The revisions indicate that estimates for the platform spill occurrence rates declined, the pipeline spill occurrence rates increased, and the worldwide tanker spill occurrence rates remained unchanged. Calculated for the first time were estimates of tanker and barge spill rates for spills occuring in U.S. waters, and spill occurrence rates for spills of North Slope crude oil transported by tanker from Valdez, Alaska. All estimates of spill occurrence rates were restricted to spills greater than or equal to 159 m3 (1000 barrels).  相似文献   

6.
The oil spill trajectory and weathering model OILMAP was used to forecast spill trajectories for an experimental oil spill in the Barents Sea marginal ice zone. The model includes capabilities to enter graphically and display environmental data governing oil behavior: ice fields, tidal and background current fields, and wind time series, as well as geographical map information. Forecasts can also be updated from observations such as airplane overflights. The model performed well when wind was ‘off-ice’ and speeds were relatively low (3–7 m s−1), with ice cover between 60 and 90%. Errors in forecasting the trajectory could be directly attributed to errors in the wind forecasts. Appropriate drift parameters for oil and ice were about 25% of the wind speed, with an Ekman veering angle of 35° to the right. Ice sheets were typically 1 m thick. When the wind became ‘on-ice’, wind speeds increased to about 10 m s−1 and trajectory simulations began to diverge from the observations, with observed drift parameters being 1.5% of the wind speed, with a 60° veering angle. Although simple assumptions for the large scale movement of oil in dense ice fields appear appropriate, the importance of good wind forecasts as a basis for reliable trajectory prognoses cannot be overstated.  相似文献   

7.
The Egyptian national marine oil pollution contingency plan was urgently initiated after the Nabila oil spill in 1982, to provide an estimate of its environmental effects on the Egyptian Red Sea coastal areas and to determine geomorphological features and cuastal processes, together with physical, chemical and biological baseline data for this tropical environment.The ‘Vulnerability Index’ (VI) was applied to evaluate and calibrate the effect of the Nabila oil spill on the Egyptian Red Sea Coastal area. A detailed in situ coastal survey was conducted during two visits in November 1982 and May 1983 to 80 shore sites from Suez to Ras Banas to monitor the oil pollution and to apply the ‘Vulnerability Index’. A comparative assessment of the index over time by comparing it with a quick ground inspection in November 1993 to some sites to evaluate the applicability of this index for oil spills in such environments. In addition, the physical effects of fresh and weathered crude oil and/with dispersant on water filtration by different beaches were preliminary studied.The geomorphological/Vulnerability Index results show that most of the Egyptian Red Sea coastal environments have medium to high vulnerability to immediate and medium term oil spill damage. The oil pollution spread estimated to be 250 km south of the oil spill and about 200 km north of it. The quantity of oil along the shoreline was reduced by about 60% due to natural and authorities clean up. The third survey after 11 years showed that the VI could be used as a predictive tool for assessment of oil spill effects on such tropical environments.  相似文献   

8.
There is growing acceptance worldwide that use of dispersants to counter the effects of an oil spill offers many advantages and can often result in a net environmental benefit when considered in relation to other response options. A major reason for this growing support and increased reliance on dispersants is the advent of improved dispersant products that are low in toxicity to marine life and more effective at dispersing heavy and weathered oils – oils previously believed to be undispersible. This capability has been demonstrated through extensive laboratory testing, field trials, and dispersant application on actual spills. This paper summarizes recent advances in dispersant R&D and reviews the implications of technology advances.  相似文献   

9.
During the period of 22 August–12 October 1998, seven commercial fire booms were involved in burn testing at the US Coast Guard Fire and Safety Test Detachment Facility in Mobile, Alabama in accordance with the proposed protocol, American Society for Testing and Materials-F20. Four of the seven booms survived the test sequence and were shipped from Mobile, Alabama to the Minerals Management Service’s OHMSETT facility for additional tests including first loss, gross loss, tow speed, oil loss rate, and critical tow speed. The four booms showed the same trend in response to various wave conditions; the long sinusoidal waves improved containment performance and the short choppy waves degraded performance. One of the four booms achieved slightly higher first and gross oil loss rate tests. One boom demonstrated superior stability at high tow speeds. The results of this test report are consistent with the evaluation of fire booms that had been previously tested at OHMSETT, but also show a slight increase in performance. The tests indicate that the existing fire booms can contain oil in currents up to 1 knot and in various wave conditions after being exposed to multiple burns. This information will be used by the Coast Guard to develop policies and procedures for the in situ burning (ISB) of oil during a spill.  相似文献   

10.
This paper is a review of the major findings from laboratory studies and field trials conducted in Norway in recent years on the emulsification of oils spilled at sea. Controlled bench-scale and meso-scale basin experiments using a wide spectrum of oils have revealed that both the physico-chemical properties of the oils and the release conditions are fundamental determinants of the rate of emulsion formation, for the rheological properties of the emulsion formed and for the rate of natural dispersion at sea.During the last decade, several series of full-scale field trials with experimental releases of various crude oils have been undertaken in the North Sea and the Norwegian Sea. These have involved both sea surface releases, underwater pipeline leak simulations (release of oil under low pressure and no gas) and underwater blowout simulations (pressurized oil with gas) from 100 and 850 m depth. The field trials have been performed in co-operation with NOFO (Norwegian Clean Seas Association for Operating Companies), individual oil companies, the Norwegian Pollution Control Authority (SFT) and Minerals Management Services (MMS). SINTEF has been responsible for the scientific design and monitoring during these field experiments. The main objectives of the trials have been to study the behaviour of different crude oils spilled under various conditions and to identify the operational and logistical factors associated with different countermeasure techniques.The paper gives examples of data obtained on the emulsification of spilled oil during these field experiments. The empirical data generated from the experimental field trials have been invaluable for the validation and development of numerical models at SINTEF for predicting the spreading, weathering and behaviour of oil released under various conditions. These models are extensively used in contingency planning and contingency analysis of spill scenarios and as operational tools during spill situations and combat operations.  相似文献   

11.
The SINTEF Oil Weathering Model (OWM) has been extensively tested with results from full-scale field trials with experimental oil slicks in the Norwegian NOFO Sea trials in 1994 and 1995 and the AEA 1997 trials in UK. The comparisons between oil weathering values predicted by the model and ground-truth obtained from the field trials are presented and discussed. Good laboratory weathering data of the specific oil as input to the model is essential for obtaining reliable weathering predictions. Predictions provided by the SINTEF-OWM enable oil spill personnel to estimate the most appropriate “window of opportunity” for use of chemical dispersants under various spill situations. Pre-spill scenario analysis with the SINTEF Oil Spill Contingency and Response (OSCAR) model system, in which the SINTEF-OWM is one of several components, has become an important part of contingency plans as well as contingency training of oil spill personnel at refineries, oil terminals and offshore installations in Norway.  相似文献   

12.
The effect of receiving water salinity on the effectiveness of two oil dispersants, Corexits® 9527 and 9500, was investigated using a recently implemented modified version of the Swirling Flask efficacy test. The dispersants were tested with ten different oils, representing a wide range of physical–chemical properties. Test salinities ranged from 0 to 35 ppt, with temperature held constant at 15°C. Results showed Corexit 9500 to be generally more effective on most of the dispersible oils at most salinities, but performance of both products was significantly affected by salinity. Both dispersants performed best at salinities above 25 ppt, with Corexit 9500 maintaining its effectiveness over a fairly wide range of salinities. Correlations between dispersant effectiveness and various oil physical/chemical properties were highly variable.  相似文献   

13.
Dispersants were used in shallow water (4–6 m) and in the surf zone at a small spill (400 bbls) of Venezuelan Recon at the port of Acajutla, El Salvador in June 1994. Subtidal oysters were collected 1 and 4 weeks post-spill to determine the degree of exposure of benthic resources to the dispersed oil. Two samples of oysters from the area of dispersed oil contained total PAHs of 147 and 164 ppm, dry weight, compared with background levels less than 1.0 ppm. Four weeks post-spill, PAH levels decreased by 94–98%. Half-lives for individual PAH compounds were estimated and were generally consistent with results from laboratory experiments. Monitoring of bivalves during dispersant applications can document the areal and vertical extent of dispersed oil in the water column.  相似文献   

14.
A literature review of the physics and modelling of water-in-oil emulsification is presented. The understanding of the physics of emulsion formation is still incomplete, but developing. The formation of emulsions is due to the surfactant-like action of polar compounds (resins) and asphaltenes in oil. These compounds act to maintain small (1–20 μm) droplets of water in oil. Volatile aromatic compounds in crude oils solubilize asphaltenes and resins. Crude oils containing lower quantities of these volatile compounds or BTEX (benzene, toluene, ethylbenzene, xylenes) will form emulsions given sufficient turbulent sea energy. Oils may lose the BTEX component by weathering before being capable of forming stable emulsions. The kinetics and energy of formation of emulsions is not well understood. Emulsions are often reported to form rapidly after the necessary chemical conditions are achieved and where there is significant wave action or other turbulent energy. Oil spill models generally employ a first-order rate law (exponential) to predict emulsion formation.  相似文献   

15.
In situ burning is an oil spill response technique or tool that involves the controlled ignition and burning of the oil at or near the spill site on the surface of the water or in a marsh (see Lindau et al., this volume). Although controversial, burning has been shown on several recent occasions to be an appropriate oil spill countermeasure. When used early in a spill before the oil weathers and releases its volatile components, burning can remove oil from the waters surface very efficiently and at very high rates. Removal efficiencies for thick slicks can easily exceed 95% (Advanced In Situ Burn Course, Spiltec, Woodinville, WA, 1997). In situ burning offers a logistically simple, rapid, inexpensive and if controlled a relatively safe means for reducing the environmental impacts of an oil spill. Because burning rapidly changes large quantities of oil into its primary combustion products (water and carbon dioxide), the need for collection, storage, transport and disposal of recovered material is greatly reduced. The use of towed fire containment boom to capture, thicken and isolate a portion of a spill, followed by ignition, is far less complex than the operations involved in mechanical recovery, transfer, storage, treatment and disposal (The Science, Technology, and Effects of Controlled Burning of Oil Spills at Sea, Marine Spill Response Corporation, Washington, DC, 1994).However, there is a limited window-of-opportunity (or time period of effectiveness) to conduct successful burn operations. The type of oil spilled, prevailing meteorological and oceanographic (environmental) conditions and the time it takes for the oil to emulsify define the window (see Buist, this volume and Nordvik et al., this volume). Once spilled, oil begins to form a stable emulsion: when the water content exceeds 25% most slicks are unignitable. In situ burning is being viewed with renewed interest as a response tool in high latitude waters where other techniques may not be possible or advisable due to the physical environment (extreme low temperatures, ice-infested waters), or the remoteness of the impacted area. Additionally, the magnitude of the spill may quickly overwhelm the deployed equipment necessitating the consideration of other techniques in the overall response strategy (The Science, Technology, and Effects of Controlled Burning of Oil Spills at Sea, Marine Spill Response Corporation, Washington, DC, 1994; Proceedings of the In Situ Burning of Oil Spills Workshop. NIST. SP934. MMS. 1998, p. 31; Basics of Oil Spill Cleanup, Lewis Publishers, Washington, DC, 2001, p. 233). This paper brings together the current knowledge on in situ burning and is an effort to gain regulatory acceptance for this promising oil spill response tool.  相似文献   

16.
A three-dimensional numerical model of the physical and chemical behavior and fate of spilled oil has been coupled to a model of oil spill response actions. This coupled system of models for Oil Spill Contingency and Response (OSCAR), provides a tool for quantitative, objective assessment of alternative oil spill response strategies. Criteria for response effectiveness can be either physical (‘How much oil comes ashore?’ or ‘How much oil have we recovered?’) or biological (‘How many biologically sensitive areas were affected?’ or ‘What exposures will fish eggs and larvae experience in the water column?’). The oil spill combat module in the simulator represents individual sets of equipment, with capabilities and deployment strategies being specified explicitly by the user. The coupling to the oil spill model allows the mass balance of the spill to be affected appropriately in space and time by the cleanup operation as the simulation proceeds. An example application is described to demonstrate system capabilities, which include evaluation of the potential for both surface and subsurface environmental effects. This quantitative, objective approach to analysis of alternative response strategies provides a useful tool for designing more optimal, functional, rational, and cost-effective oil spill contingency solutions for offshore platforms, and coastal terminals and refineries.  相似文献   

17.
During recent oil spill clean-up operations, residual oils stranded in the intertidal environment were successfully dispersed into the sea by physically accelerating the natural interaction between oil and mineral fines. Oil-mineral fine interaction reduces the adhesion of oil to solid surfaces and promotes the formation of stable micron-sized oil droplets in the water column. By increasing the oil-in-water interface, i.e. the oil becomes more accessible to nutrients, oxygen and bacteria, this interaction becomes a key factor in enhancing oil biodegradation. There is, however, concern that this technique merely transports the oil from one compartment of the environment to another. In our study, controlled laboratory shaker-flask experiments showed that oil-mineral fine interactions stimulates microbial activity by enhancing both the rate and extent of oil degradation by stimulating microbial activity. These results support the application of shoreline oil spill clean-up techniques based on the acceleration of oil-mineral fine interactions.  相似文献   

18.
The fate of oil spilled in coastal zones depends in large part on the interactions with environmental factors existing within a short time of the spill event. In addition to weathering which produces changes in the chemistry of the hydrocarbon stock, physical interactions between oil and suspended particulate matter (SPM), both organic and inorganic, play a role in determining the dispersal and sedimentation rates of the spill. This in turn affects the degradation rate of the oil. This paper provides a comprehensive literature review of the role of oil–particle interactions in removal of petroleum hydrocarbons from the sea surface and provides estimates of the degree to which SPM may augment the deposition of oil. Both field and laboratory observations have shown widely varying rates of oil removal due to particulate interactions. The discussion covers the interaction between oil weathering, injection, sinking, adsorption, microbial processes, flocculation and ingestion by zooplankton, which all contribute to packaging oil and SPM into settling aggregates.  相似文献   

19.
Six oil spill booms produced by five manufacturers for use as fire resistant booms, were tested at the Minerals Management Service's Ohmsett Facility, NWS-Earle, Leonardo, New Jersey. The tests were conducted between July 16, 1996 and October 4, 1996. Prior to being exposed to any fire, the booms were tested for: first loss tow speed, loss rate, critical tow speed, and wave conformance. No fires were used during these tests. Four of the booms performed within speed and rate loss ranges that have been measured for commercial non-fire resistant booms. One boom was found to be superior in wave conformance and critical tow speed. However, this boom was at the lower edge of the range for first loss tow speed. A prototype boom, with a unique paddle wheel operating principal was the sixth boom included in the study. This boom was found to need further development.  相似文献   

20.
An oil spill model was applied to the Nakhodka tanker spill accident that occurred in the Japan Sea in January 1997. The amount of oil spilled was estimated to be around 5000 kl, released over 1 day. Under a 2-m wave height condition, and a 3.5% of drift factor, the model simulated the oil slick to hit the shoreline after 6 days. This was in good agreement with the observed conditions. After drifting to the shoreline, the oil slick moved northeastward with the current. In the model, the simulation where the shoreline absorbs 100% of stranded oil failed to reproduce the actual oil slick trajectory. The simulation in which oil resuspended after stranding indicated a similar trend to the actual case. Therefore, it is likely that a considerable amount of oil that hit the shoreline may have returned to the sea and moved with the current. The effects of current pattern and wind drift angle on the oil slick trajectory were also examined. It is suggested that the wind parameters were of prime importance in reproducing a realistic distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号