首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Lake Sapanca is exposed to heavy urbanization and industrialization because of its natural beauty and its proximity to the metropolitan İstanbul, Turkey. In this study, it was aimed to investigate seasonal changes of some heavy metals (Pb, Cr, Cu, Mn, Ni, Zn and Cd) concentration of surface sediment. Nine different stations were chosen as sampling points. Samples were taken every three months and the seasonal and annual average concentration of the elements were determined. Seasonal highest values of heavy metals were observed as follows; Cr, Cu, Mn, Ni and Zn in Summer, Cd in Autumn. There was no seasonal difference for Pb, Cr and Cd. It seems that Lake Sapanca has not been polluted yet. However, it was found that Cu and Ni concentrations in surface sediment exceed lowest effect level.  相似文献   

2.
Hongze Lake, located in the east route of the South-to-North Water Diversion Project (SNWDP), is a potential drinking water source for the residents along this water diversion project. Based on a monthly sampling at 11 stations in three regions of Hongze Lake, the spatiotemporal distribution pattern of cyanobacteria community was comprehensively investigated from March 2011 to February 2013. A total of 23 cyanobacterial species which belong to 16 genera were identified, and Microcystis was the most predominant cyanobacterial genus mainly composed of Microcystis wesenbergii in Hongze Lake. The cyanobacterial abundance ranged from 0 to 2.6?×?107 cells/L, and the average cyanobacteria abundance of Northern region was significantly higher than those of Western region and Eastern region in the 2-year study. The total cyanobacteria abundance and the Microcystis abundance both took on a similar seasonal regularity in the three regions. The results of correlation analysis indicated that Microcystis abundance was correlated with water temperature, chemical oxygen demand (COD)Mn, nitrate (NO3-N), and total nitrogen (TN)/total phosphorus (TP) mass ratio, among which water temperature had the highest correlation coefficient. In summer, cyanobacteria blooms may take place under suitable environmental conditions at some special areas in Hongze Lake, especially where the concurrence of slow water exchange and steady wind direction exists.  相似文献   

3.
The seasonal variability of inorganic and organic nutrients and stable isotopes and their relations with plankton and environmental conditions were monitored in Lake Chasicó. Principal component analysis evidenced the strong influence of the river runoff on several biogeochemical variables. Silicate concentrations were controlled by diatom biomass and river discharge. Higher values of nitrate and soluble reactive phosphorus (SRP) indicated agricultural uses in the river basin. Elevated pH values (~9) inhibiting nitrification in the lake explained partially the dominance of ammonium: ~83 % of dissolved inorganic nitrogen (DIN). The low DIN/SRP ratio inferred nitrogen limitation, although the hypotheses of iron and CO2 limitation are relevant in alkaline lakes. Particulate organic matter (POM) and dissolved organic matter (DOM) were mainly of autochthonous origin. The main allochthonous input was imported by the river as POM owning to the arid conditions. Dissolved organic carbon was likely top-down regulated by the bacterioplankton grazer Brachionus plicatilis. The δ13C signature was a good indicator of primary production and its values were influenced probably by CO2 limitation. The δ15N did not evidence nitrogen fixation and suggested the effects of anthropogenic activities. The preservation of a good water quality in the lake is crucial for resource management.  相似文献   

4.
Soil, rock and water samples were collected from India??s oldest coalfield Raniganj to investigate trace metal contamination from mining activity. Our data reveal that trace metal concentration in soil samples lies above the average world soil composition; especially, Cr, Cu, Ni and Zn concentrations exceed the maximum allowable concentration proposed by the European Commission for agricultural soils. In particular, Cr, Cu and Ni exceed the ecotoxicological limit, and Ni exceeds the typical value for cultivated soils. Mineral dissolution from overburden material and high adsorption capacity of laterite soil are responsible for the elevated concentrations. This is evident from enrichment factor (E f), geoaccumulation index (I geo) and metal pollution index values. Sediment quality guideline index indicates toxicity to local biota although enrichment index suggests no threat from consuming crops cultivated in the contaminated soil.  相似文献   

5.
长湖流域水质时空分布特征及影响因子   总被引:1,自引:1,他引:0  
利用2009—2014年长湖5个水质监测点数据,采用时间序列法分析了长湖水质的时间变化规律,采用相关性分析法,分析了流域水污染的影响因子。结果表明:在时间上,长湖水污染物质量浓度季节变化明显,COD、TN、NH3-N均为7、9月较低,1、3月较高,丰水期水质好于枯水期。入湖地区TP质量浓度7月达最高值,且7月份入湖地区的桥河口、关沮口的NH3-N、TN含量稍高于5月。空间上,西北部入湖地区水质劣于湖心及东南部出湖地区。工业、生活等点源污水,以耕地为主的农业非点源以及天然降水量和径流量是影响水质的主要因素,入湖排污量、降水量和径流量与长湖水质呈显著相关关系(P0.05)。  相似文献   

6.
In this study, a survey for the spatial distribution of heavy metals in Chaohu Lake of China was conducted. Sixty-two surface water samples were collected from entire lake including three of its main river entrances. This is the first systematic report concerning the content, distribution, and origin of heavy metals (Cu, Cr, Cd, Hg, Zn, and Ni) in the Chaohu Lake water. The results showed that heavy metals (Cu, Cr, Zn, and Ni) concentrations in the estuary of Nanfei River were relatively higher than those in the other areas, while content of Hg is higher in the southeast lake than northwest lake. Moreover, Cd has locally concentration in the surface water from the entire Chaohu Lake. The heavy metal average concentrations, except Hg, were lower than the cutoff values for the first-grade water quality (China Environment Quality Standard) which was set as the highest standard to protect the social nature reserves. The Hg content is between the grades three and four water quality, and other heavy metals contents are higher than background values. The aquatic environment of Chaohu Lake has apparently been contaminated. Both the cluster analysis (CA) and correlation analysis provide information about the origin of heavy metals in the Lake. Our findings indicated that agricultural activities and adjacent plants chimneys may contribute the most to Cd and Hg contamination of Chaohu Lake, respectively.  相似文献   

7.
A geochemical study of the bottom sediments of Lake Shinji and the River Ohashi in southwestern Japan was carried out to determine their elemental compositions and to evaluate the pollution status of lake sediments by employing enrichment factor (EF), pollution load index (PLI), and geoaccumulation index (I geo). Present-day water quality was also assessed. Results showed that the water quality of Lake Shinji contrasts slightly between the upper and lower parts. The chemical composition of the sediments, as measured by X-ray fluorescence, included major and trace elements and total sulfur (TS). Average abundances of As, Pb, Zn, Cu, Ni, and Cr in the Shinji sediments were 10, 29, 143, 27, 19, and 54 ppm, respectively, compared to 6, 18, 57, 16, 10, and 37 ppm in the river sediments. Based on the EF, PLI, and I geo, the lake sediments are moderately to strongly polluted with respect to As, moderately polluted with Pb, Zn, and Cr, and unpolluted with Cu and Ni. The high EF and I geo for As, Pb, and Zn in the lake sediments indicate that metal concentration has occurred in Shinji. Increases in the abundances of these metals are likely related to the fine-grained nature of the sediments, reducing conditions of the bottom sediments, enrichment in organic matter, and possibly a minor contribution from non-point anthropogenic sources. Trace metal contents are strongly correlated with Fe2O3 and TS, suggesting that Fe oxides and sulfides play a role in controlling abundances in the investigated areas.  相似文献   

8.
Spatial and seasonal differences in water quality of drainage water and unconfined shallow groundwater were related to irrigation in Samandağ, a Mediterranean coastal region. Eighteen wells, seven drainage points and Orontes River were monitored bimonthly for one year for analyses of electrical conductivity (EC), total dissolved solids (TDS), sodium adsorption ratio (SAR), cations (Na, K, Ca + Mg) and anions (CO3, HCO3, Cl and SO4). Agricultural irrigation using saline groundwater decreased water quality of Orontes River during the irrigation season (May to September) more than during the non-irrigation season (October to April). Seasonal fluctuations in water quality of shallow groundwater were greater during the irrigation season than the non-irrigation season in the study area. Excessive use of groundwater resulted in a decline in the water table levels in the irrigation season. Water table level rose up to the soil surface in areas where there was a lack of drainage or poor drainage, due to the impact of precipitation in the winter. SAR and pH values of drainage water increased in the irrigation season, while the other properties of drainage water decreased. Irrigation water quality of Orontes River was classified as C3S1 in both seasons. Irrigation water quality of shallow groundwater and drainage water varied from C2S1 to C4S2 in one year. Drainage and well waters were found to be different on yearly basis in terms of Na, SAR (p<0.01) and Ca + Mg concentrations (p<0.001). Ca + Mg concentrations for both sources were different for all sampling dates (p<0.001).  相似文献   

9.
Köyce?iz Lake is located in the south-western part of Turkey. The area between the Köyce?iz Lake and the Mediterranean Sea is covered with four small lakes and several canals. The surroundings of the lake, canals and forests have a great potential as a reproduction areas for Mediterranean Sea turtles (Caretta caretta) and sheltering place for various animals. In the vicinity of this system there are agricultural areas and small settlements. In this region the most important economic activities are tourism and fisheries. However, the lake is currently threatened by pollution because of (1) non-point source pollution (agriculture); (2) point sources (land-based fish farms); (3) inefficient sewerage systems; (4) uncontrolled soil erosion in its drainage basin; (5) inappropriate flood control measures; and (6) channel traffic. This study evaluates the influence of its influent creeks namely Namnam and Yuvarlakçay Creek on the water quality of Köyce?iz Lake, mainly because the creeks are believed to be responsible for the major pollutant load reaching the lake. Accordingly, this study demonstrates (1) change in the water quality of Köyce?iz Lake from 2006 to 2007; (2) the water quality classification of the major influent creeks feeding Köyce?iz Lake; and (3) how land-based fish farm influences Yuvarlakçay Creek water quality in a Köyce?iz–Dalyan Specially Protected Area.  相似文献   

10.
The contamination levels and ecological risks of heavy metals in the sediments of the Nansi Lake were investigated. The contents of Cd, Cr, Cu, Pb, Zn, Ni, and Co in the surface sediments collected at 20 sites ranged from 0.08 to 1.12, 58.92 to 135.62, 38.09 to 78.65, 24.51 to 53.95, 110.51 to 235.36, 11.30 to 65.40, and 4.12 to 20.14 mg/kg, respectively. The results of partitioning analysis revealed that the proportions of soluble and exchangeable fraction were less than 1 %, the proportions of carbonate, amorphous oxides, organic matter, and crystalline oxides fraction were less than 10 %, and 10.52 % of Cd was associated with carbonate. The average proportions in the residual fraction ranged from 48.62 % for Cu to 73.76 % for Ni, indicating low mobility and bioavailability. The geoaccumulation index (I geo), relative enrichment factor (REF), sediment pollution index (SPI), and potential effect concentration quotient (PECQ) values of the heavy metals in the sediments were not in agreement with each another. The average REF values of Cd and Zn were higher than those of other metals. However, the average PECQ values were higher for Cr and Ni than those of other metals, indicating that these two metals would cause higher adverse biological effects. Therefore, it is suggested that future management and pollution control might focus on Cd, Zn, Cr, and Ni in the sediments of the Nansi Lake.  相似文献   

11.
The migration pathways of heavy metals derived from an area previously in agricultural use was investigated in the Wielkopolski National Park (mid-western Poland). The heavy metals involved (Cd, Cu, Cr, Pb, Ni and Zn) were determined in groundwater, the springs that feed Lake Góreckie and the lake itself. In order to show how the heavy metals may be set free and what is their biological availability, soil and sediment samples were subjected to single-stage extraction, using 0.01 M CaCl2, 0.02 M EDTA, 0.005 M DTPA, 0.1 M HCl, 1 M HCl and de-ionised water. Varying metal concentrations were recorded in the water samples during the study period (from November 2009 to July 2010), usually with higher values in winter and lower ones in summer. The seasonal changes may be ascribed to natural processes taking place in the ground- and surface waters of Lake Góreckie. On the other hand, the concentration levels (mostly of Cd, Pb and Cr) are indicative of anthropogenic activity. It should be mentioned in this context that the highest metal concentrations were found in the soil layer. The concentrations were also found to exceed both the Polish and the World Health Organization water-quality standards. It appears that the soils are highly contaminated, mostly with cadmium. The long-lasting effect of acid precipitation in the area makes it possible for immobile forms to become mobile, thus facilitating further migration into the environment.  相似文献   

12.
The purpose of this study was to assess metal concentrations (Al, Cd, Pb, Hg and Ni) in Sabal drainage canal (Al-Menoufiya Province, River Nile Delta, Egypt) water as well as their accumulation in some selected organs (skin, muscles and kidneys) of Oreochromis niloticus fish to evaluate their hazard levels in relation to the maximum residual limits for human consumption. Drainage canal water was found to be heavily polluted with metals which far exceeded the permissible limits. It was found that metals accumulated in organs of O. niloticus in concentrations higher than those of canal water. Kidneys of O. niloticus contained the highest concentrations of the detected metals, while skin appeared to be the least preferred site for the bioaccumulation of metals as the lowest metals concentrations were detected in this tissue. The present study shows that fish organs contained high levels of metals exceeding the permissible limits values. Metals in muscle of fish were higher than the maximum permissible concentrations for human consumption. Thus, consuming fish caught from drainage canals is harmful to the consumers.  相似文献   

13.
近年来,尽管太湖主要水质指标有所改善,但蓝藻水华暴发的频次和面积并未明显减少。为了探讨太湖蓝藻水华暴发的环境驱动因子,统计了2012—2020年历年4—10月预警期间的太湖蓝藻水华发生规模与频次,结合同步浮标自动监测数据和实验室分析数据,构建了蓝藻水华预测模型。以太湖蓝藻水华综合指数(Ic)表征蓝藻水华强度,并通过Ic与环境因子的相关性分析,筛选出1月水温、1月电导率、1月生化需氧量和3月总氮浓度4项环境指标,最终构建了以该4项环境指标为自变量、Ic为因变量的太湖年度蓝藻水华强度多元线性回归预测模型。该预测模型的决定系数达到了0.908,平均相对误差为10.35%,预测精度总体表现较好。  相似文献   

14.
Manchar Lake is the largest natural freshwater lake in Pakistan. The Lake has received less fresh water in past few years. In addition, drainage water is being discharged in the Lake through Main Nara Valley Drain (MNVD) since many years. Consequently, concern has grown regarding the water quality of the Lake. The aim of this study was to assess the water quality of Manchar Lake and MNVD and the objectives were to determine physiochemical properties and the concentrations of common cations and anions as well as seven trace metals i.e. Cu, Ni, Zn, Co, Fe, Pb and Cd. The concentration of the trace metals were determined by simultaneous preconcentration and solvent extraction using flame atomic absorption spectrometer. Results of physicochemical parameters of Manchar Lake water samples showed mean pH 8.4 (±0.2), conductivity 2,310.3 (±581.3) μS cm−1 and hardness (as CaCO3) 213.1 (±62.3) mg l−1. Mean concentrations of cations and anions were Na 521.5 (±49.7), Cl 413.6 (±225.7), Ca 70.7 (±12.9), Mg 56.2 (±28.9), K 17.6 (±6.5), 0.34 (±0.2) and 0.02 (±0.01) mg l−1. Mean concentrations of trace metals were Zn 15.7 (±1), Fe 12 (±3.5), Pb 9 (±2.7), Cu 8.9 (±7.7), Ni 4.3 (±3.4), Co 4 (±3.4) and Cd 1.1 (±1) μg l−1. MNVD water samples showed mean pH 8.9 (±0.8), conductivity 1,735.7 (±567.8) μS cm−1 and hardness (as CaCO3) 184.8 (±32.4) mg l−1. In MNWD, the mean concentrations of cations and anions were Na 482.7 (±11.7), Cl 395.7 (±271.5), Ca 79.1 (±23.5), Mg 54.2 (±28.1), K 26.2 (±21.3), NO−3 0.5 (±0.3) and 0.1 (±0.1) mg l−1. Mean concentrations of trace metals observed in MNWD water were Fe 14.9(±3.5), Cd 8.3 (±9.4), Pb 6.9 (±2.4), Cu 6.6 (±3.1), Zn 6.2 (±1.8), Co 4.5 (±2.7), and Ni 3.5 (±2.9) μg l−1. The pH of both Manchar Lake and MNVD waters and concentration of Pb in Manchar Lake and concentration of Cd in MNVD water were higher than the World Health Organisation’s guideline values for the drinking water quality. The water quality of Manchar Lake was found degraded.  相似文献   

15.
Urban land use has been implicated as a major contributor of nonpoint source pollution in aquatic systems. Through increased nonpoint delivery of pollutants, including constituents found in stormwater, Lake Tahoe is undergoing a marked decline in its transparency, primarily due to increasing production of algae from enhanced nutrient loading and delivery of fine particles to the lake from the watershed. In response to these findings, a regional restoration effort is underway to improve basin watersheds and the water quality in Lake Tahoe. In this study, stormwater autosamplers were used to collect flow-weighted composite samples that characterized event mean concentrations for event and nonevent conditions within a small, urbanized watershed in the Tahoe basin. An event-specified constant-concentration water quality model was then applied to the event mean concentration and continuous streamflow data to estimate pollutant loads for nitrate, nitrite, ammonia, orthophosphate, and suspended sediment. These data were compared with previously reported load estimates from 10 primary monitored streams in larger watersheds of the Tahoe basin. Results from a linear regression analysis demonstrate strong and significant relationships between watershed impervious area and pollutant loadings from Lake Tahoe watersheds. These small, urbanized watersheds and intervening zones, which only comprise 10 % of the total Lake Tahoe drainage area, include a significant portion of the total Lake Tahoe impervious area. The findings of this study suggest that small, urbanized watersheds and intervening zones are disproportionately important contributors of nonpoint source pollution, including nutrients and suspended particles.  相似文献   

16.
Emissions of soil CO2 under different management systems have a significant effect on the carbon balance in the atmosphere. Soil CO2 emissions were measured from an apricot orchard at two different locations: under the crown of trees (CO2-UC) and between tree rows (CO2-BR). For comparison, one other measurement was performed on bare soil (CO2-BS) located next to the orchard field. Analytical data were obtained weekly during 8 years from April 2008 to December 2016. Various environmental parameters such as air temperature, soil temperature at different depths, soil moisture, rainfall, and relative humidity were used for modeling and estimating the long-term seasonal variations in soil CO2 emissions using two different methods: generalized linear model (GLM) and artificial neural network (ANN). Before modeling, data were randomly split into two parts, one for calibration and the second for validation, with a varying number of samples in each part. Performances of the models were compared and evaluated using means absolute of estimations (MAE), square root of mean of prediction (RMSEP), and coefficient of determination (R2) values. CO2-UC, CO2-BR, and CO2-BS values ranged from 11 to 3985, from 9 to 2365, and from 8 to 1722 kg ha?1 week?1, respectively. Soil CO2 emissions were significantly correlated (p?<?0.05) with some environmental variables. The results showed that GLM and ANN models provided similar accuracies in modeling and estimating soil CO2 emissions, as the number of samples in the validation data set increased. The ANN was more advantageous than GLM models by providing a better fit between actual observations and predictions and lower RMSEP and MAE values. The results suggested that the success of environmental variables for estimations of CO2 emissions using the two methods was moderate.  相似文献   

17.
Phytoplankton variation in large shallow eutrophic lakes is characterized by high spatial and temporal heterogenity. Understanding the pattern of phytoplankton variation and the relationships between it and environmental variables can contribute to eutrophic lakes management. In this study Taihu Lake, one of the largest eutrophic fresh water lake in China, was taken as study area. The water body of Taihu Lake was divided into five regions viz. Wuli bay (WB), Meilian Bay (MB), West Taihu Lake (WTL), Main Body of Taihu Lake (MBTL) and East Taihu Lake (ETL). Concentrations of chlorophyll-a and the related environmental variables were determined in each region in the period 2000–2003. Factor analysis and multivariate analysis were applied to evaluate the interactions between phytoplankton variation and environmental variables. Results showed that the highest average concentrations of TN, TP and Chl-a were observed in WB, followed in a descending order by MB and WTL, and the lowest concentrations of TN, TP and Chl-a were observed in MBTL and ETL. Chl-a and TP concentrations in most regions (except ETL) declined during the study period. It suggested that to some extent the lake was recovering from eutrophication. However, persistent ascending of TN and NH4–N in all five regions indicated the deteriorating of water quality in the study period. Results of multivariate showed that the relationships between phytoplankton biomass and environmental variables varied among regions. TP illustrated itself a controlling role on phytoplankton in WB, MB, WTL and MBTL according to the significant positive relations to phytoplankton biomass in these regions. Nitrogen could be identified as a limiting factor to phytoplankton biomass in ETL in view of the positive correlations between TN and phytoplankton and between NH4–N and phytoplankton. Spatial variation of interactions between phytoplankton and environmental parameters suggested proper eutrophication control measures were needed to restore ecological system in each region of Taihu Lake.  相似文献   

18.
In the present work, the influence of different physicochemical characteristics on the distribution of anionic detergents, linear alkylbenzene sulfonates (LAS), was studied. Surface and bottom water samples were collected from eight different sites from a small bay near the main sewage discharge of Alexandria City (El-Max Bay). The results showed great variations in the concentrations, as a function of the regional and seasonal variations. The study revealed that the pH values lie in the normal side, with a range of 8.0–8.5 inside the bay and 7.5–7.7 at El-Umum Drain effluent. Wide variations, observed between the surface and the bottom water of the bay, salinity, dissolved oxygen, oxidizable organic matter, total hardness, and total alkalinity, were scattered in the ranges (3.33–42.73 practical salinity unit), (0.42–8.27 mg O2/l), (0.12–10.49 mg/l), (1.39–8.99 mg/l), and (0.23–0.48 mg/l), respectively. The regional variations of LAS concentrations in the bay waters showed that the concentration decreased as the distance from the source of drainage water (El-Umum Drain). The seasonal average variations of LAS cleared out that summer and spring periods had the highest concentrations at surface (0.13?±?0.04 mg LAS/l) and bottom (0.12?±?0.10 mg LAS/l) layer, which is attributed to increase in population density and human activities. The inverse relationships between total LAS concentration and salinity, dissolved oxygen, and calcium ions concentration are r?=??0.78, 0.50, and 0.67, respectively. This is related to the occurrence of the untreated wastewater containing detergents, the biodegradation rate of surfactants, and strong precipitation of LAS as Ca.  相似文献   

19.
This study investigates the microorganism growth indicator and determines the assimilable organic carbon (AOC) content at the Cheng-Ching Lake Advanced Water Treatment Plant (CCLAWTP) in Kaohsiung, Taiwan. Notably, AOC is associated with the biological stability within the water distribution network and has garnered considerable attention in the environmental engineering field in recent years. Water samples were collected from the effluent of each unit in CCLAWTP once monthly during December 2008 to November 2009. Items of water quality related to carbon concentration levels, including AOC, total organic carbon, dissolved organic carbon, UV254, and specific ultraviolent absorbance were analyzed. Analytical results demonstrate that the average AOC concentration in raw water was 83.61 ??g/L and reduced in freshwater was controlled at an average of 50 ??g/L after an advanced treatment system of roughly 54% of AOC was removed in compliance with treatment plant standards. If AOC concentrations in freshwater can be reduced, study results can provide a direction for improving water treatment capabilities.  相似文献   

20.
Traditional approaches for benchmarking drinking water systems are binary, based solely on the compliance and/or non-compliance of one or more water quality performance indicators against defined regulatory guidelines/standards. The consequence of water quality failure is dependent on location within a water supply system as well as time of the year (i.e., season) with varying levels of water consumption. Conventional approaches used for water quality comparison purposes fail to incorporate spatiotemporal variability and degrees of compliance and/or non-compliance. This can lead to misleading or inaccurate performance assessment data used in the performance benchmarking process. In this research, a hierarchical risk-based water quality performance benchmarking framework is proposed to evaluate small drinking water systems (SDWSs) through cross-comparison amongst similar systems. The proposed framework (R WQI framework) is designed to quantify consequence associated with seasonal and location-specific water quality issues in a given drinking water supply system to facilitate more efficient decision-making for SDWSs striving for continuous performance improvement. Fuzzy rule-based modelling is used to address imprecision associated with measuring performance based on singular water quality guidelines/standards and the uncertainties present in SDWS operations and monitoring. This proposed R WQI framework has been demonstrated using data collected from 16 SDWSs in Newfoundland and Labrador and Quebec, Canada, and compared to the Canadian Council of Ministers of the Environment WQI, a traditional, guidelines/standard-based approach. The study found that the R WQI framework provides an in-depth state of water quality and benchmarks SDWSs more rationally based on the frequency of occurrence and consequence of failure events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号