首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was carried out to evaluate the influence of porous check dam location on the retention of fine sediments in the Droodzan watershed in Southern Iran. Five long streams with several porous check dams that were more than 27 years old were studied. In each stream three check dams: at the very upstream section, at the middle section and at the far downstream section were selected for analysis. A number of samples from trapped sediments and from the undisturbed soils in the stream banks (adjacent to the check dams) were collected. Laboratory analysis showed that the soil samples taken from undisturbed banks have smaller particle sizes compared to the trapped sediments. The results indicated that the check dams located at the far downstream sections were more efficient at trapping fine sediment than those located at the middle sections. Also the check dams located at the middle sections were more effective than those located at the upstream sections. Comparison of sediment texture also showed that the portion of clay and silt trapped by the check dams decreased from the downstream sections toward the upstream sections. Hence, whenever, the retention of fine sediments is the primary function of the check dams, it appears that they should be located in the far downstream sections of a stream. The experimental analysis indicated that using broken and angular rocks instead of rounded rocks in porous check dam's construction improves the effectiveness of the check dams for the retention of fine sediments. The analysis of the failed check dams also showed that erosion of the bank sides underneath the check dams is the primary cause of dam collapse.  相似文献   

2.
The sediment compartment has the ability to trap large amounts of radionuclides and to indicate the radiological impact of pollution. The present work shows the results obtained related to the concentrations of 137Cs and natural radionuclides in sediment in the Burullus Lake, Egypt. The average values of 226Ra, 232Th, and 40K in the bottom sediments collected from the east of the Burullus Lake ranged from 10.3 to 21.8 Bq/kg, from 11.9 to 34.4 Bq/kg, and from 268 to 401 Bq/kg, respectively. The study has shown that 40K concentration is nearly uniform throughout the studied area while 226Ra and 232Th are more concentrated in the northeastern shore. Lake sediments showed contamination with 137Cs (2.7–15.9 Bq/kg). The 137Cs sediment activities indicated higher concentrations in the off-shore sites. Concentrations of all γ -ray emitting radionuclides except 40K in water samples were below the detection limits. The 40K sediment–water distribution coefficients of the near-shore samples were higher than the off-shore samples.  相似文献   

3.
Anthropogenic forces that alter the physical landscape are known to cause significant soil erosion, which has negative impact on surface water bodies, such as rivers, lakes/reservoirs, and coastal zones, and thus sediment control has become one of the central aspects of catchment management planning. The revised universal soil loss equation empirical model, erosion pins, and isotopic sediment core analyses were used to evaluate watershed erosion, stream bank erosion, and reservoir sediment accumulation rates for Ni Reservoir, in central Virginia. Land-use and land cover seems to be dominant control in watershed soil erosion, with barren land and human-disturbed areas contributing the most sediment, and forest and herbaceous areas contributing the least. Results show a 7 % increase in human development from 2001 (14 %) to 2009 (21.6 %), corresponding to an increase in soil loss of 0.82 Mg ha-1 year-1 in the same time period. 210Pb-based sediment accumulation rates at three locations in Ni Reservoir were 1.020, 0.364, and 0.543 g cm-2 year-1 respectively, indicating that sediment accumulation and distribution in the reservoir is influenced by reservoir configuration and significant contributions from bedload. All three locations indicate an increase in modern sediment accumulation rates. Erosion pin results show variability in stream bank erosion with values ranging from 4.7 to 11.3 cm year-1. These results indicate that urban growth and the decline in vegetative cover has increased sediment fluxes from the watershed and poses a significant threat to the long-term sustainability of the Ni Reservoir as urbanization continues to increase.  相似文献   

4.
Sedimentation and remobilization processes of radiocesium were investigated from time-series observations at nine stations in the coastal area of Ibaraki, 70–110 km south of the Fukushima Dai-ichi Nuclear Power Plant (1FNPP). Sediment samples were collected four times between June 2011 and January 2012, and concentrations of radiocesium as well as sediment properties such as grain size and elemental compositions were analyzed. Cumulative inventory of 137Cs in sediment (0–10 cm) ranged between 4?×?103 and 3?×?104 Bq/m2 as of January 2012. This amount was generally higher at stations nearer 1FNPP and has remained at the same level since August 2011. From these results, it can be inferred that dissolved radiocesium advected southward from the region adjacent to the 1FNPP and was deposited to the sediment of the study area in the early stage after the accident. The incorporation of radiocesium into sediments was almost irreversible, and higher concentrations of 137Cs were obtained from the finer-grained fraction of sediments. In the northern offshore stations, resuspension of the fine-grained sediments formed a high-turbidity layer 10–20 m above the seabed. These results indicate that radiocesium-enriched fine particles were transported from the coast to offshore regions through the bottom high-turbidity layer.  相似文献   

5.
Enrichment ratio (ER) is widely used in nonpoint source pollution models to estimate the nutrient loss associated with soil erosion. The objective of this study was to determine the ER of total nitrogen (ERN) in the sediments eroded from the typical soils with varying soil textures in Beijing mountain area. Each of the four soils was packed into a 40 by 30 by 15 cm soil pan and received 40-min simulated rainfalls at the intensity of 90 mm h?1 on five slopes. ERN for most sediments were above unity, indicating the common occurrence of nitrogen enrichment accompanied with soil erosion in Beijing mountain area. Soil texture was not the only factor that influenced N enrichment in this experiment since the ERN for the two fine-textured soils were not always lower. Soil properties such as soil structure might exert a more important influence in some circumstances. The selective erosion of clay particles was the main reason for N enrichment, as implied by the significant positive correlation between the ER of total nitrogen and clay fraction in eroded sediments. Significant regression equations between ERN and sediment yield were obtained for two pairs of soils, which were artificially categorized by soil texture. The one for fine-textured soils had greater intercept and more negative slope. Thus, the initially higher ERN would be lower than that for the other two soils with coarser texture once the sediment yield exceeded 629 kg ha?1.  相似文献   

6.
A successful experiment with a physical model requires necessary conditions of similarity. This study presents an experimental method with a semi-scale physical model. The model is used to monitor and verify soil conservation by check dams in a small watershed on the Loess Plateau of China. During experiments, the model–prototype ratio of geomorphic variables was kept constant under each rainfall event. Consequently, experimental data are available for verification of soil erosion processes in the field and for predicting soil loss in a model watershed with check dams. Thus, it can predict the amount of soil loss in a catchment. This study also mentions four criteria: similarities of watershed geometry, grain size and bare land, Froude number (Fr) for rainfall event, and soil erosion in downscaled models. The efficacy of the proposed method was confirmed using these criteria in two different downscaled model experiments. The B-Model, a large scale model, simulates watershed prototype. The two small scale models, Da and Db, have different erosion rates, but are the same size. These two models simulate hydraulic processes in the B-Model. Experiment results show that while soil loss in the small scale models was converted by multiplying the soil loss scale number, it was very close to that of the B-Model. Obviously, with a semi-scale physical model, experiments are available to verify and predict soil loss in a small watershed area with check dam system on the Loess Plateau, China.  相似文献   

7.
The 239+240Pu activities and 240Pu/239Pu atom ratios were analyzed using a double-focusing SF-ICP-MS for sediment core samples obtained in 2007–2008 from the North Jiangsu tidal flats in the Yellow Sea in China. Particular attention was focused on the 240Pu/239Pu atom ratios in the sediment to identify the origins of Pu isotopes. The profiles of 239+240Pu activities in the sediment cores are similar to those of the 137Cs activities. The 240Pu/239Pu atom ratios in the tidal flats showed typical global fallout values, indicating that this area did not receive the possible early direct close-in fallout or oceanic current transported Pu from the Pacific Proving Grounds (PPG). If any, the contribution of the PPG source Pu to the total Pu inventory is negligible. This is different from the sediments in the Yangtze River estuary in the East China Sea, where the PPG source Pu contributed ca. 45 % to the total inventory. In addition, the observation of the global fallout origin Pu in the North Jiangsu tidal flats indicated that the nuclear power plant in the region was not causing any alteration/contamination to the 240Pu/239Pu atom ratios. The 239+240Pu and 137Cs activities/inventories in the sediment cores showed correlation to the mean clay sediment compositions (fine particles) in the tidal flats. Therefore, mud deposits are served as sinks for the anthropogenic radionuclides in the tidal flats and the Yellow Sea. Integrated with the previously reported spatial distributions of 239+240Pu and 137Cs activities in the surface sediments of the Yellow Sea, the mechanism of Pu transport with the ocean currents and the scavenging characteristics in the Yellow Sea were discussed.  相似文献   

8.
Universal soil loss equation (USLE) was used in conjunction with a geographic information system to determine the influence of land use and land cover change (LUCC) on soil erosion potential of a reservoir catchment during the period 1989 to 2004. Results showed that the mean soil erosion potential of the watershed was increased slightly from 12.11 t ha???1 year???1 in the year 1989 to 13.21 t ha???1 year???1 in the year 2004. Spatial analysis revealed that the disappearance of forest patches from relatively flat areas, increased in wasteland in steep slope, and intensification of cultivation practice in relatively more erosion-prone soil were the main factors contributing toward the increased soil erosion potential of the watershed during the study period. Results indicated that transition of other land use land cover (LUC) categories to cropland was the most detrimental to watershed in terms of soil loss while forest acted as the most effective barrier to soil loss. A p value of 0.5503 obtained for two-tailed paired t test between the mean erosion potential of microwatersheds in 1989 and 2004 also indicated towards a moderate change in soil erosion potential of the watershed over the studied period. This study revealed that the spatial location of LUC parcels with respect to terrain and associated soil properties should be an important consideration in soil erosion assessment process.  相似文献   

9.
Quantifying the relative impacts of soil restoration or disturbance on watershed daily sediment and nutrients loads is essential towards assessing the actual costs/benefits of the land management. Such quantification requires stream monitoring programs capable of detecting changes in land-use or soil functional and erosive area “connectivity” conditions across the watershed. Previously, use of a local-scale, field-data based runoff and erosion model for three Lake Tahoe west-shore watersheds as a detection monitoring “proof of concept” suggested that analyses of midrange average daily flows can reveal sediment load reductions of relatively small watershed fractional areas (~5 %) of restored soil function within a few years of treatment. Developing such an effective stream monitoring program is considered for tributaries on the west shore of the Lake Tahoe Basin using continuous (15-min) stream monitoring information from Ward (2,521 ha), Blackwood (2,886 ha), and the Homewood (260 ha, HMR) Creek watersheds. The continuous total suspended sediment (TSS) and discharge monitoring confirmed the hysteretic TSS concentration—flowrate relationship associated with the daily and seasonal spring snowmelt hydrographs at all three creeks. Using the complete dataset, daily loads estimated from 1-h sampling periods during the day indicated that the optimal sampling hours were in the afternoon during the rising limb of the spring snowmelt hydrograph, an observation likely to apply across the Sierra Nevada and other snowmelt driven watersheds. Measured rising limb sediment loads were used to determine if soils restoration efforts (e.g., dirt road removal, ski run rehabilitation) at the HMR creek watershed reduced sediment loads between 2010 and 2011. A nearly 1.5-fold decrease in sediment yields (kg/ha per m3/s flow) was found suggesting that this focused monitoring approach may be useful towards development of TMDL “crediting” tools. Further monitoring is needed to verify these observations and confirm the value of this approach.  相似文献   

10.
Identifying areas that are susceptible to soil erosion is crucial for water resource planning and management efforts. Furthermore, modeling has proven helpful in recognizing and monitoring high-risk areas at the watershed scale. The Water Erosion Prediction Project (WEPP) geospatial interface (GeoWEPP) software integrates GIS with the WEPP to analyze the spatial variation in soil loss, and it has been used as a modeling tool to determine the areas that are most prone to soil erosion and to evaluate best management practices for the Kasilian watershed in Iran. As much as 62.4 % of the agronomic land in the Kasilian watershed is affected by a high magnitude of erosion (>5 t/ha). On the basis of this study, by using soybeans, high fertilization levels, and the drill-no-tillage system, reductions of erosion by almost 32.68–34.02 % are perceivable in three critical subwatersheds that are located in the cultivated lands. Also, it is projected that reductions in the production of sediment in the range of about 36.7–47.1 % are achievable by structural management within two critical, upland subwatersheds. So, by utilizing the best management strategies, sediment yield can be lowered and the conservation of soil and water is feasible at the watershed scale. These results objectively indicate that GeoWEPP can be efficaciously used for evaluating effective management practices for developing watershed conservation.  相似文献   

11.
This work discusses the temporal variation of metal concentrations in a hypertrophic coastal lagoon located in the metropolitan area of Rio de Janeiro (Brazil). The lagoon watershed includes one of the mostly densely urbanized areas of the city but without industrial activities. Six sediment cores were collected in the lagoon between May and July 2003 and analyzed for the concentration of metals (Fe, Al, Mn, Zn, Pb, Cu, Cr, and Ni). Typical sedimentation rate was calculated as being 0.75 cm year???1 and was uniform for at least the past 70 years. Therefore, the alterations in the dynamics of the lagoon caused by changes in its watershed were clearly indicated in sediment cores. The construction of an artificial canal to the sea and the increasing urbanization and soil use changes were the major factors affecting metal accumulation in the lagoon sediments. Metals typical of anthropogenic urban sources (Pb, Zn, and Cu) showed increasing loads following urbanization.  相似文献   

12.
Erosion-induced land degradation problem has emerged as a serious environmental issue across the world. Assessment of this problem through modelling can generate valuable quantitative information for the planners to identify priority areas for proper soil conservation measures. The Gumti River basin of Tripura falls under humid tropical climate and experiences soil erosion for a prolonged period which has turned into a major environmental issue. Increased sediment supply through top soil erosion is one of the major reasons for reduced navigability of this river. Thus, the present study is an attempt to prioritize the sub-watersheds of the Gumti basin by estimating soil loss through the USLE (Universal Soil Loss Equation) model. For that purpose, five parameters of the USLE model were processed, computed and overlaid in a GIS environment. The result shows that potential mean annual soil loss of the Gumti basin ranges between 0.03 and 114.08 t ha?1 year?1. The resultant values of soil loss were classified into five categories considering the minimum and maximum values. It has been identified that low, moderate, high, very high and severe soil loss categories occupy 68.71, 8.94, 5.86, 5.02 and 11.47% of the basin respectively. Moreover, it has been recognised that sub-watersheds like SW7, SW8, SW12, SW21, SW24 and SW29 fall under very high priority class for which mitigation measures are essential. Therefore, the present study recommends mitigation measures through terrace cultivation, as an alternative of shifting cultivation in the hilly areas and through construction of check dams at the appropriate sites of the erosion prone sub-watersheds. Moreover, proper afforestation programmes that have been implemented successfully in other parts of Tripura through the Japan International Cooperation Agency, Joint Forest Management, and National Afforestation Programme should be initiated in the highly erosion-prone areas of the Gumti River basin.  相似文献   

13.
Formation of secondary minerals and Cs mobility in Hanford sediments were investigated under conditions similar to the Hanford tank leak in a dynamic flow system at 50°C. The objectives were to (1) examine the nature and locations of secondary mineral phases precipitated in the sediments and (2) quantify the amount of Cs retained by the sediment matrix at 50°C. To this end, Hanford sediments were packed into 10-cm long columns and leached with simulated tank waste consisting of 1.4 M NaOH, 0.125 M NaAlO2, 3.7 M NaNO3, and 1.3 × 10???4 M Cs at 50°C. Compositions of outflow solution were monitored with time for up to 25 days, and the columns were then segmented into four 2.5-cm long layers. The colloidal fraction in these segments was characterized in terms of mineralogy, particle morphology, Cs content, and short-range Al and Si structure. It was observed that cancrinite and sodalite precipitated at 50°C. Approximately 53% Cs was retained in the column treated by the simulated tank waste at this temperature. Cesium retention in the column was lowered in the high ionic strength solution due to competition from Na for the exchange sites. This can be explained by alteration of distribution and number of sorption sites which reduces the selectivity of Cs for Na, and through the formation of cancrinite and sodalite. The formation of hydroxide complexes in highly alkaline solutions could also contribute to relatively poor retention of Cs by hindering ion exchange mechanism.  相似文献   

14.
Nitroaromatic compounds are known to be hazardous to ecological and human health. To assess the status of nitroaromatic compounds contamination in the main rivers in the important industrial bases of the northeastern China, we collected water, suspended particulate matter (SPM) and sediment samples from 28 sites in the Daliao River watershed and analysed them for eight nitroaromatic compounds by gas chromatography. The total concentrations of eight nitrobenzenes in the water column including aqueous and SPM phases ranged from 740 to 15,828 ng L???1, with a mean concentration of 3,460 ng L???1. The total concentrations of eight nitrobenzenes in the sediment were 7.47 to 8,185.76 ng g???1, with a mean concentration of 921.98 ng g???1, and several times higher than those found from the Yellow River in China. 4-Nitrotoluene was the predominant contaminant in the water and sediment of the three rivers of the Daliao River watershed. 2,6-Dichloro-4-nitroaniline was generally dominant in the SPM. The levels of nitroaromatic compounds were different among different sites in the Daliao River watershed, mainly caused by the distribution of pollution sources. No obvious correlation was found between the total concentrations of eight nitrobenzenes concentrations and TOC or the slit-clay content of the sediments.  相似文献   

15.
Polycyclic aromatic hydrocarbons (PAHs) were measured in surface sediments and dated core sediments from the Nansi Lake of China to investigate the spatial and temporal distribution characteristics. The concentrations of 16 kinds priority PAH compounds were determined by GC-MS method. And 210Pb isotope dating method was used to determine the chronological age of the sediment as well as the deposition rate. The results indicated that the total PAHs concentration ranges in surface and core sediment samples were 160 ~32,600 and 137 ~ 693 ng/g (dry wt.), respectively. The sediment rate and the average mass sedimentation were calculated to be 0.330 cm·year???1 and 0.237 g·cm???2·yr???1 and the sediment time of the collected core sample ranged from 1899 to 2000. The peak of PAH concentrations came at recent years. The source analysis showed PAHs mainly came from the contamination of low temperature pyrogenic processes, such as coal combustion. The PAHs concentrations were lower than ERL and LEL values for most collected samples. However, in several surface sediment samples especially in estuary sites, the PAHs concentrations were not only higher than ERL and LEL values, but also higher than ERM values.  相似文献   

16.
Because of past mining activities, the floodplains of the River Geul are polluted with heavy metals. The continuous supply of fresh sediments during floods has caused the floodplain soils to exhibit large quality variations in time. By measurements of 137Cs deposition rates in part of the floodplain area were determined at 0.4 to 2.7 cm yr–1. Analysis of soil metal concentrations at various depths at 65 locations, revealed that the upper 40 cm of the soil profile deposited during the past 30–45 yr, exhibit the highest metal levels. The geostatistical interpolation technique kriging was used to map actual and past pollution patterns. It was shown that, as a result of variable deposition rates, the spatial correlation structure of soil metal concentrations becomes less clear with increasing depth/age. Kriged maps of average metal concentrations in the upper 100 cm of the soil profile provided the basis for the calculation of the mass storage of heavy metals.  相似文献   

17.
This study was to investigate the activities and contents of 137Cs in the profiles of selected arable and forest soils in Taiwan and various solid-phase species of 85Sr and 137Cs in selected arable soils in Taiwan. The gamma (γ) ray spectra of the collected soil samples and some of the soils amended with 85Sr and 137Cs were measured. The data indicate that the arable soils from Sanhsing series, Sanhsing Township and Chuangwei series, Chuangwei Township, Ilan County, and from Tunglochuan series, Pinglin Township, Taipei County shows significantly higher radioactivity of 137Cs (ND − 11.0 ± 0.2 Bq kg−1). Furthermore, the radioactivity of 137Cs in the mountain soils (1.24 ± 0.07 − 42 ± 1 Bq kg−1) from Yuanyang Lake Nature Preserve among Ilan, Taoyuan, and Hsinchu Counties is the highest among the investigated mountain forest soils. This may be mainly attributed to the fact that Ilan County is located in the northeastern part of Taiwan and faces the northeastern and northern seasonal winds with lots of precipitation annually from mid-autumn through mid-spring next year and is receiving greater amount of fallouts yearly. Due to longer reaction period (≥3 y) of 137Cs with soil components, 137Cs was mainly in the forms bound to oxides and to organic matter in the soil amended with 137Cs and in the soil contaminated with 137Cs. On the contrary, due to shorter reaction period (<60 d) of 85Sr with soil components, 85Sr was mainly in exchangeable form and partially in the forms bound to carbonates and oxides in the soils amended with 85Sr.  相似文献   

18.
Estimates of soil erosion using cesium-137 tracer models   总被引:1,自引:0,他引:1  
The soil erosion was studied by 137Cs technique in Yatagan basin in Western Turkey, where there exist intensive agricultural activities. This region is subject to serious soil loss problems and yet there is not any erosion data towards soil management and control guidelines. During the soil survey studies, the soil profiles were examined carefully to select the reference points. The soil samples were collected from the slope facets in three different study areas (Kırtas, Peynirli and Kayısalan Hills). Three different models were applied for erosion rate calculations in undisturbed and cultivated sites. The profile distribution model (PDM) was used for undisturbed soils, while proportional model (PM) and simplified mass balance model (SMBM) were used for cultivated soils. The mean annual erosion rates found using PDM in undisturbed soils were 15 t ha−1 year−1 at the Peynirli Hill and 27 t ha−1 year−1 at the Kırtas Hill. With the PM and SMBM in cultivated soils at Kayışalan, the mean annual erosion rates were obtained to be 65 and 116 t ha−1 year−1, respectively. The results of 137Cs technique were compared with the results of the Universal Soil Loss Equation (USLE).  相似文献   

19.
Rechna interfluvial region is one of the main regions of Punjab, Pakistan. It is the area which is lying between River Ravi and River Chenab, alluvial-filled. Radioactivity levels in soil samples, collected from southern Rechna interfluvial region, Pakistan, have been estimated by using gamma-ray spectrometric technique. 226Ra, 232Th, the primordial radionuclide 40K, and the artificial radionuclide 137Cs have been measured in the soil of the study area. The mean radioactivity levels of 226Ra, 232Th, 40K, and 137Cs were found to be 50.6 ± 1.7, 62.3 ± 3.2, 662.2 ± 32.1, and 3.1 ± 0.3 Bq kg???1, respectively. The mean radium equivalent activity (Raeq), outdoor radiation hazard index (H out), indoor radiation hazard index (H in), and terrestrial absorbed dose rate for the area under study were determined as 190.8 ± 8.7 Bq kg???1, 0.52, 0.65, and 69.8 nGy h???1, respectively. The annual effective dose to the general public was found to be 0.43 mSv. This value lies well below the limit of 1 mSv for general public as recommended by the International Commission on Radiological Protection. The measured values are comparable with other global radioactivity measurements and are found to be safe for the public and the environment.  相似文献   

20.
The ungauged wet semi-arid watershed cluster, Seethagondi, lies in the Adilabad district of Telangana in India and is prone to severe erosion and water scarcity. The runoff and soil loss data at watershed, catchment, and field level are necessary for planning soil and water conservation interventions. In this study, an attempt was made to develop a spatial soil loss estimation model for Seethagondi cluster using RUSLE coupled with ARCGIS and was used to estimate the soil loss spatially and temporally. The daily rainfall data of Aphrodite for the period from 1951 to 2007 was used, and the annual rainfall varied from 508 to 1351 mm with a mean annual rainfall of 950 mm and a mean erosivity of 6789 MJ mm ha?1 h?1 year?1. Considerable variation in land use land cover especially in crop land and fallow land was observed during normal and drought years, and corresponding variation in the erosivity, C factor, and soil loss was also noted. The mean value of C factor derived from NDVI for crop land was 0.42 and 0.22 in normal year and drought years, respectively. The topography is undulating and major portion of the cluster has slope less than 10°, and 85.3 % of the cluster has soil loss below 20 t ha?1 year?1. The soil loss from crop land varied from 2.9 to 3.6 t ha?1 year?1 in low rainfall years to 31.8 to 34.7 t ha?1 year?1 in high rainfall years with a mean annual soil loss of 12.2 t ha?1 year?1. The soil loss from crop land was higher in the month of August with an annual soil loss of 13.1 and 2.9 t ha?1 year?1 in normal and drought year, respectively. Based on the soil loss in a normal year, the interventions recommended for 85.3 % of area of the watershed includes agronomic measures such as contour cultivation, graded bunds, strip cropping, mixed cropping, crop rotations, mulching, summer plowing, vegetative bunds, agri-horticultural system, and management practices such as broad bed furrow, raised sunken beds, and harvesting available water using farm ponds and percolation tanks. This methodology can be adopted for estimating the soil loss from similar ungauged watersheds with deficient data and for planning suitable soil and water conservation interventions for the sustainable management of the watersheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号