共查询到3条相似文献,搜索用时 0 毫秒
1.
Khoder MI 《Environmental monitoring and assessment》2009,149(1-4):349-362
Ground level ozone (O3) concentration was monitored during the period of December 2004 to November 2005 in an urban area in Greater Cairo (Haram, Giza). During the winter and summer seasons, nitrogen dioxide (NO2) and nitric oxide(NO) concentrations and meteorological parameters were also measured. The mean values of O3 were 43.89, 65.30, 91.30 and 58.10 ppb in daytime and 29.69, 47.80, 64.00 and 42.70 ppb in whole day (daily) during the winter, spring, summer and autumn seasons, respectively. The diurnal cycles of O3 concentrations during the four seasons revealed a uni-modal peak in the mid-day time, with highest O3 levels in summer due to the local photochemical production. The diurnal variations in NO and NO2 concentrations during the winter and summer showed two daily peaks linked to traffic density. The highest levels of NOx were found in winter. Nearly, 75%, 100%, 34.78% and 52.63% of the mean daytime concentrations of O3 during spring,summer, autumn and the whole year, respectively, exceeded the Egyptian and European Union air quality standards (60 ppb) for daytime (8-h) O3 concentration. About, 41.14% and 10.39% of the daytime hours concentrations and 14.93% and 3.77% of the daily hour concentrations in summer and the whole year, respectively, exceeded the Egyptian standard (100 ppb) for maximum hourly O3 concentration, and photochemical smog is formed in the study area (Haram) during a periods represented by the same percentages. This was based on the fact that photochemical smog usually occurs when O3 concentration exceeds 100 ppb. The concentrations of O3 precursors (NO and NO2) in weekends were lower than those found in weekdays, whereas the O3 levels during the weekends were high compared with weekdays. This finding phenomenon is known as the "weekend effect". Significant positive correlation coefficients were found between O3 and temperature in both seasons and between O3 and relative humidity in summer season, indicating that high temperature and high relative humidity besides the intense solar radiation (in summer) are responsible for the formation of high O3 concentrations. 相似文献
2.
The seasonal effects of untreated and treated municipal sewage on the nutrients-nitrate (NO(3)), phosphate (PO(4)), sulphate (SO(4)), and the biochemical oxygen demand (BOD), chemical oxygen demand (COD) and dissolved oxygen (DO) of the receiving urban canal, the Buckingham canal at Kalpakkam (Tamil Nadu, India) was monitored monthly during pre- monsoon-2005 to post-monsoon-2006. The NO(3), PO(4) and SO(4) contents were higher in the downstream than that of the upstream of the outfall points of treated as well as untreated sewage, of the canal. The NO(3) and PO(4) contents were higher during summer than that of monsoon; however the SO(4) was higher during winter and lower during summer in the canal water. The BOD and COD were lower and DO was higher at the upstream than that of downstream of the canal. The concentrations of BOD and COD were higher during summer season, which decreased during monsoon season, while the DO decreased during the summer season and increased in monsoon season in the canal water. Cluster analysis applied to the six sampling points of the canal, has grouped them based on the water quality similarities. 相似文献
3.
Sun FF Wen da Z Kuang YW Li J Zhang JG 《Environmental monitoring and assessment》2009,154(1-4):263-274
Current (C) and previous year (C + 1) needles and soils (organic horizon, 0-10 cm and 10-20 cm mineral depth) of Masson pine (Pinus massoniana L.) trees were sampled at four forested sites (Huang Pu industrial district, HP; South China Botanical Garden, BG; Mao Feng Mt., MF; and Nan Kun Mt., NK) in Guangzhou along a urban-rural gradient and analyzed for sulfur (S) and heavy metals (Cu, Zn, Ni, Cd, Cr and Pb) concentrations. Needle concentrations of all the elements were significantly higher at industrial HP than at other three sites, except for Cu and Pb which were highest at the traffic site (BG). The C + 1 needles generally had higher Cu, Cd, Pb, Zn, Cr than the C needles while the opposite was for Ni and S. Total and available Cd, Pb, Zn in soils peaked at the urban sites (HP and BG) and decreased at suburban MF and rural NK. Heavy metals were generally higher in the organic soils than in the mineral soils at all sites. Zinc and Pb at all sites, and Cd, S and Cu at the urban sites (HP and BG) in soils or pine needles were above or near their respective natural background levels, implying that threats resulted from these toxic elements occurred on local particularly urban forests, but did not for Cr and Ni due to their presence below their background values. Our results demonstrated that elements concentrations in needles and soils had reflected the variability of pollutants and the environmental quality change along the urban-rural transect, and were efficient as biomonitors to assess the influence of anthropogenic activities along the urbanization course on forest health. 相似文献