共查询到20条相似文献,搜索用时 0 毫秒
1.
Thomas W. May Michael J. Walther Jimmie D. Petty James F. Fairchild Jeff Lucero Mike Delvaux Jill Manring Mike Armbruster David Hartman 《Environmental monitoring and assessment》2001,72(2):179-206
The Republican River Basin of Colorado,Nebraska, and Kansas lies in a valley which contains PierreShale as part of its geological substrata. Selenium is anindigenous constituent in the shale and is readily leached intosurrounding groundwater. The Basin is heavily irrigated throughthe pumping of groundwater, some of which is selenium-contaminated, onto fields in agricultural production. Water,sediment, benthic invertebrates, and/or fish were collected from46 sites in the Basin and were analyzed for selenium to determinethe potential for food-chain bioaccumulation, dietary toxicity,and reproductive effects of selenium in biota. Resultingselenium concentrations were compared to published guidelines orbiological effects thresholds. Water from 38% of the sites (n = 18) contained selenium concentrations exceeding 5 g L-1, which is reported to be a high hazard for selenium accumulation into the planktonic food chain. An additional 12 sites (26% of the sites) contained selenium in water between 3–5 g L-1, constituting a moderate hazard. Selenium concentrations in sedimentindicated little to no hazard for selenium accumulation fromsediments into the benthic food chain. Ninety-five percent ofbenthic invertebrates collected exhibited selenium concentrationsexceeding 3 g g-1, a level reported as potentially lethal to fish and birds that consume them. Seventy-five percent of fish collected in 1997, 90% in 1998, and 64% in 1999 exceeded 4 g g-1selenium, indicating a high potential for toxicity andreproductive effects. However, examination of weight profilesof various species of collected individual fish suggestedsuccessful recruitment in spite of selenium concentrations thatexceeded published biological effects thresholds for health andreproductive success. This finding suggested that universalapplication of published guidelines for selenium may beinappropriate or at least may need refinement for systems similarto the Republican River Basin. Additional research is needed todetermine the true impact of selenium on fish and wildliferesources in the Basin. 相似文献
2.
Elizângela Pinheiro da Costa Carolina Cristiane Pinto Ana Luiza Cunha Soares Livia Duarte Ventura Melo Sílvia Maria Alves Corrêa Oliveira 《Environmental monitoring and assessment》2017,189(11):590
The São Francisco River is the largest river located entirely within Brazil, and water scarcity problems have been a major concern of Brazilian society and government. Water quality issues are also a concern and have worsened with the recent intensification of urbanization and industrialization. In this study, violations to water quality standards established by local legislation were calculated as a percentage for 26 selected parameters over a monitoring period of 14 years. The violation percentages were analyzed spatially using the Kruskal-Wallis test, followed by multiple comparison analysis. Temporal analysis was performed using the Mann-Kendall test and Spearman correlation. Some parameters could be identified as cause for concern due to high violation levels, such as the fecal coliform indicator (FCI) and phosphorus—both related to domestic and effluent disposal without treatment or with insufficient treatment—and color, turbidity, manganese, and total suspended solids—which can be affected by erosive processes of natural and anthropogenic causes. The study found that these violations are concentrated in the most urbanized and industrialized areas of the basin. Some metallic parameters, such as iron and arsenic violations, may be related to mining activities in the rich soil of the Iron Quadrangle area located within the Minas Gerais State. Trend analysis results indicated that most monitoring stations did not have significant modification (elevation or reduction) trends over time, which, together with the high violation percentages, might indicate the maintenance of a scenario of constant pressure upon water resources, in particular in those more urbanized areas. 相似文献
3.
Hua Zhang Yili Zhang Zhaofeng Wang Mingjun Ding 《Environmental monitoring and assessment》2013,185(7):5435-5447
The pollutants that are discharged from roads and traffic have attracted much attention recently. Nonetheless, most studies have mainly focused on highways and seldom on railways. In this study, soil samples were selected at the embankment and perpendicularly at different distances (2, 5, 10, 20, 30, 50, 60, 70, 80, 100, and 150 m) from the embankment bottom of the Qinghai–Tibet railway. Furthermore, soils were selected at four soil depths (5, 10, 20, and 30 cm) of each sample at the flat. The enrichment of nine heavy metals (V, Cr, Co, Ni, Cu, Zn, Rb, Cd, and Pb) in soils along the Delhi–Ulan section of the Qinghai–Tibet railway was studied. The results indicated that the mean concentrations of Cr, Ni, Cu, Zn, Pb, and Cd were highest at the embankment. The Cu concentrations in soils decreased by an S-curve-shaped function with increasing distance from the embankment, while Cd, Pb, and Zn decreased by inverse functions (p?<?0.0001). The concentrations of other studied metal did not show significant changes with increasing distance. After performing a statistical analysis, Pb, Cd, and Zn in soils were considered to be influenced by railway operations. However, the influence was weak and only spanned less than 5 m from the bottom of the embankment horizontally and 10 cm from the surface vertically. The mean concentrations of heavy metals in soils along the Delhi–Ulan section of the Qinghai–Tibet railway were considered lower compared with those along other railways. 相似文献
4.
Chronic elevated nitrogen (N) deposition has altered the N status of temperate forests, with significant implications for ecosystem function. The Bear Brook Watershed in Maine (BBWM) is a whole paired watershed manipulation experiment established to study the effects of N and sulfur (S) deposition on ecosystem function. N was added bimonthly as (NH4)2SO4 to one watershed from 1989 to 2016, and research at the site has studied the evolution of ecosystem response to the treatment through time. Here, we synthesize results from 27 years of research at the site and describe the temporal trend of N availability and N mineralization at BBWM in response to chronic N deposition. Our findings suggest that there was a delayed response in soil N dynamics, since labile soil N concentrations did not show increases in the treated watershed (West Bear, WB) compared to the reference watershed (East Bear, EB) until after the first 4 years of treatment. Labile N became increasingly available in WB through time, and after 25 years of manipulations, treated soils had 10× more extractable ammonium than EB soils. The WB soils had 200× more extractable nitrate than EB soils, driven by both, high nitrate concentrations in WB and low nitrate concentrations in EB. Nitrification rates increased in WB soils and accounted for ~?50% of net N mineralization, compared to ~?5% in EB soils. The study provides evidence of the decadal evolution in soil function at BBWM and illustrates the importance of long-term data to capture ecosystem response to chronic disturbance. 相似文献
5.
6.
Yuhe Ji Liding Chen Guangsheng Zhou Ranhao Sun Linyuan Shang Shudong Wang 《Environmental monitoring and assessment》2014,186(11):8023-8036
Soil carbon redistribution is an important process in the terrestrial carbon cycle. This study describes a new index, soil carbon redistribution (SCR) index, that can be used to assess long-term soil carbon redistribution at a large watershed scale. The new index is based on the theoretical preconditions that soil carbon redistribution is mainly controlled by vegetation type, precipitation, topography/slope, and soil carbon concentration. The Haihe River Basin served as an example for this analysis. The SCR index was calculated, and a GIS-based map shows its spatial patterns. The results suggested that soil carbon was usually prone to being carried away from mountainous regions with natural vegetation, while it was prone to deposition in the plain and plateau regions with cultivated vegetation. The methods in the paper offer a tool that can be used to quantify the potential risk where soil carbon is prone to being carried away and deposited in a large watershed. 相似文献
7.
Sandro Froehner Marcell Maceno Raquel Fernandes Martins 《Environmental monitoring and assessment》2010,170(1-4):261-272
Sediments constitute a pollutant trap and have proven to be an efficient tool to identify environmental impacts. Sediments are considered a very important means to assess the level of contamination of water bodies because of their ability to accumulate metals and organic. The anthropogenic inputs of sewage, with or without prior treatment, in aquatic environments, affect the geochemical composition of sediment. In addition, the sediment adsorbs hydrophobic compounds found in feces, such as the fecal sterols. The granulometric and geochemical composition of the sediment of Barigüi River-Brazil was investigated. The results show that silt and clay dominate the granulometric composition of the sediments. The geochemical composition of sediments showed high concentrations of phosphorus and nitrogen. The Redfield ratios confirm the inputs of phosphorus and nitrogen. The TOC/N ratio was used to identify the source of pollution. N/TP ratios were found between 1.0 and 3.5. Clearly, an input of phosphorus, sewage is the most acceptable source, following the historic profile of the Barigüi River. High concentration of nitrogen phosphorus labels the area to be polluted by sewage. To confirm the sewage pollution, adsorbed fecal sterols in sediments were investigated. The concentration of total sterols was found between 0.86 and 304.58 μg g???1. Two distinguished scenario was found, one severely polluted and another slightly polluted. The highest concentrations of total fecal sterols were associated with sediment whose geochemical composition showed higher levels of TOC, as well as higher proportions of silt and clay. Also, epicoprostanol, a coprostanol isomer, was used as an indicator of the level of treatment or age of the fecal matter because it is formed during the treatment of wastewater and sludge digestion. If the treatment of sludge takes a long time, epicoprostanol can form from cholesterol, and relative proportions of those compounds may be used as an indicator of the presence of untreated sewage in the sediments. The epicoprostanol was found in the range between 0.02 and 9.71 μg g???1; concentration of up to 0.015 μg g???1 represents situations where there is strong contamination by sewage. All sites investigated showed a concentration of epicoprostanol higher than the value adopted as threshold. The lower concentration of epicoprostanol found for all sites is consistent with the high concentration found for coprostanol, and this is typical for untreated sewage. 相似文献
8.
F. Löw P. Navratil K. Kotte H. F. Schöler O. Bubenzer 《Environmental monitoring and assessment》2013,185(10):8303-8319
With the recession of the Aral Sea in Central Asia, once the world’s fourth largest lake, a huge new saline desert emerged which is nowadays called the Aralkum. Saline soils in the Aralkum are a major source for dust and salt storms in the region. The aim of this study was to analyze the spatio-temporal land cover change dynamics in the Aralkum and discuss potential implications for the recent and future dust and salt storm activity in the region. MODIS satellite time series were classified from 2000–2008 and change of land cover was quantified. The Aral Sea desiccation accelerated between 2004 and 2008. The area of sandy surfaces and salt soils, which bear the greatest dust and salt storm generation potential increased by more than 36 %. In parts of the Aralkum desalinization of soils was found to take place within 4–8 years. The implication of the ongoing regression of the Aral Sea is that the expansion of saline surfaces will continue. Knowing the spatio-temporal dynamics of both the location and the surface characteristics of the source areas for dust and salt storms allows drawing conclusions about the potential hazard degree of the dust load. The remote-sensing-based land cover assessment presented in this study could be coupled with existing knowledge on the location of source areas for an early estimation of trends in shifting dust composition. Opportunities, limits, and requirements of satellite-based land cover classification and change detection in the Aralkum are discussed. 相似文献
9.
10.
Barry C. Poulton Ann L. Allert John M. Besser Christopher J. Schmitt William G. Brumbaugh James F. Fairchild 《Environmental monitoring and assessment》2010,163(1-4):619-641
The Viburnum Trend lead–zinc mining subdistrict is located in the southeast Missouri portion of the Ozark Plateau. In 2003 and 2004, we assessed the ecological effects of mining in several watersheds in the region. We included macroinvertebrate surveys, habitat assessments, and analysis of metals in sediment, pore water, and aquatic biota. Macroinvertebrates were sampled at 21 sites to determine aquatic life impairment status (full, partial, or nonsupport) and relative biotic condition scores. Macroinvertebrate biotic condition scores were significantly correlated with cadmium, nickel, lead, zinc, and specific conductance in 2003 (r?=??0.61 to ?0.68) and with cadmium, lead, and pore water toxic units in 2004 (r?=??0.55 to ?0.57). Reference sites were fully supporting of aquatic life and had the lowest metals concentrations and among the highest biotic condition scores in both years. Sites directly downstream from mining and related activities were partially supporting, with biotic condition scores 10% to 58% lower than reference sites. Sites located greater distances downstream from mining activities had intermediate scores and concentrations of metals. Results indicate that elevated concentrations of metals originating from mining activities were the underlying cause of aquatic life impairment in several of the streams studied. There was general concurrence among the adversely affected sites in how the various indicators responded to mining activities during the overall study. 相似文献
11.
12.
The concentrations of cadmium, chromium, copper, iron, lead, manganese, nickel, and zinc in water and bed sediments of river Gomti have been studied in a fairly long stretch of 500 km from Neemsar to Jaunpur. Grab samples of water (October 2002–March 2003) and bed sediments (December 2002 and March 2003) were collected from 10 different locations following the standard methods. The river water and sediment samples were processed and analyzed for heavy metals viz., Cd, Cr, Cu, Fe, Pb, Mn, Ni, and Zn, and using ICP-AES. The heavy metals found in the river water were in the range: Cd (0.0001–0.0005 mg/L); Cr (0.0015–0.0688 mg/L); Cu (0.0013–0.0.0043 mg/L); Fe (0.0791–0.3190 mg/L); Mn (0.0038–0.0.0973 mg/L); Ni (0.0066–0.011 mg/L); Pb (0.0158–0.0276 mg/L); and Zn (0.0144–0.0298 mg/L) respectively. In the sediments the same were found in the range: Cd (0.70–7.90 g/g); Cr (6.105–20.595 g/g); Cu (3.735–35.68 g/g); Fe (5051.485–8291.485 g/g); Mn (134.915–320.45 g/g); Ni (13.905–37.370 g/g); Pb (21.25–92.15 g/g); and Zn (15.72–99.35 g/g) of dry weight respectively. Some physico-chemical parameters viz., pH, total solids, total dissolved solids, total suspended solids, dissolved oxygen, biological oxygen demand, chemical oxygen demand, hardness etc. were estimated as these have direct or indirect influence on the incidence, transport and speciation of the heavy metals. Based on the geoaccumulation indices, the Gomti river sediments from Neemsar to Jaunpur are considered to be unpolluted with respect to Cr, Cu, Fe, Mn, and Zn. It is unpolluted to moderately polluted with Pb. In case of Cd it varies from moderately polluted to highly polluted. As far as Ni is concerned the sediment is very highly polluted at Barabanki and Jaunpur D/s. No correlation was found between enrichment factor and geoaccumulation index. 相似文献
13.
Devesa-Rey R Díaz-Fierros F Barral MT 《Environmental monitoring and assessment》2011,179(1-4):371-388
The metals distribution in the bed sediments of the Anllóns River was studied, with special emphasis on the evaluation of the metal distribution as a function of the granulometric fraction chosen for the analysis. Statistical significant differences between the distribution of K, Ca, Cr, Mn, As, Rb, Sr and Nb in the bulk (<2 mm) and fine fraction (<63 μm) were not found. Fe, Ni, Cu, Ga, Zr, Zn and Pb commonly appear in higher concentrations in the fine fraction, whereas Ti appears in higher concentrations in the bulk fraction. In general, it was observed that contamination phenomena tend to equalise the concentrations of both fractions, and this was mainly explained as the result of two processes. First, the formation of coatings over sands and, second, the formation of large aggregates (pseudo-sands) at sites located over basic rocks, whose chemical behaviour is closer to that of clays and could be responsible for significant adsorption processes. Normalisation techniques to evaluate contamination were applied by testing Nb, Sr, Rb or Ga as normaliser elements and by using crustal or shale average values for background concentrations. The most satisfactory result was obtained when using shale average values and Ga as the normaliser element. Arsenic was identified as the main contaminant of the basin, exceeding in all cases the low-effect reference values proposed by sediment quality guidelines and in two cases the medium-effect reference values. These sites were identified by multivariate techniques, which allow differentiating site 10 as affected by anthropogenic inputs related to past mining activities. 相似文献
14.
R. Brooks M. McKenney-Easterling M. Brinson R. Rheinhardt K. Havens D. O’Brien J. Bishop J. Rubbo B. Armstrong J. Hite 《Environmental monitoring and assessment》2009,150(1-4):101-117
As part of a regional study by the Atlantic Slope Consortium (ASC) to develop ecological and socioeconomic indicators of aquatic ecosystem condition, we developed and tested a protocol for rapidly assessing condition of the stream, wetland, and riparian components of freshwater aquatic ecosystems. Aspects of hydrology, vegetation, in-stream and wetland characteristics, and on-site stressors were measured in the field. The resulting metrics were used to develop an index of overall condition, termed the Stream–Wetland–Riparian (SWR) Index. Values of this Index were compared to existing biotic indices and chemical measures, and to a Landscape Index created using satellite-based land cover data and a geographic information system (GIS). Comparisons were made at several levels of spatial aggregation and resolution, from site to small watershed. The SWR Index and associated Landscape Indices were shown to correlate highly with biological indicators of stream condition at the site level and for small contributing areas. The landscape patterns prevalent throughout the entire watershed do not necessarily match the patterns found adjacent to the stream network. We suggest a top-down approach that managers can use to sequentially apply these methods, to first prioritize watersheds based on a relative condition measure provided by the Landscape Index, and then assess condition and diagnose stressors of aquatic resources at the subwatershed and site level. 相似文献
15.
Evaluation of Water Quality in the Chillán River (Central Chile) Using Physicochemical Parameters and a Modified Water Quality Index 总被引:4,自引:0,他引:4
Debels P Figueroa R Urrutia R Barra R Niell X 《Environmental monitoring and assessment》2005,110(1-3):301-322
The Chillán River in Central Chile plays a fundamental role in local society, as a source of irrigation and drinking water,
and as a sink for urban wastewater. In order to characterize the spatial and temporal variability of surface water quality
in the watershed, a Water Quality Index (WQI) was calculated from nine physicochemical parameters, periodically measured at
18 sampling sites (January–November 2000). The results indicated a good water quality in the upper and middle parts of the
watershed. Downstream of the City of Chillán, water quality conditions were critical during the dry season, mainly due to
the effects of the urban wastewater discharge. On the basis of the results from a Principal Component Analysis (PCA), modifications
were introduced into the original WQI to reduce the costs associated with its implementation. WQIDIR2 and WQIDIR, which are both based on a laboratory analysis (Chemical Oxygen Demand) and three (pH, temperature and conductivity), respectively,
four field measurements (pH, temperature, conductivity and Dissolved Oxygen), adequately reproduce the most important spatial
and temporal variations observed with the original index. They are proposed as useful tools for monitoring global water quality
trends in this and other, similar agricultural watersheds in the Chilean Central Valley. Possibilities and limitations for
the application of the used methodology to watersheds in other parts of the world are discussed. 相似文献
16.
Jessica Paola Chiarandini Fiore María del Carmen Scapini Alejandro César Olivieri 《Environmental monitoring and assessment》2013,185(8):6909-6919
Natural and contaminated waters of the final reaches of the Chubut River (Patagonia, Argentina) were studied to obtain information about river organic matter and effects of domestic and industrial discharges (fishery effluents and sewages). Fluorescence Excitation–Emission Matrices (EEMs) were obtained from samples only filtered (0.45 μm) and diluted, if necessary, to avoid the inner filter effect. In addition, physicochemical parameters were measured to know the quality of the water and the effluents. Results show that EEMs allow a rapid and simple control of the effluents from fisheries and domestic sewage in Chubut River estuary, necessary to take management decisions. 相似文献
17.
Hong Wang Jay Gao Ruiliang Pu Liliang Ren Yan Kong He Li Ling Li 《Environmental monitoring and assessment》2014,186(7):4013-4028
This study aims to assess the relative importance of natural and anthropogenic variables on the change of the red-crowned crane habitat in the Yellow River Nature Reserve, East China using multitempopral remote sensing and geographic information system. Satellite images were used to detect the change in potential crane habitat, from which suitable crane habitat was determined by excluding fragmented habitat. In this study, a principal component analysis (PCA) with seven variables (channel flow, rainfall, temperature, sediment discharge, number of oil wells, total length of roads, and area of settlements) and linear regression analyses of potential and suitable habitat against the retained principal components were applied to explore the influences of natural and anthropogenic factors on the change of the red-crowned crane habitat. The experimental results indicate that suitable habitat decreased by 5,935 ha despite an increase of 1,409 ha in potential habitat from 1992 to 2008. The area of crane habitat changed caused by natural drivers such as progressive succession, retrogressive succession, and physical fragmentation is almost the same as that caused by anthropogenic forces such as land use change and behavioral fragmentation. The PCA and regression analyses revealed that natural factors (e.g., channel flow, rainfall, temperature, and sediment discharge) play an important role in the crane potential habitat change and human disturbances (e.g., oil wells, roads, and settlements) jointly explain 51.8 % of the variations in suitable habitat area, higher than 48.2 % contributed by natural factors. Thus, it is vital to reduce anthropogenic influences within the reserve in order to reverse the decline in the suitable crane habitat. 相似文献
18.
Debarati Bhaduri T. J. Purakayastha A. K. Patra Debashis Chakraborty 《Environmental monitoring and assessment》2014,186(4):2535-2547
Long-term sustainability and a declining trend in productivity of rice–wheat rotation in the Indo-Gangetic plain, often direct towards the changes in soil quality parameters. Soil quality is decided through few sensitive soil physical, chemical and biological indicators as it cannot be measured directly. The present investigation was carried out to develop a valid soil quality index through some chosen indicators under long-term influences of tillage, water and nutrient-management practices in a rice–wheat cropping system. The experiment consisted of two tillage treatments, three irrigation treatments, and nine nutrient management treatments for both rice and wheat, was continued for 8 years. The index was developed using expert-opinion based conceptual framework model. After harvest of rice, the CFSQI-P (productivity) was higher under puddled situation, whereas CFSQI-EP (environmental protection) was more under non-puddled condition and 3-days of drainage was found promising for all the indices. No-tillage practice always showed higher soil quality index. The treatments either receiving full organics (100 % N) or 25 % substitution of fertilizer N with organics showed higher soil quality indices. Puddling, irrigation after 3 days of drainage and substitution of 25 % recommended fertilizer N dose with FYM in rice could be practiced for maintaining or enhancing soil quality. No-tillage, two irrigations, and domestic sewage sludge in wheat can safely be recommended for achieving higher soil quality. 相似文献
19.
Monferrán MV Galanti LN Bonansea RI Amé MV Wunderlin DA 《Journal of environmental monitoring : JEM》2011,13(2):398-409
We report a combined two-year seasonal monitoring of Suquía River basin using both chemical parameters and biomarkers measured in Jenynsia multidentata, aiming to correlate external levels of contaminants with the response of oxidative stress biomarkers in this fish. Identified pollution sources correspond to city sewage as well as agricultural and small industry activities downstream from Córdoba city. Physicochemical parameters integrated into a water quality index (WQI) were measured in Suquía River during dry and wet seasons. Ag, Mn, Cu, Cr, Ni, Fe, Pb and Zn were also monitored in water and sediment samples. Biomarkers include detoxication and antioxidant enzymes: catalase (CAT), glutathione peroxidase (GPX), glutathione S-transferase (GST) and glutathione reductase (GR). Enzymes showed a pollution dependent response, with increased activities in fish collected close to the sewage exit and progressive drop further downstream, matching changes in the Water Quality index. The combined use of biomarkers with water quality parameters allowed both the identification of pollution sources and the evaluation of effects of contaminants on the aquatic biota. 相似文献