首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Modeling individual tree mortality for crimean pine plantations   总被引:1,自引:0,他引:1  
Individual tree mortality model was developed for crimean pine (Pinus nigra subsp. pallasiana) plantations in Turkey. Data came from 5 year remeasurements of the permanent sample plots. The data comprises of 115 sample plots with 5029 individual trees. Parameters of the logistic equation were estimated using weighted nonlinear regression analysis. Approximately 80% of the observations were used for model development and 20% for validation. The explicatory variables in the model were ratio of diameter of the subject tree and basal area mean diameter of the sample plot as measure of competition index for individual trees, basal area and site index. All parameter estimates were found highly significant (p < 0.001) in predicting mortality model. Chi-square statistics indicate that the most important variable is d / d(q), the second most important is site index, and the third most important predictor is stand basal area. Examination of graphs of observed vs. predicted mortality rates reveals that the mortality model is well behaved and match the observed mortality rates quite well. Although the phenomenon of mortality is a stochastic, rare and irregular event, the model fit was fairly good. The logistic mortality model passed a validation test on independent data not used in parameter estimation. The key ingredient for obtaining a good mortality model is a data set that is both large and representative of the population under study and the data satisfy both requirements. The mortality model presented in this paper is considered to have an appropriate level of reliability.  相似文献   

2.
Gravel D  Beaudet M  Messier C 《Ecology》2008,89(10):2879-2888
Understanding coexistence of highly shade-tolerant tree species is a longstanding challenge for forest ecologists. A conceptual model for the coexistence of sugar maple (Acer saccharum) and American beech (Fagus grandibfolia) has been proposed, based on a low-light survival/high-light growth trade-off, which interacts with soil fertility and small-scale spatiotemporal variation in the environment. In this study, we first tested whether the spatial distribution of seedlings and saplings can be predicted by the spatiotemporal variability of light availability and soil fertility, and second, the manner in which the process of environmental filtering changes with regeneration size. We evaluate the support for this hypothesis relative to the one for a neutral model, i.e., for seed rain density predicted from the distribution of adult trees. To do so, we performed intensive sampling over 86 quadrats (5 x 5 m) in a 0.24-ha plot in a mature maple-beech community in Quebec, Canada. Maple and beech abundance, soil characteristics, light availability, and growth history (used as a proxy for spatiotemporal variation in light availability) were finely measured to model variation in sapling composition across different size classes. Results indicate that the variables selected to model species distribution do effectively change with size, but not as predicted by the conceptual model. Our results show that variability in the environment is not sufficient to differentiate these species' distributions in space. Although species differ in their spatial distribution in the small size classes, they tend to correlate at the larger size class in which recruitment occurs. Overall, the results are not supportive of a model of coexistence based on small-scale variations in the environment. We propose that, at the scale of a local stand, the lack of fit of the model could result from the high similarity of species in the range of environmental conditions encountered, and we suggest that coexistence would be stable only at larger spatial scales at which variability in the environment is greater.  相似文献   

3.
Canham CD  Thomas RQ 《Ecology》2010,91(12):3433-3440
There have been many attempts to model the impacts of climate change on the distributions of temperate tree species, but empirical analyses of the effects of climate on the distribution and abundance of tree species have lagged far behind the models. Here, we used forest inventory data to characterize variation in adult tree abundance along climate gradients for the 24 most common tree species in the northeastern United States. The two components of our measure of species abundance--local frequency vs. relative abundance--showed dramatically different patterns of variation along gradients of mean annual temperature and precipitation. Local frequency (i.e., the percentage of plots in a given climate in which a species occurred) varied strongly for all 24 species, particularly as a function of temperature. Relative abundance when present in a plot, on the other hand, was effectively constant for most species right up to their estimated climatic range limits. Although the range limits for both temperature and precipitation were quite broad for all of the species, the range of climates within which a species was common (i.e., high frequency) was much narrower. Because frequency in sites within a given climate shows a strong sensitivity to temperature, at least, this suggests that the processes determining canopy tree recruitment on new sites also vary strongly with climate.  相似文献   

4.
The present paper reports how stand size-structure dynamics due to competition between different-sized trees affect long-term forested water balance in Japanese cool-temperate planted stands (evergreen coniferous Cryptomeria japonica and deciduous coniferous Larix kaempferi stands) using a fully coupled multi-layered meteorological surface physics—terrestrial ecosystems model. The simulation captured the well-known annual variation in leaf area index (LAI) accurately with stand age in monocultured and even-aged stands; the occurrence of maximum LAI during the early growth stage and then a gradual decline followed by a steady state after the maximum LAI. The simulations also detected a high dependency of annual evapotranspiration (AETr) on LAI with stand age that is well known by prior observational researches. In the C. japonica (shade-tolerant late-successional species) stand, the relationship between annual net primary productivity of an individual tree (NPPind) and individual tree mass (w) changed from linear to a convex curve during self-thinning, indicating that the degree of asymmetric tree competition intensified with forest stand development. The higher degree of competitive asymmetry characterized by the convex-shaped NPPind-w relationship produced greater size inequality, i.e., the formation of trees stratified by height. Under such conditions, AETr and annual transpiration (ATr) were mainly regulated by larger trees. On the other hand, the NPPind-w relationships in the L. kaempferi (shade-intolerant early-successional species) stand were linear throughout the simulated period, indicating the lower degree of competitive asymmetry. Under such conditions, the growth of intermediate-sized trees was enhanced and these trees became a dominant source of AETr (and also ATr) during self-thinning. Furthermore, the sensitivity analysis of the effects of ecophysiological parameters such as foliage profile (i.e., vertical distribution of leaf area density) of an individual tree (distribution pattern is described by the parameter η), the maximum carboxylation velocity (Vcmax0) and biomass allocation pattern of individual plant growth (μ1) on AETr, ATr and annual runoff (ARoff) showed that the temporal trends of AETr, ATr, ARoff and NPPind-w relationships were completely the same as those in the control simulations. However, the NPPind-w relationship during self-thinning indicated higher degrees of competitive asymmetry when η or Vcmax0 were greater than those in the control simulation and generated greater AETr and ATr and thus smaller ARoff. We found that more asymmetric tree competition brings about greater size inequality between different-sized trees and thus more evapotranspiration and less runoff in a forest stand. Overall, our simulation approach revealed that not only LAI dynamics but also plant competition, and thus size-structure dynamics, in a forest ecosystem are essential to long-term future projections of forested water balance.  相似文献   

5.
Bias originating from intrinsic nonlinearity in nonlinear models is caused by excess curvature in the solution locus of parameter estimates derived from least squares procedures. Bias due to intrinsic nonlinearity varies according to sample size as well as model specification. This paper analyses consequences of fractionising data into smaller sub-samples. Based on measurements of stem diameter and total tree height from the first Danish national forest inventory, it is demonstrated how data splitting at random may cause the intrinsic nonlinear curvature to exceed the critical F-value. Application of a Taylor-series expansion shows that, for all practical purposes, the bias in predictions of individual tree volume (based on stem diameter and tree height) is negligible. To minimize residual variance, intrinsic curvature and, in turn, prediction bias, it is recommended that data be stratified according to site conditions, stand characteristics or other relevant criteria. Finally, the preferred model should exhibit close-to-linear behaviour.  相似文献   

6.
《Ecological modelling》1999,114(2-3):113-135
A spatially explicit forest gap model was developed for the Sierra Nevada, California, and is the first of its kind because it integrates climate, fire and forest pattern. The model simulates a forest stand as a grid of 15×15 m forest plots and simulates the growth of individual trees within each plot. Fuel inputs are generated from each individual tree according to tree size and species. Fuel moisture varies both temporally and spatially with the local site water balance and forest condition, thus linking climate with the fire regime. Fires occur as a function of the simulated fuel loads and fuel moisture, and the burnable area is simulated as a result of the spatially heterogeneous fuel bed conditions. We demonstrate the model’s ability to couple the fire regime to both climate and forest pattern. In addition, we use the model to investigate the importance of climate and forest pattern as controls on the fire regime. Comparison of model results with independent data indicate that the model performs well in several areas. Patterns of fuel accumulation, climatic control of fire frequency and the influence of fuel loads on the spatial extent of fires in the model are particularly well-supported by data. This model can be used to examine the complex interactions among climate, fire and forest pattern across a wide range of environmental conditions and vegetation types. Our results suggest that, in the Sierra Nevada, fuel moisture can exert an important control on fire frequency and this control is especially pronounced at sites where most of the annual precipitation is in the form of snow. Fuel loads, on the other hand, may limit the spatial extent of fire, especially at elevations below 1500 m. Above this elevation, fuel moisture may play an increasingly important role in limiting the area burned.  相似文献   

7.
In this study we developed a dynamic growth model for Scots pine (Pinus sylvestris L.) plantations in Galicia (north-western Spain). The data used to develop the model were obtained from a network of permanent plots, of between 10 and 55-year-old, which the Unidade de Xestión Forestal Sostible (Sustainable Forest Management Unit) of the University of Santiago de Compostela has set up in pure plantations of this species of pine in its area of distribution in Galicia. In this model, the initial stand conditions at any point in time are defined by three state variables (number of trees per hectare, stand basal area and dominant height), and are used to estimate stand volume, classified by commercial classes, for a given projection age. The model uses three transition functions expressed as algebraic difference equations of the three corresponding state variables used to project the stand state at any point in time. In addition, the model incorporates a function for predicting initial stand basal area, which can be used to establish the starting point for the simulation. This alternative should only be used when the stand is not yet established or when no inventory data are available. Once the state variables are known for a specific moment, a distribution function is used to estimate the number of trees in each diameter class, by recovering the parameters of the Weibull function, using the moments of first and second order of the distribution (arithmetic mean diameter and variance, respectively). By using a generalized height–diameter function to estimate the height of the average tree in each diameter class, combined with a taper function that uses the above predicted diameter and height, it is then possible to estimate total or merchantable stand volume.  相似文献   

8.
The paper is about the accurate (i.e. unbiased and precise) and efficient estimation of structural indices in forest stands. We present SIAFOR, a computer programme for the calculation of four nearest-neighbour indices, which describe the spatial arrangement of tree positions, the distribution pattern of species, and the size differentiation between trees. The study uses SIAFOR as a sampling simulator in eight completely stem-mapped forest stands of varying area and structural complexity. We statistically evaluate two sample types (distance and plot sampling), comparing sampling error, bias and minimum sample size for index estimation. We introduce the concepts of measurement expansion factor (MEF) and design expansion factor (DEF) for the technical evaluation of sample type efficiency (optimal sample type). Results indicate that sampling error can reach high levels and that minimum sample sizes for index estimation often amply exceed the limit of 20% of tree density or 20 trees per species per hectare, that we set as the highest feasible sample size in normal situations. We found clear feasibility limits (in terms of minimal tree densities and reachable accuracy levels) for the estimation of all investigated indices. Generally, equal or higher sample sizes are needed for plot sampling than for distance sampling to reach equal accuracy levels. Nevertheless, plot sampling resulted more efficient for the estimation of tree size differentiation at low to medium accuracy levels. For all other investigated indices distance sampling resulted more efficient than plot sampling. Minimum sample size increases with accuracy and is negatively correlated with tree density. At a given accuracy level minimum sample size is highest for the estimation of relative mingling and lowest for tree size differentiation; furthermore it is generally lower in large stands than in small ones. Because of the consistency of our conclusions in all of the investigated stands, we think they apply in most stands of similar area (between 1 and 10 ha) and species diversity (not more than four species).  相似文献   

9.
10.
Distribution area of oriental spruce [Picea orientalis (L.) Link.] in the world is only in the north-east of Turkey and Caucasian. Because of being the semi monopoly tree with respect to its distribution and representing the upper forest line, it is necessary to analyse, evaluate and model the stand structures of oriental spruce forests in Turkey. In this research, some sampling plots were selected in timberline and treeline in the subalpine forest zone in Turkey. In these sampling plots some information about occurrence and development of the tree collectives was obtained. A total of 12 sampling plots (6 in timberline and 6 of them in treeline) were studied and horizontal and vertical stand profiles were obtained, while number of trees ranges between 2-86 in the tree collectives in treeline and in timberline 3-12. According to this, area per tree in treeline and in timberline is determined as 1.02 m2 and 3.75 m2 on an average respectively. Mean age of trees to reach breast height is 43 years in treeline sampling plots and 22 years in timberline sampling plots. According to the ratio of h (mean height) / d1.30 (diameter at breast height), stand stability values were calculated and it was determined if the stands were stable on the basis of the sampling plots. Stability values of the sampling plots changed between 33 and 75.  相似文献   

11.
The estimation of the dispersal kernel for the seedling and sapling stages of the recruitment process was made possible through the application of inverse modeling to dispersal data. This method uses the spatial coordinates of adult trees and the counts of seedlings (or saplings) in small quadrats to estimate the dispersal kernel. The unknown number of recruits produced by an adult tree (the fecundity) is estimated - simultaneously with the dispersal kernel - via an allometric linear model relating the unknown quantity with a (easily) measured characteristic of the adult tree (usually the basal area). However, the allometric relation between tree size and reproductive success in the sapling (or seedling) stage may not be strong enough when numerous, well-documented, post-dispersal processes (such as safe-site limitation for recruitment) cause large post-dispersal seedling mortality, which is usually unrelated to the size of the tree that dispersed them. In this paper we hypothesize that when tree size and reproductive success in the seedling/sapling stage are not well correlated then the use of allometry in inverse modeling is counter-productive and may lead to poor model fits. For these special cases we suggest using a new model for effective dispersal that we term the unrestricted fecundity (UF) model that, contrary to allometric models, makes no assumptions on the fecundities; instead they are allowed to vary freely from one tree to another and even to be zero for trees that are reproductively inactive. Based on this model, we examine the hypothesis that when tree size and reproductive success are weakly correlated and the fecundities are estimated independently of tree size the goodness-of-fit and the ecological meaning of dispersal models (in the seedling or sapling stage) may be enhanced. Parameters of the UF model are estimated through the EM algorithm and their standard errors are approximated via the observed information matrix. We fit the UF model to a dataset from an expanding European beech population of central Spain as well as to a set of simulated dispersal data were the correlation between reproductive success and tree size was moderate. In comparisons with a simple allometric model, the UF model fitted the data better and the parameter estimates were less biased. We suggest using this new approach for modeling dispersal in the seedling and sapling stages when tree size (or other adult-specific covariates) is not deemed to be in strong relation to the reproductive success of adults. Models that use covariates for modeling the fecundity of adults should be preferred when reproductive success and tree size guard a strong relationship.  相似文献   

12.
Robust predictions of competitive interactions among canopy trees and variation in tree growth along environmental gradients represent key challenges for the management of mixed-species, uneven-aged forests. We analyzed the effects of competition on tree growth along environmental gradients for eight of the most common tree species in southern New England and southeastern New York using forest inventory and analysis (FIA) data, information theoretic decision criteria, and multi-model inference to evaluate models. The suite of models estimated growth of individual trees as a species-specific function of average potential diameter growth, tree diameter at breast height, local environmental conditions, and crowding by neighboring trees. We used ordination based on the relative basal area of species to generate a measure of site conditions in each plot. Two ordination axes were consistent with variation in species abundance along moisture and fertility gradients. Estimated potential growth varied along at least one of these axes for six of the eight species; peak relative abundance of less shade-tolerant species was in all cases displaced away from sites where they showed maximum potential growth. Our crowding functions estimate the strength of competitive effects of neighbors; only one species showed support for the hypothesis that all species of competitors have equivalent effects on growth. The relative weight of evidence (Akaike weights) for the best models varied from a low of 0.207 for Fraxinus americana to 0.747 for Quercus rubra. In such cases, model averaging provides a more robust platform for prediction than that based solely on the best model. We show that predictions based on the selected best models dramatically overestimated differences between species relative to predictions based on the averaged set of models.  相似文献   

13.
This article describes a new forest management module (FMM) that explicitly simulates forest stand growth and management within a process-based global vegetation model (GVM) called ORCHIDEE. The net primary productivity simulated by ORCHIDEE is used as an input to the FMM. The FMM then calculates stand and management characteristics such as stand density, tree size distribution, tree growth, the timing and intensity of thinnings and clear-cuts, wood extraction and litter generated after thinning. Some of these variables are then fed back to ORCHIDEE. These computations are made possible with a distribution-based modelling of individual tree size. The model derives natural mortality from the relative density index (rdi), a competition index based on tree size and stand density. Based on the common forestry management principle of avoiding natural mortality, a set of rules is defined to calculate the recurrent intensity and frequency of forestry operations during the stand lifetime. The new-coupled model is called ORCHIDEE-FM (forest management).The general behaviour of ORCHIDEE-FM is analysed for a broadleaf forest in north-eastern France. Flux simulation throughout a forest rotation compare well with the literature values, both in absolute values and dynamics.Results from ORCHIDEE-FM highlight the impact of forest management on ecosystem C-cycling, both in terms of carbon fluxes and stocks. In particular, the average net ecosystem productivity (NEP) of 225 gC m−2 year−1 is close to the biome average of 311 gC m−2 year−1. The NEP of the “unmanaged” case is 40% lower, leading us to conclude that management explains 40% of the cumulated carbon sink over 150 years. A sensitivity analysis reveals 4 major avenues for improvement: a better determination of initial conditions, an improved allocation scheme to explain age-related decline in productivity, and an increased specificity of both the self-thinning curve and the biomass-diameter allometry.  相似文献   

14.
The succession of a mixed species stand of the Acadian Forest was simulated by adopting an approach taken by Botkin et al. (1972) (JABOWA) and later modified by Shugart and West (1977) (FORET). The model simulates the dynamic aspects of successional behaviour of the stand by projecting the current stage of vegetation composition (size of each individual of each species present on a 1/12 ha plot) with an element of randomness. The growth of each tree is modeled as a function of its size (represented by its diameter at breast height (dbh), height and leaf area index), the climate, the tree's tolerance to shade and the competition for available resources and space. Stand aboveground biomass (metric ton/ha), leaf area index, number of trees/ha and species composition of the stand were simulated under seven different conditions: (a) normal treatment, (b) increasing biomass maximum 30%, (c) decreasing biomass maximum 30%, (d) increasing degree-days 30%, (e) decreasing degree-days 30%, (f) increasing light extinction coefficient 30% and (g) decreasing light extinction coefficient 30%. Under the first set of conditions (normal treatment), the aboveground biomass reached a maximum value during the first hundred years, decreased during the second, and remained stable for the rest of the 500-year simulation period. The leaf area showed a similar pattern. The total number of trees/ha decreased sharply during the first fifty years and reached a stable value by the end of the first hundred years. Successional patterns and species competitive abilities were interpreted from the accumulated biomass of each species over the simulation period under the different treatments.Species composition of the stand under the normal treatment showed dominance of deciduous species at early stages of succession, with conifer species being increased and becoming dominant at the end of the simulation period. When the climate was raised 30% (warmer) over the average, the deciduous species continued their dominance over the course of the simulation period. Other simulated species dynamics also appeared to follow what is known about their successional behaviour in the field.  相似文献   

15.
A non-linear, deterministic model of biomass accumulation and nitrogen cycling in an even-aged, pure jack pine (Pinus banksiana Lamb.) stand was developed and used to explore effects of fire intensity and frequency of burning on the long-term nitrogen cycle. Given the model structure and assumptions, simulated results showed that successive fires at both light and severe fire intensities caused gradual depletion of the amount of N accumulated in the vegetation layers. Fires also reduced the amount of N in the litter and soil pools, with the initially large soil organically-bound N pool showing a particularly sharp decline, and decreased the productivity of the simulated stand. A frequency of one fire per 20 years for five successive burns produced declines of N accumulated in the tree stratum of 50–75% (depending upon fire intensity) in comparison with the undisturbed system at a corresponding age, whereas a 100-year frequency produced decreases of 10–22%. Similarly, declines in litter layer N were 54–72% at a 40-year frequency, compared with 30–55% at a 100-year frequency. The simulated results also suggested that both the stand age when burning occurred and the fire frequency were important, because distinctive patterns of accumulation and decline of N in ecosystem pools existed with increasing stand age. A serious lack of information regarding processes inherent in the model was found to exist in certain cases. Important processes which are currently poorly quantified include: (1) the factors controlling rates of tree growth; (2) the relation of foliar and other tissue N to soil N concentrations and foliar translocation; (3) the relation of forest floor conditions to decomposition and stand structural characteristics; and (4) the controls of a variety of soil N transformations, transfers, leaching and decomposition rates. Because of this basic lack of information and the great dependence of the model's behavior on these processes, the present version of the model is not suitable for real-world prediction. The model does have use as a means of combining hypotheses about a system into an explicit structure and examining the collective consequences of this, as well as pointing out future research needs for the system.  相似文献   

16.
《Ecological modelling》2005,181(2-3):173-190
Impacts of elevated temperature and CO2 on tree growth were introduced into a statistical growth and yield model for Finnish conditions based on corresponding predictions obtained from a physiological growth model. This one-way link between models was made by means of species-specific transfer functions describing the increase in stem volume growth of trees as a function of elevated temperature and CO2, stand density and the tree's competition status in a stand of Scots pine (Pinus sylvestris), silver birch (Betula pendula) and Norway spruce (Picea abies). This method allows the inner dynamics of the statistical model to be followed when the impacts of temperature and CO2 elevation on tree growth are introduced into the calculation of volume growth and further allocated between diameter and height growth. In this way compatibility with previous predictions of tree growth by means of statistical models and related model systems under current climatic conditions could be retained.The performance of the statistical model with species-specific transfer functions was evaluated by comparing its predictions with corresponding predictions given by a physiological model under conditions of elevated temperature and CO2. These calculations revealed that the growth response of individual trees to elevated temperature and CO2 can be introduced into the statistical model from a physiological growth model with an outcome that results in fairly satisfactory growth responses at the stand level as well.  相似文献   

17.
Abstract: Forest carnivores such as the fisher ( Martes pennanti ) have frequently been the target of conservation concern because of their association in some regions with older forests and sensitivity to landscape-level habitat alteration. Although the fisher has been extirpated from most of its former range in the western United States, it is still found in northwestern California. Fisher distribution, however, is still poorly known in most of this region where surveys have not been conducted. To predict fisher distribution across the region, we created a multiple logistic regression model using data from 682 previously surveyed locations and a vegetation layer created from satellite imagery. A moving-window function in a geographic information system was used to derive landscape-level indices of canopy closure, tree size class, and percent conifer. The model was validated with new data from 468 survey locations. The correct classification rate of 78.6% with the new data was similar to that achieved with the original data set (80.4%). Whereas several fine-scale habitat attributes were significantly correlated with fisher presence, the multivariate model containing only landscape- and regional-scale variables performed as well as one incorporating fine-scale data, suggesting that habitat selection by fishers may be dominated by factors operating at the home-range scale and above. Fisher distribution was strongly associated with landscapes with high levels of tree canopy closure. Regional gradients such as annual precipitation were also significant. At the plot level, the diameter of hardwoods was greater at sites with fisher detections. A comparison of regional fisher distribution with land-management categories suggests that increased emphasis on the protection of biologically productive, low- to mid-elevation forests is important to ensuring the long-term viability of fisher populations.  相似文献   

18.
The construction of a new forest management module (FMM) within the ORCHIDEE global vegetation model (GVM) allows a realistic simulation of biomass changes during the life cycle of a forest, which makes many biomass datasets suitable as validation data for the coupled ORCHIDEE-FM GVM. This study uses three datasets to validate ORCHIDEE-FM at different temporal and spatial scales: permanent monitoring plots, yield tables, and the French national inventory data. The last dataset has sufficient geospatial coverage to allow a novel type of validation: inventory plots can be used to produce continuous maps that can be compared to continuous simulations for regional trends in standing volumes and volume increments. ORCHIDEE-FM performs better than simple statistical models for stand-level variables, which include tree density, basal area, standing volume, average circumference and height, when management intensity and initial conditions are known: model efficiency is improved by an average of 0.11, and its average bias does not exceed 25%. The performance of the model is less satisfying for tree-level variables, including extreme circumferences, tree circumference distribution and competition indices, or when management and initial conditions are unknown. At the regional level, when climate forcing is accurate for precipitation, ORCHIDEE-FM is able to reproduce most productivity patterns in France, such as the local lows of needleleaves in the Parisian basin and of broadleaves in south-central France. The simulation of water stress effects on biomass in the Mediterranean region, however, remains problematic, as does the simulation of the wood increment for coniferous trees. These pitfalls pertain to the general ORCHIDEE model rather than to the FMM. Overall, with an average bias seldom exceeding 40%, the performance of ORCHIDEE-FM is deemed reliable to use it as a new modelling tool in the study of the effects of interactions between forest management and climate on biomass stocks of forests across a range of scales from plot to country.  相似文献   

19.
Adaptive cluster sampling (ACS) has the potential of being superior for sampling rare and geographically clustered populations. However, setting up an efficient ACS design is challenging. In this study, two adaptive plot designs are proposed as alternatives: one for fixed-area plot sampling and the other for relascope sampling (also known as variable radius plot sampling). Neither includes a neighborhood search which makes them much easier to execute. They do, however, include a conditional plot expansion: at a sample point where a predefined condition is satisfied, sampling is extended to a predefined larger cluster-plot or a larger relascope plot. Design-unbiased estimators of population total and its variance are derived for each proposed design, and they are applied to ten artificial and one real tree position maps to estimate density (number of trees per ha) and basal area (the cross-sectional area of a tree stem at breast height) per hectare. The performances—in terms of relative standard error (SE%)—of the proposed designs and their non-adaptive alternatives are compared. The adaptive plot designs were superior for the clustered populations in all cases of equal sample sizes and in some cases of equal area of sample plots. However, the improvement depends on: (1) the plot size factor; (2) the critical value (the minimum number of trees triggering an expansion); (3) the subplot distance for the adapted cluster-plots, and (4) the spatial arrangement of the sampled population. For some spatial arrangements, the improvement is relatively small. The adaptive designs may be particularly attractive for sampling in rare and compactly clustered populations with critical value of 1, subplot distance equal to the diameter of initial circular plots, or plot size factor of 2.5 for an initial basal area factor of 2.  相似文献   

20.
A stand-scale forest model has been developed that dynamically simulates, besides carbon (C) and water (H2O) fluxes, wood tissue development from physiological principles. The forest stand is described as consisting of trees of different size cohorts (for example, dominant, co-dominant and suppressed trees), either of the same or of different species (deciduous or coniferous). Half-hourly C and H2O fluxes are modeled at the leaf, tree and stand level. In addition to total growth and yield, the model simulates the daily evolution of tracheid or vessel biomass and radius, parenchyma and branch development. From these data early and latewood biomass, wood tissue composition and density are calculated. Simulation of the labile C stored in the living tissues allows for simulation of trans-seasonal and trans-yearly effects, and improved simulations of long-term effects of environmental stresses on growth. A sensitivity analysis was performed to indicate the main parameters influencing simulated stem growth and wood quality at the tree and stand level. Case studies were performed for a temperate pine forest to illustrate the main model functioning and, more in particular, the simulation of the wood quality. The results indicate that the ANAFORE model is a useful tool for simultaneous analyses of wood quality development and forest ecosystem functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号